July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

To appear in Advances in Physics
Vol. 00, No. 00, Month 20XX, 1-17

PAPER

A computational violation of CHSH with a local model.

Han Geurdes®*
@C. vd Lignstraat 164, 2593 NN Den Haag Netherlands

(v0.1 released July 2015)

In this paper the design and coding of a local hidden variables model is presented that violates
the |CHSH| < 2 criterion in size larger than 1 4+ V2.

PACS: 03.65.Ud Entanglement, 02.60.Cb Numerical simulation

Keywords: computer simulation, CHSH violation with local model, entanglement.

1. Introduction.

The CHSH inequality is an important element in the discussion about the existence or
nonexistence of additional local hidden parameters [1]. The CHSH inequality [2] is derived
from Bells formula for the correlation [3], E(a,b), between distant spin measurements
with setting parameters a and b. Generally,

E(@h) = [dads@Bib) (1)

In (1) we can identify the probability density py > 0, with [d\py = 1. The X are
introduced to explain the correlation and need to have a local effect. This can e.g. be
accomplished [5] if a A; is assigned to the A measurement instrument and A2 to the B
instrument. Furthermore, the measurement functions Ay(a) and B)(b) both project in
{—1,1} to represent binairy spin variables (e.g. up=1, down=-1). The CHSH inequality
is based on the following expression,

S =E(1,1)— E(1,2) — E(2,1) — E(2,2) (2)

The quartet of setting pairs Q@ = {(1,1),(1,2),(2,1),(2,2)} occurs random in a series of
N spin measurements of entangled particle pairs. Alice and Bob are two assitents in the
experiment who, per trial or particle pair measurement, randomly select the setting of
their measurement instrument. The argument in favor of the CHSH inequality [4] and
against a possible probability loophole [5] is as follows. From (1) and (2) we may write,
suppressing the hidden variables index A, notation for the moment,

S =E{AM)[B() - B(2)] - AQ2)[B(1) + B(2)]}- 3)

*Corresponding author. Email: han.geurdes@gmail.com

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

According to [4], because, A and B are both € {—1,1}, we see that when B(1) = B(2),
then S = 42, while, when B(1) = —B(2), it again flollows, S = +2. Hence, |S| based on
(1) cannot be larger than 2 and therefore the nonzero probability of |S| > 2 with a local
hidden variables model of [5] must be based on a mistake. It will be demonstrated with
a numeric simulation using local principles that this claim is untrue.

2. Reformulation Bells formula.

Let us define basic sets derived from the difference E(a,b) — E(z,y), (a,b) and (z,y)
are different settings. We have, Q4 (a,b;z,y) = {\| Ax(a)Bx(b) = Ax(x)Bx(y) = +1},
together with Q_(a,b;z,y) = {\| Ax(a)Bx(b) = Ax(z)Bi(y) = —1} and Qy(a,b;x,y) =
{AAx(a)Bx(b) = —Ax(x)Bx(y) = £1}. The three sets are disjoint and if A denotes the
universe set of the A variables we also have A = Q4 (a, b; z, y)UQ_(a, b; z, y)UQ(a, b; x, y).
Note that in E(a,b) — E(z,y) only the X\ € Qg(a, b; x,y) contribute. Therefore

B(a,b) — Ex,y) = ~2 /A s MA@ B (4)

If subsequently, E(a,b) = 0 and we write Q(z,y) = Qo(a,b;z,y) and (a,b) such that
E(a,b) =0, then

E(z,y) =2 / paAx(2) Ba(y)dA (5)
AEQ) (z,y)

With E(z,y) = Er(z,y). Subsequently from F(a,b) = 0 it follows [5] that,

Ec(z,y) = 2/ pAAA — 2/ PAAA (6)
AEQ, (z,y) A (2,y)

and, of course, Ec(z,y) = E(z,y) via E(a,b) = 0. Like in [5] we take the probability
density, px = pa, 2, and px, a, = pa,Pr,- The separate Aq, is assigned to A and A, is
assigned to B. For, j = 1,2,

)

&\H
S\ Sl

{76

0, Ad|- (7)

with the universal set, A = A; X Ay. Furthermore, €/, (z,y), is the Cartesian product of
a A1 and a Ay interval, i.e. Q4 (z,y) = ¥, (z) x Q5 (y). Similar as in [5] let us take

Vyu(1) € {0] — 14+ Jr << i Q5(1) € {0, Dl - 5 <X <0}
Vyu(2) € {0 | = 5 <M <1- L 950(2) € {0. D0 <X < S5}

