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Abstract We introduce information-theoretic erasure 
based on Shannon’s binary channel formula. It is 
pointed out that this type of erasure is a natural 
energy-dissipation-free way in which information is 
lost in double-potential-well memories, and it may be 
the reason why the brain can forget things 
effortlessly. We also demonstrate a new non-volatile, 
charge-based memory scheme wherein the erasure 
can be associated with even negative energy 
dissipation; this implies that the memory’s 
environment is cooled during information erasure and 
contradicts Landauer’s principle of erasure 
dissipation. On the other hand, writing new 
information into the memory always requires positive 
energy dissipation in our schemes. Finally, we show 
a simple system where even a classical erasure 
process yields negative energy dissipation of 
arbitrarily large energy. 
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1 Introduction: Classical information erasure 

In computer memories, the erasure of a bit means 
resetting its value to zero. This type of erasure, which 
we call classical erasure, implies a bit-value change if 
the bit value before the erasure was 1. In accordance 
with Brillouin’s negentropy equation [1–3], any bit-
value change gives a minimum dissipation of energy 
Ed by  

 
Ed ≥ kT ln

1
pe

⎛
⎝⎜

⎞
⎠⎟

  ,            (1) 

where  pe  is the error probability of the operation 

 pe < 0.5( ) , k is Boltzmann’s constant and T is 

absolute temperature. In the case of pe = 0.5 , which 
is the limit for a completely inefficient operation, the 
relevant kT ln(2)  dissipation is the famous Szilard–
Brillouin–Landauer limit [1–3]. 

In this paper, we introduce “information-
theoretic erasure”, ITE, for which the elimination of 
information is guaranteed by information theory. We 
show that ITE does not cause energy dissipation, and 
it can even produce negative energy dissipation by 
cooling the environment. However, the writing of 
new information into the memory always requires 
positive energy dissipation. 

 

2 Information-theoretic erasure 

In accordance with Shannon’s channel capacity 
formula for binary channels, the maximum 
information content (maximum mutual information 
between the input and output) I1  of a single bit with 
error probability pe (error during transfer) is given by 

 I1 = 1+ pe log2 pe + (1− pe )log2(1− pe )            (2) 

as illustrated in Fig. 1. The case of  pe = 0  yields an 

 I1 = 1 bit , while  pe = 0.5  corresponds to a random 
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coin with an  I1 = 0 bit .  

Motivated by these facts, we consider the 
memory an information channel between the Writer 
and Reader of information and introduce ITE as 
follows: Suppose that the bit-operations are error-free 
and that the bit-value before the erasure is 1. Then the 
probability p(1)  that the bit has the value 1 is 

p(1) = 1  .             (3) 

Similarly, if the bit value before the erasure is 0, then 
the probability is 

p(0) = 1  .             (4) 

We define information-theoretic erasure so that, 
after the erasure, these probabilities become 

 p(1) = 0.5    and    p(0) = 0.5  ,           (5) 

which guarantees total elimination of information 
from the memory. Alternative names such as 
“randomization”, “thermalization”, etc., could have 
been used, but we choose “information-theoretic 
erasure” which is inspired by the term “information-
theoretic security” in communication [4]. In the latter 
case, the meaning is that—according to information 
theory—the information does not exist in the channel 
for the eavesdropper. Similarly, after ITE, and 
according to information theory (and Eq. 2), the 
information does not exist in the memory. 

       Finally, we note that Eq. 2 (and Fig. 1) does not 
only illustrate the zero-information case at pe= 0.5 but 
is practically useful for evaluating incomplete erasure 
and remaining information. 

 

 

Fig. 1 Information content of a bit versus error according to 
Eq. (2). 

 

3 Physical realizations 

In this section, we show two physical realizations: 
one is passive erasure (thermalization) in memories 
with double-potential wells and the other is active 
erasure in capacitor-based memories, where even 
negative energy dissipation is feasible. 

 

3.1 Passive erasure in symmetric potential wells 

The most natural process that leads to ITE is 
thermalization in a symmetric double-well potential 
system, such as in a magnetic memory; see Fig. 2. 
When such a system is kept untouched for a number 
of relaxation events, the exponential nature of 
relaxation will cause ITE so that 

 p(1)→ 0.5    and    p(0)→ 0.5            (6) 

occur without energy dissipation because equilibrium 
thermal fluctuations are utilized for erasure. Of 
course, such a process may take thousands of years, 
but the existence of this phenomenon proves that no 
energy dissipation is required for information erasure. 
Similar arguments may explain how the brain can 
easily forget neutral information, while the creation 
of new information requires effort. 