The measurement functions to be used in the numerical simulations are

~a(o), A1 € I(z)
Ay (z) = { sgn{¢(z) — A1}, /\11 € M\I(z))

2

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

Table 1. Initial first step combinations of N-dimensional a andb
arrays

first N pairs second N pairs third N pairs fourth N pairs

(L,1) (1,2) (2,1) (2,2)
(1,2) (1,1) (2,2) (2,1)
(2,1) (2,2) (L,1) (1,2)
(2.2) (2,1) (1,2) (1,1)

With I(z) C Ay and ((x) € Aj\I(z). For By, (y) a similar form is given, 5(y) = %1,

_ (B, A2 € J(y)
B =1 sonfn(y) — Ao,)\22 € A2\ J(y) 1o

3. Design of the numerical local model

The violation with the use of a computer model is performed in two steps. In the first step
the A andB of a local model are generated with a numerical expression of the mathemat-
ics presented in the previous two sections. This is done in a orderly fashion for setting
parameters a and b. We select for Alice 14 = (1,0,0) and 24 = (0,0, 1). For Bob we select
1p = (—0.1568,0.3482, —0.9242) and 2p = (—0.8492,0.06045,0.5246). The selection for
B parameters is approximative. It represents a check if quantum mechanical correlation
values are reproduced. In the second step the a and b setting arrays are randomized. We
take N = 1 x 10* pairs per setting combination. So a typical randomized a array will
look like (1,2,1,1,2,....... , 1) and holds 4N entries. Similarly for the randomized b array.
Each, CHSH quartet combination (a,b) with a € {1,2} and b € {1,2} will hold exactly
N times a replication of (1,1) "measurements”, N times (1,2), N times (2,1) and N
times (2,2).

3.1. First step

In the first step the following four possible matchings of ordered a and b arrays are repre-
sented in table - 3.1. The structure presented in equations (9) and (10) are implemented
in the following snippet of (pseudo) R-code

if(a==1)}{
if (< 1/V2) &&(A > =1+ (1/v2)){
} Ala, M] = ala]

if (M > =1/v2) &&(M < =1+ (1/v2))){
} Ala, M| = sign|[C[a] — A\1]

The A1 in the previous snippet of code runs between —% and % and is discretized with

d\1 = (1/v/2)/(N/2), i.e., for index i4 in 1 toN, stepsize 1, we have \; = —%—H‘A*d/\l.

3

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

For, a = 2 we have

if(a==2){
if (< 1-1/v2) &&(M > —(1/v2)){
} Ala, M} = ala]

if (A >1-1/v2) &&(M < (1/v2)){
} Ala, M| = sign[Cla] — A1

}

The employed sign function is an abbreviation of the assignment of —1 and +1 in the
code. The ¢ parameter is: ([1] = —0.3127620 and ¢[2] = 0.0150918. The aja] is in {—1,1}
as in equation (9). The A results are stored on file and the two snippets of code stand
in a loop which runs from i4 = 1 to N with stepsize 1 each time computing a new
A1 for given a, a and (parameters. A similar procedure is performed for B. We have,
similarly, d\s = (1/4/2)/(N/2) in a separate loop running over ig = 1 to N, stepsize 1,
Ay = —% +ig * dA\g.

if (b==1){
if(A2 >0 &&(A2 < 1/v/2))){
B[b, Xo] = sign[B[b] — Ag]

}else{

and for b =2

if(b== 2}
(o <0 &&(o > ~1/VI)
Blb, Ao] = sign[B[b] — A2
Yelse{
} Blb, A2] = B[0]

}

The n parameters are, n[l,j] = 0.2678 4 (0.1608 * sign(0.5 — runif(1))) and n[2,j] =
—0.1880 — (0.1747 * sign(0.5 — runif(1))). With runif(1) a single random number is
generated by R. The first index is the setting . The second index is related to the
selection of the series. We have for b in table - 3.1 either, alternating, b = 1, or, b = 2,
i.e. the first and the third row in the table, or b = 2 and b = 1, i.e. the second and the
fourth row. In order to make the j index independent from the selected a (i.e. which
row in the table-3.1) we select the row type, i.e. begin with a = 1 and continue with
a = 2, like in the first and second row of the table, or begin with a = 2 and continue with
a = 1, like in the third and fourth row, randomly. So, B may have a random j variation
in the n parameter but it doesn’t convey anything about the a ’s used by Alice. The
employed code is r = runif(1) and subsequently if(r < 0.5){y = O}else{y = 1} and
if(y == 0){aSet[1] = 1,aSet]2] = 2}else{aSet[l] = 2,aS¢et[2] = 1}. If aSet[l] =1 we
have rows 1 or 2 of the table-3.1. If aSet[1] = 2, we have rows 3 or 4 of that same table.

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

A similar structure for B exists. However, we select using a § = 0 or § = 1 parameter.
E.g., 0 =0 andif(d == 0){bSet[l] = 1,bSet[2] = 2}else{bSet[1] = 2,bSet[2] = 1} gives
bSet[l] = 1 and bSet[2] = 2.

The runif(1) selection of v hides the a information from B. The subsequent selection
of 6 = 0 and § = 1 connects two B series to one a series. We note that A and B are
determined independently, i.e. locally, and that a information is hidden from B’s use of
the 7 index of (b, j]. Hence we may claim that both A and B series are determined based
on local parametrization. If the i4 and ip loops are run and i run for § = 0 and for
6 = 1 we have one A series and two B series independent of each other’s information.
Both 6 = 0 and § = 1 series have probability nonzero to generate CHSH violations
of size > 1 + /2. The violating A and Bjs—o together with Bs—; are stored on external
separate files named EPRA, EPRB0 and EPRB1. The employed settings are also written
to external files. For details the reader is referred to appendix A.

3.2. Second step

After clearing the memory in R, the three files are, with a second program, read into
arrays, A, BO and B1. The a and b arrays are also read and are used in a randomization
of a simulation of an experiment using a and b arrays. We note that a information is
hidden from B and, vice versa, b information is hidden from A. The randomization of
the a array is done with a large 4N sided dice. A side of that dice contains, in addition
to either, a = 1 or a = 2, the ranking number of a in the original sequence. So, suppose
we had, v < 0.5 in the first step, then the first 2N entries of the a array are 1 and the
remaining 2N entries are 2. The first entry a = 1 has ranking number 1, the second a = 1
has 2 etcetera. The 2N-th a = 1 will have ranking number 2/N. Subsequently, the first
a = 2 will have 2N + 1 etc.

For the source in the experiment we introduce the array S. If, for example, the 2N 4+ 1
array entry a = 2 is randomly selected as the first one after throwing of the A dice, then
s = 2N + 1 will be loaded as the first entry into the source array, i.e. S[1] = 2N +1. The
activity of source in the simulation is represented by an array S and the first value of
this array is s = 2N + 1. This value will be send to B for the first pair in the simulation.

Note that a information is hidden from B and that doesn’t change when an entry is
moved around in the a array. It also doesn’t change when its ranking number is send
from the source to B in the actual simulation. B is unaware of a. l.e. we are allowed
to load a source array S with ranking numbers of a entries and send it to B because B
cannot know the value of a when ~ is selected randomly. The ranking number can be seen
as a kind of "random seed” for all elements in the experiment. When the seed changes,
Bob only knows that there will be a change in all elements using that same seed. When
B does not know a, the specific numerical value remains hidden despite sending ranking
information of a to B. A change in ranking number in the arays is for B, a change from
a =1 to the next a =1 or from a = 1 to the next a = 2 or from a = 2 to a = 1 or from
a = 2 to a = 2. The hiding of information via v ~ runif(1) and the selection rule in the
first setp on the side of A only, is crucial to warrant the locality of the information.

In the program the arrays aAliceWork and bBobW ork are randomly construed with
the use of a dice. The original ordered a and b arrays (see table - 3.1) in the first step
are loaded and transformed into aAliceW ork and bBobW ork. The sequences for b from
the first step are read from file and kept in bBob0 and bBobl. If nTest = 4N, the crucial

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

part of the second step program is given by

AOut < —array(0,c(2,nTest))
BOut < —array(0, ¢(2,nTest))
for(iin seq(1,nTest)){
a = aAliceW ork]i]
b = bBobW orkli]
s = SYi
AOut[a,i] = Als]
if(bBob[s, 1] == b){
BOwut(b,i] = BO[s]
telse{
BOutb,i] = Bl|s]
}

}

So if the randomly selected b from bBobWork at trial number i is equal to the s-th
element in bBob0, represented by, bBob[s, 1], then the simulated B response, BOut|b, i
is equal to BO[s], i.e. the under 6 = 0 generated B from the first step. If bBob[s, 1] ==
is not true, then b is in bBobl, or bBob[b, 2]. The B simulated measurement is then B1]s],
i.e. the B generated in the first step under § = 1. The AOut[a,i] and BOut[b,i] arrays
are the simulated ”measurements” in the computer program.

In the second program we check

CHSH = EOut[2,2] — EOut[1,2] — EOut[2,1] — EOut[1,1].