 

 
 

Fig. 2 Passive information-theoretic erasure in a zero-
energy-dissipation fashion by waiting for thermalization at 
ambient temperature, or, in a dissipative way, by heating 
the memory cell to rapidly thermalize the bit. Note that the 
information entropy in the memory is zero (see Sec.4) 
because the bit state is deterministic and exactly set/known 
by the operator.  

 
Of course, it is possible to heat the memory cell 

so that kT approaches the barrier height E (see Fig. 2) 
sufficiently to cause rapid ITE, but this approach 



involves energy dissipation and is uninteresting from 
a fundamental scientific point of view. 

 

3.2 Charge-based bit with information-theoretic 
erasure 

We now consider a capacitor-type information cell. 
Figs. 3–6 show various aspects of its operation. 
Suppose that positive voltage is interpreted as bit 1 
and negative voltage as bit 0.  

Fig. 3 shows the writing process. An external 
resistor and voltmeter are connected to the cell, and 
thus a parallel RC circuit is present. As a 
consequence of the measurement and decision 
process described below, the writing process is 
strongly dissipative. The resistor will drive a Johnson 
noise current through the capacitor thereby yielding a 
noise voltage on the capacitor; see Fig. 4. The 
voltmeter monitors this voltage, and the resistor is 
disconnected when the required voltage is reached. 
The root-mean-square value of the Johnson noise 
voltage on a parallel RC circuit is [3] 

σ = kT /C  ,            (7) 

and the corresponding mean energy in the capacitor 
is kT/2. Two cases should be considered: 

(i) If, during the writing process, we choose +σ  for 
bit value 1 and −σ  for bit value 0 then the 
information-containing capacitor will possess thermal 
equilibrium energy in accordance with Boltzmann’s 
equipartition theorem for a single thermal degree of 
freedom.  

(ii) On the other hand, if we use the voltages ±u0  for 

the 1 and 0 bits, respectively, where u0 <σ , then the 
energy in the capacitor will be less than the thermal 
equilibrium level kT/2. 

 

 
 

Fig. 3 Writing of information into a capacitor by 
thermalization and measurement/control similar to that of 
electrical demons [3]. Johnson noise in the resistor drives 
the current, and the connection to the memory is terminated 
when the voltage level corresponding to the information to 
be stored is reached. 

 

 
 

Fig. 4 Johnson noise voltage in a capacitor. The voltage 
levels ±u0 pertain to written bit values; see the main text for 
details. 

Fig. 5 shows the corresponding read-out process. 
It entails measuring the voltage and deciding if it is 
positive (bit value 1) or negative (bit value 0).  

 

 

 

Fig. 5 Reading out information from a capacitor. Here both 
the information entropy of the memory and the 
thermodynamic entropy related to the voltage are zero 
because the voltage is a deterministic quantity, which is 
exactly set/known by the operator (see Sec. 4). The system 
is isolated in a lower energy state than its environment by a 
deterministic, non-thermal, negative energy shift compared 
to the mean kT/2 thermal energy per thermal degree of 
freedom in the environment.  

 

Fig. 6 illustrates the erasure process. The 
capacitor is reconnected to the resistor, but no voltage 
measurement or decision is necessary. The capacitor 
will be thermalized within a few events with 



relaxation timeτ = RC , and the conditions of 
relations (6) are reached. The energy dissipation 
during erasure is determined by our former choice: 

(iii) Using writing condition (i), the mean energy of 
the capacitor will not change during erasure, and 
hence the energy dissipation is zero. 

(iv) However using writing condition (ii), the mean 
energy of the capacitor is increased during 
information erasure so that energy dissipation is 
negative, and consequently the resistor and the 
environment of the memory cell are cooled in 
accordance with 

 
Ediss =

1
2 Cu0

2 − kT( ) < 0   .           (8) 

 

 

 

Fig. 6 Information erasure by thermalization of a capacitor. 
For small values of u0, energy is extracted from the resistor 
so that its environment is cooled, thus indicating negative 
energy dissipation. The voltage is a thermodynamic 
quantity representing thermal equilibrium. The information 
entropy of the memory cell is 1 bit (see Sec. 4). 

 

4  About some former theories 

There are some prior thermodynamic-theoretical 
investigations that mention both indeterministic 
operations and negative energy dissipation [5,6], 
where [6] is aiming to prove that logical reversibility 
allows physical reversibility, which we cannot 
accept. It is of interest to view the present work in 
context with these investigations. We believe that 
thermodynamic approaches to error-free memories 
are invalid, and our results and scheme are entirely 
independent from the considerations in earlier work 
[5,6].  