The EOut is determined with FOut < —array(0,c¢(2,2)) for(ainl : 2){ for(binl :
2){ EOut[a,b] = sum(AOutla,| * BOut[b,])/N }}. It gives repeatedly in one run
CHSH =~ 2.437 with roughly a ratio CHSH/(1 4+ v/2) ~ 1.01. With "min” opera-
tion searches in the AOut and BOut arrays we established that no A = 0or B =0
”measurements” occur. For details the reader is referred to appendix B.

4. Conclusion

In the paper a numerical simulation is given for local violation of the CHSH criterion.
The mathematics of [5] is used and can be found in the defense [6] against the points
raised by Gill in [4].

In the present simulation paper, use is made of the fact that four basic configurations
in a and b arrays size N = 1 x 10* per setting combination, can be violated with the use
of the mathematics of [5]. The basic configurations consist of e.g. first N x (1,1) pairs,
then N x (1,2) pairs , then N x (2,1) pairs and finally N x (2,2) pairs. Similar basic
configurations can be foud in the table of the body of the present paper. Using a random
selection v ~ runif(1) the A side 4N, a array of Alice plus the 4N array carrying the
A € {-1,1}, can be created and hidden from Bob. Bob, in turn, may generate two B
sequences. If Alice has via v ~ runif(1) the series of 2N x 1 first entries in the a array
and then 2N X 2 in the a array, then Bob may store in the first preparatory step, two
violating B sequences, one B sequence, the 6 = 0, is N x 1, then, N x 2, then N x 1 and
finally N x 2. Or the § = 1 series, N x 2, then, N x 1, then N x 2 and finally N x 1. The
B computation outcome is stored in Bs.

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

The simulation step, i.e. the second step of the program is in fact a completely new
program that starts from a cleared environment (in R). The in the first step stored a
series is randomized in aAliceW ork and the rank numbers of the randomized a are stored
in an array S representing the source. Bob randomizes his b setting array similarly. Alice
doesn’t make use of the ranking numbers of Bobs array. The first steps in this program
are preparatory. It is used to detach the generating principle in the first step from the
simulation in the second step.

Subsequently, a selection rule over 4N trials, with a in a AliceW ork and b in bBobW ork
settings using A and By gives a one run violation of the CHSH. The B instrument contains
By and B; and actualizes in BOut via the source S array containing ranking information.

The sharing of ranking number of a AliceW ork with Bob via the source array does not
give away the hidden information of the numerical values in the a AliceWork array. This
is so because the v ~ runif(1) selection in the first step on the A side, hides the A side
from Bob. Alice has no knowledge of Bob’s b selections in bBobW ork either. Note that
in the second step the S array can be in a source server standing between two client
computers representing A and B. So the three computers, A, S and B can completely
mimic the experimental set-up if this is considered necessary.

The claim made in [4] is mathematiucally and numerically invalid. The violation is
in an ideal situation where 100% detection efficiency exists. It therefore, like [5] and [6]
questions the soundness of the principle of the CHSH and rejects [4] that ” in [5] there
must be an error” is based on biasedness towards the soundness of CHSH. Gill admits
[7] that rejection of a probability loophole in the CHSH cannot be valid when a local
numerical simulation, such as in the present paper, can be accomplished.

We conclude that nature can generate violations of the CHSH criterion with the use
of local hidden variables. From the results of simulatiuon, entanglement of particles
and/or measuring instruments appears to be a mutual sharing of a ”"random seed” where
numerical information is encapsulated in the particular element that participates in the
experiment.

References

[1] A. EINSTEIN, B. PopoLsky, N. ROSEN, (1935), Can quantum-mechanical description of
physical reality be considered complete, Phys. Rev. 47 777-780.

[2] J.F. CLAUSER, M.A. HORNE, A. SHIMONY, R.A. HoLT, (1969), Proposed experiment to
test local hidden-variables theories, Phys. Rev. Lett. 23 880-884.

[3] J.S. BELL, (1964), On the Einstein Podolsky Rosen paradox, Physics 1 195-200.

[4] R.D. GiLL, (2015), No probability loophole in the CHSH, Results in Physics 5, 156-157,
http://dx.doi.org/10.106/j.rinp.2015.06.002.

[5] J.F. GEURDES, (2014), A probability loophole in the CHSH, Results in Physics 4, 81-82,
http://dx.doi.org/10.106/j.rinp.2014.06.002.

[6] J.F. GEURDES, (2015), Why one can maintain there is a probability loophole in the CHSH,
viXra, 1507.0041v2.

[7] R.D. GILL (2015), Personal communication.

Appendix A. Code first step

Perhaps the reader must be warned that the two presented R programs here are not
”optimally” programmed.

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

path<-"C:/Users/Han/Documents/R/"
outEPRA<-pasteO(path,"EPRA.txt")
outEPRBO<-pasteO(path,"EPRBO.txt")
outEPRB1<-pasteO(path, "EPRB1.txt")
outaAlice<-pasteO(path,"allice.txt")
outbBobO<-pasteO(path, "bBob0.txt")
outbBobl<-pasteO(path,"bBobl.txt")
#
DateTime<-date ()
n=le4d
S3=0
m<-0
Slim=1+sqrt(2)
#S1im=1.0
aAlice<-array(0,n)
bBob<-array(0,n)
while(abs(8)<Slim && m<100){
m=m+1
ml=m
#(pasteO(c("##") ,DateTime), file=writeFile,append=TRUE)
dlambda_1=(1/sqrt(2))/(n/2)
dlambda_2=(1/sqrt(2))/(n/2)
lambda_1<-array(0,n)
zeta<-array(0,2)
eta<-array(0,c(2,2))
zeta[1]=-0.31276201747484
zeta[2]=0.0150918216743739
alpha<-array(0,2)
alpha[1]=-1
alpha[2]=alpha[1]
beta<-array(0,2)
beta[1]=-1
beta[2]=betal[1]
for (lambda_1_n in seq(1l,n)){
lambda_1[lambda_1_n]=(-1/sqrt(2))+(dlambda_1l*lambda_1_n)
}
lambda_2<-array(0,n)
for (lambda_2_n in seq(1,n)){
lambda_2[lambda_2_n]=(-1/sqrt(2))+(dlambda_2*lambda_2_n)
}
aSet<-array(0,2)
bSet<-array(0,2)
r=runif (1)
if (r<0.5){
gamma=0
Yelse{
gamma=1
}
if (gamma==0){
aSet[1]=1

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

aSet [2]=2
Yelseq{
aSet[1]=2
aSet[2]=1
}
delta=0
if (delta==0){
bSet[1]=1
bSet [2]=2
Yelseq{
bSet[1]=2
bSet[2]=1
}
A<-array(0,c(2,n))
B<-array(0,c(2,n))
ATest<-array(0,4%n)
BTest<-array(0,4%*n)
aAlice<-array(0,4%*n)
bBob<-array (0,4*n)
E<-array(0,c(2,2))
m2=0
m3=0
m4=0
for(i in seq(1,2)){
a=aSet [i]
for (lambda_1_n in seq(1,n)){
m3=m3+1
if (a==1){
if (lambda_1[lambda_1_n]<(1/sqrt(2)) && lambda_1[lambda_1_n]l>-1+(1/sqrt(2))){
Ala,lambda_1_n]=alphala]
#ATest [m3]=A[a,lambda_1_n]
}
if (lambda_1[lambda_1_n]>-(1/sqrt(2)) && lambda_1[lambda_1_n]l< -1+(1/sqrt(2)))
if (lambda_1[lambda_1_n] < zetala]){
Ala,lambda_1_n]=1
#ATest [m3]=A[a,lambda_1_n]
}elseq
Ala,lambda_1_n]=-1
#ATest [m3]=A[a,lambda_1_n]

}
}
if (lambda_1_n==n && A[a,n]==0){
Ala,n]=1
#ATest [m3]=A[a,lambda_1_n]
}
}
if (a==2){

if (lambda_1[lambda_1_n]<1-(1/sqrt(2)) && lambda_1[lambda_1_n]>-(1/sqrt(2))){
Ala,lambda_1_n]=alphalal
#ATest [m3]=A[a,lambda_1_n]

July 30, 2015

16:25 Advances in Physics tADPComputationalPhysics

}
if (lambda_1[lambda_1_n]>1-(1/sqrt(2)) && lambda_1[lambda_1_n]< (1/sqrt(2))){
if (lambda_1[lambda_1_n] < zetala]){
Ala,lambda_1_n]=1
#ATest [m3]=A[a,lambda_1_n]
Yelseq
Ala,lambda_1_n]=-1
#ATest [m3]=A[a,lambda_1_n]

}

}

if (lambda_1_n==n && A[a,n]==0){
Ala,n]=-1
#ATest [m3]=A[a,lambda_1_n]

}

Ala,lambda_1_n]<--A[a,lambda_1_n]
#ATest [m3]=A[a,lambda_1_n]
}
}
#
for (j in seq(1,2)){
b=bSet [j]
#plot(lambda_1,A)
dlambda_2=(1/sqrt(2))/(n/2)
etal1,j]1=0.2678+(0.1608*sign(0.5 - runif(1)))
eta[2,j]=-0.1880-(0.1747*sign(0.5 - runif(1)))
for (lambda_2_n in seq(1,n)){
m4=m4+1
m2=m2+1
if (b==1){
if (lambda_2[lambda_2_n]>0 && lambda_2[lambda_2_n]<(1/sqrt(2))){
B[b,lambda_2_n]=sign(etalb,j]l-lambda_2[lambda_2_n])
BTest [m4]=B[b,lambda_2_n]
Yelseq{
B[b,lambda_2_n]=betalb]
BTest[m4]=B[b,lambda_2_n]

}
if (lambda_2_n==n && B[b,n]==0){
B[b,n]=-1
BTest[m4]=B[b,lambda_2_n]
}
}
if (b==2){

if (lambda_2[lambda_2_n]<0 && lambda_2[lambda_2_n]>-(1/sqrt(2))){
B[b,lambda_2_n]=sign(etalb, j]-lambda_2[lambda_2_n])
BTest [m4]=B[b,lambda_2_n]
Yelseq{
B[b,lambda_2_n]=betal[b]
BTest [m4]=B[b,lambda_2_n]
}
if (lambda_2_n==n && B[b,n]==0){

10

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

B[b,n]=1
BTest [m4]=B[b,lambda_2_n]
}
B[b,lambda_2_n]<--B[b,lambda_2_n]
BTest[m4]=B[b,lambda_2_n]
}
aAlice[m2]=a
bBob [m2]=b
}

#plot(lambda_2,B)
El[a,b]=sum(A[a,]*B[b,])/n
Htb
Hta
#print (E)
S=-E[1,1]-E[1,2]-E[2,1]+E[2,2]
if (abs(S)>2*sqrt (2)){
S=0
m=0
}
S
if (gamma==0){
ATest[1:n]=A[1,]
x1=n+1
xu=(2*n)
ATest [x1:xul=A[1,]
x1=(2*n)+1
xu=(3*n)
ATest [x1:xul=A[2,]
x1=(3*n)+1
xu=4*n
ATest[x1:xul=A[2,]
Yelseq{
ATest[1:n]=A[2,]
x1=n+1
xu=(2%*n)
ATest [x1:xul=A[2,]
x1=(2%n)+1
xu=(3*n)
ATest[x1:xul=A[1,]
x1=(3*n)+1
xu=4*n
ATest[x1:xul=A[1,]
}
print (paste0("Number of pairs: ",n))
print (pasteO("number of attempts to succes= ",ml1))

print (" Internals
#print (paste0("zetal[1]=",zetal[1]))
#print (paste0("zeta[2]=",zetal[2]))
#print (c("Eta matrix: "))

11

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

print(eta)
print (E)
print(S)
#
write(BTest,file=outEPRBO, append=FALSE)
write(bBob,file=outbBob0,append=FALSE)
#
write(ATest,file=outEPRA, append=FALSE)
write(aAlice,file=outaAlice,append=FALSE)
HAEHBHHBHHAH B HBHHHHHAH R HBHHBFHAH B HBFHRF R AR R R RS HBHH AR B R RS HRHHAH R H RS H B H AR BB H AR RS
DateTime<-date ()
n=le4d
S5=0
m<-0
Slim=1+sqrt(2)
#S1im=1.0
aAlice<-array(0,n)
bBob<-array(0,n)
while(abs(8)<Slim && m<100){
m=m+1
mi=m
#(pasteO(c("##") ,DateTime), file=writeFile,append=TRUE)
dlambda_1=(1/sqrt(2))/(n/2)
lambda_1<-array(0,n)
zeta<-array(0,2)
eta<-array(0,c(2,2))
zeta[1]=-0.31276201747484
zeta[2]=0.0150918216743739
alpha<-array(0,2)
alpha[1]=-1
alpha[2]=alpha[1]
beta<-array(0,2)
beta[1]=-1
beta[2]=betal[1]
for (lambda_1_n in seq(1,n)){
lambda_1[lambda_1_n]=(-1/sqrt(2))+(dlambda_l*lambda_1_n)
}
lambda_2<-array(0,n)
for (lambda_2_n in seq(1,n)){
lambda_2[lambda_2_n]=(-1/sqrt(2))+(dlambda_2*lambda_2_n)
}
aSet<-array(0,2)
bSet<-array(0,2)

if (gamma==0){
aSet[1]=1
aSet[2]=2

Yelse{
aSet[1]=2
aSet[2]=1

12

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

}
delta=1
if (delta==0){
bSet[1]=1
bSet [2]=2
Yelseq{
bSet[1]=2
bSet [2]=1
}
A<-array(0,c(2,n))
B<-array(0,c(2,n))
ATest<-array(0,4%n)
BTest<-array(0,4%*n)
aAlice<-array(0,4%*n)
bBob<-array (0,4*n)
E<-array(0,c(2,2))
m2=0
m3=0
m4=0
for(i in seq(1,2)){
a=aSet [i]
for (lambda_1_n in seq(1l,n)){
m3=m3+1
if (a==1){
if (lambda_1[lambda_1_n]<(1/sqrt(2)) && lambda_1[lambda_1_n]l>-1+(1/sqrt(2))){
Ala,lambda_1_n]=alphalal
#ATest [m3]=A[a,lambda_1_n]
}
if (lambda_1[lambda_1_n]>-(1/sqrt(2)) && lambda_1[lambda_1_n]< -1+(1/sqrt(2))){
if (lambda_1[lambda_1_n] < zetala]){
Ala,lambda_1_n]=1
#ATest [m3]=A[a,lambda_1_n]
Yelseq{
Ala,lambda_1_n]=-1
#ATest [m3]=A[a,lambda_1_n]
}
}
if (lambda_1_n==n && A[a,n]==0){
Ala,n]=1
#ATest [m3]=A[a,lambda_1_n]
}
}
if (a==2){
if (lambda_1[lambda_1_n]<1-(1/sqrt(2)) && lambda_1[lambda_1_n]>-(1/sqrt(2))){
Ala,lambda_1_n]=alpha/[a]
#ATest [m3]=A[a,lambda_1_n]
}
if (lambda_1[lambda_1_n]>1-(1/sqrt(2)) && lambda_1[lambda_1_n]< (1/sqrt(2))){
if (lambda_1[lambda_1_n] < zetala]){
Ala,lambda_1_n]=1

13

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

#ATest [m3]=A[a,lambda_1_n]
Yelseq{

Ala,lambda_1_n]=-1

#ATest [m3]=A[a,lambda_1_n]

}

}

if (lambda_1_n==n && A[a,n]==0){
Ala,n]=-1
#ATest [m3]=A[a,lambda_1_n]

}

Ala,lambda_1_n]<--A[a,lambda_1_n]
#ATest [m3]=A[a,lambda_1_n]
}
}
#
for (j in seq(1,2)){
b=bSet [j]
#plot (lambda_1,A)
etal1,j]1=0.2678+(0.1608*sign(0.5 - runif(1)))
eta[2,j]=-0.1880-(0.1747*sign(0.5 - runif(1)))
for (lambda_2_n in seq(1,n)){
m4=m4+1
m2=m2+1
if (b==1){
if (lambda_2[lambda_2_n]>0 && lambda_2[lambda_2_n]<(1/sqrt(2))){
B[b,lambda_2_nl=sign(etalb, jl-lambda_2[lambda_2_n])
BTest [m4]=B[b,lambda_2_n]
Yelsed{
B[b,lambda_2_n]=betalb]
BTest[m4]=B[b,lambda_2_n]

}
if (lambda_2_n==n && B[b,n]==0){
B[b,n]=-1
BTest[m4]=B[b,lambda_2_n]
}
}
if (b==2){

if (lambda_2[lambda_2_n]<0 && lambda_2[lambda_2_n]>-(1/sqrt(2))){
B[b,lambda_2_n]=sign(etalb,jl-lambda_2[lambda_2_n])
BTest [m4]=B[b,lambda_2_n]
Yelsed{
B[b,lambda_2_n]=betal[b]
BTest [m4]=B[b,lambda_2_n]

}

if (lambda_2_n==n && B[b,n]==0){
B[b,n]=1
BTest[m4]=B[b,lambda_2_n]

}

B[b,lambda_2_n]<--B[b,lambda_2_n]
BTest [m4]=B[b,lambda_2_n]

14

July 30, 2015

16:25

Advances in Physics t ADPComputationalPhysics

}
aAlice[m2]=a
bBob [m2]=b

}

#plot (lambda_2,B)
Ela,b]l=sum(A[a,]*B[b,])/n
Hb
Hta
#print (E)
S=-E[1,1]1-E[1,2]-E[2,1]+E[2,2]
if (abs(8)>2*sqrt (2)){
S=0
m=0
}
S
if (gamma==0){
ATest[1:n]=A[1,]
x1=n+1
xu=(2*n)
ATest[x1:xul=A[1,]
x1=(2*n)+1
xu=(3%*n)
ATest[x1:xul=A[2,]
x1=(3*n)+1
xu=4*n
ATest [x1:xul=A[2,]
Yelse{
ATest[1:n]=A[2,]
x1=n+1
xu=(2*n)
ATest[x1:xul=A[2,]
x1=(2*n)+1
xu=(3*n)
ATest[x1:xul=A[1,]
x1=(3*n)+1
xu=4*n
ATest[x1:xul=A[1,]
}
print (pasteO("Number of pairs: ",n))
print (pasteO("number of attempts to succes= ",ml1))

print ("====== Internals ===
#print (paste0("zetal[1]=",zetal[1]))

#print (paste0("zetal[2]=",zetal[2]))

#print (c("Eta matrix: "))

print(eta)

print (E)

print(S)

#

write(BTest,file=outEPRB1,append=FALSE)

15

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

write(bBob,file=outbBobl,append=FALSE)

Appendix B. Second step

path<-"C:/Users/Han/Documents/R/"
#
aAlice<-pasteO(path,"aAlice.txt")
bBob0O<-pasteO(path, "bBob0.txt")
bBobl<-pasteO(path,"bBobl.txt")
EPRA<-pasteO(path,"EPRA.txt")
EPRBO<-pasteO(path, "EPRBO.txt")
EPRB1<-pasteO(path, "EPRB1.txt")
#
n=1led
nTest=4*n
aAlice<-scan(alAlice)
aAliceWork<-aAlice
bBob<-array(0,c(nTest,2))
bBob[,1]<-scan(bBob0)
bBob[,2]<-scan(bBob1l)
A<-scan(EPRA)
BO<-scan (EPRBO)
Bi<-scan(EPRB1)
S<-array(0,nTest)
#a random
iTrial<-seq(1,nTest)
for(tel in 1:8){
for(i in seq(1,nTest)){
inDx<-as.integer (i+(nTest+1-i)*runif (1))
iHelp<-iTrial [inDx]
iTrial[inDx]<-iTriall[i]
iTrial[i]<-iHelp
}
}
for (i in seq(1,nTest)){
iNdx<-iTrial[i]
S[il<-iNdx
aAliceWork[i]<-aAlice[iNdx]
}
#b random
bBobWork<-array(0,nTest)
iTrial<-seq(1,nTest)
for(tel in 1:8){
for(i in seq(1,nTest)){
inDx<-as.integer (i+(nTest+1-i)*runif (1))
iHelp<-iTrial [inDx]
iTrial[inDx]<-iTrial[i]
iTrial[i]<-iHelp
}

16

July 30, 2015 16:25 Advances in Physics t ADPComputationalPhysics

+
for (i in seq(l,nTest)){
iNdx<-iTrial[i]
bBobWork [i]=bBob [iNdx,1]
}

AQut<-array(0,c(2,nTest))
BOut<-array(0,c(2,nTest))
#
for (i in seq(l,nTest)){
a=aAliceWork[i]
b=bBobWork [1i]
s=S[i]
AOut[a,i]=A[s]
if (bBobl[s,1]==b){
BOut [b,i]=B0[s]
Yelse{
BOut [b,i]=B1[s]
}
}
EQut<-array(0,c(2,2))
for(a in 1:2){
for (b in 1:2){
EOut[a,b]l=sum(AOut[a,]*B0Out[b,])/n
}
}
print (EOut)
SOut=EOQut [2,2] -EOQut [2,1]-EOQut [1,2]-EQut[1,1]
print(pasteO("CHSH=",S0ut))
print(pasteO("Ratio, Sout/(l+sqrt(2))=",S0ut/(1+sqrt(2))))
x=EOut[1,1]
y=1-(EOut[1,1]"2)-(EOut[1,2]"2)
y=sqrt (y)
z=EOut[1,2]
o=EOut[2,1]
p=1-(EOut [2,1] “2) - (EDut [2,2] ~2)
p=sqrt (p)
q=EOut [2,2]
bAri<-array(0,3)
bAr2<-array(0,3)
bAr1[1]=x;bAr1[2]=y;bAr1[3]=z
bAr2[1]=0;bAr2[2]=p;bAr2[3]=q
lenl=sqrt (t (bArl)%*%bArl)
len2=sqrt (t (bAr2) %*%bAr2)
prlnt (n.n)
print(pasteO("setting Alice, 1=(1,0,0), 2=(0,0,1)"))
print(pasteO("setting Bob 1=(",x,",",y,",",z,")"))
print(paste0("setting Bob 2=(",0,",",p,",",q,")"))
print(pasteO("Length (setting Bob 1) ",lenl))
print(pasteO("Length (setting Bob 2) ",len2))

17