       We now give a brief summary of our opinion [7], 
which is not new in the literature as seen below. First 
we mention that Porod et al. [8,9], Porod [10] and 
Norton [11,12] have pointed out that the logic state in 
a computer is different from the system state in a 

thermodynamic ensemble, and its state-space is 
limited. It is possible to extend this discussion to 
include some further implications of determinism. 
The information entropy S of a single-bit memory is 
given as 

S = −k p 0( )ln p 0( ) + p 1( )ln p 1( )⎡⎣ ⎤⎦  , (9) 

where p 0( )  and p 1( )  are the probability of being in 

the state with bit values 0 and 1, respectively. 
Thermodynamic approaches assume that the 
information in the memory is statistical, which is 
incorrect and leads to a well-known flaw as discussed 
elsewhere [7].  

       However, for an error-free memory (a Turing 
machine), if the bit value is 0 then 

 p 0( ) = 1   and   p 1( ) = 0      (10) 

and, in accordance with Eq. 9 the corresponding 
entropy is 

S1 = −k ln 1( ) + 0 ln 0( )⎡⎣ ⎤⎦ = 0   . (11) 

Similarly, when the bit value is 1 one gets 

S1 = −k 0 ln 0( ) + ln 1( )⎡⎣ ⎤⎦ = 0  .  (12) 

Therefore, in a deterministic computer (a Turing 
machine) with error-free memory, the information 
entropy of the memory is always zero. Furthermore, 
this fact is independent of the thermodynamic 
microstate of the memory, including the thermal 
motion of atoms, etc., in them. Thus thermodynamics 
could possibly be used only to interrelate information 
and entropy in memories with bit-errors caused by 
(thermal) fluctuations, which is not the topic of our 
paper or [5,6]. 

       Such considerations are actually valid for the full 
deterministic Turing machine, not only for the 
memories. We reiterate that our observations are not 
new. For example, already Alfred Renyi [13] 
explained that the information in an article showing a 
new result of geometry is not more than the 
information represented by the axioms, the rules of 
calculations, and possible initial and boundary 
conditions. Beisbart and Norton [14] have similarly 
argued about Monte Carlo simulation results.   

       In conclusion, it is impossible to present our 
results in the context of earlier notions [5,6], which is 
a consequence of the lack of a common ground of 
understanding. However we may mention an earlier 
claim [5] that, in special cases, negative energy 



dissipation (cooling) is possible during classical 
erasure (when resetting bits to 0). This claim [5] is 
limited by 

 Ediss ≥ −kT ln(2)ΔSs  ,   (13) 

where ΔSs  is the change of the “information 
theoretic self-entropy of the erasable system” [5], i.e., 
in a single-bit memory, with 1 bit maximum entropy 
change. Under these conditions the cooling (negative) 
energy would be less than kT ln(2) ≈ 0.6kT . 
However, as we have shown above, the information 
entropy (and its change) is zero during the whole 
operation of the error-free memory, and thus Eq. 13 
gives zero energy (cooling or heating). More details 
on this matter are given below. 

 

5  Conclusion and remarks 

Our present study showed schemes and realizations 
for information erasure, for which energy dissipation 
can be zero or negative. We trust that these results 
lend further credence to objections [8–12,15,16] 
against the Landauer Theorem [17,18], which claims 
that information erasure is a dissipative process 
whereas information writing is not.  

Following general practices [5,6,17,18] for 
analysis of information writing and erasure, we 
neglected the energy dissipation of the external 
control step for connecting the resistor to the 
capacitor in the case of erasure. Including the energy 
for this control [2,3] would imply positive net 
dissipation in the environment. However, the same 
happens also during information writing, and 
consequently information writing still comes out as 
much more dissipative than erasure. 

Finally, we note that in a non-practical (non-
electronic) fashion, it is also possible to introduce a 
memory with cooling during classical information 
erasure using the following scheme: From the above-
described solutions we keep the principle of calling 
erased state (now the state 0) the state, which is in 
thermal equilibrium with the environment. Let us 
consider the specific case of an ice cube maker tray. 
The high bits are the cubes that are frozen, while the 
low bits are the water cubes thermalized at room 
(ambient) temperature. Erasure takes place when the 
ice cube is coupled to the ambient temperature. 
Obviously, the erasure will cool the environment. 
Due to the phase transition, this system is somewhat 

more in line with the thermodynamic approaches 
[5,6], but the information entropy of bits is still zero 
because of the deterministic values. Moreover, the 
cooling energy can be arbitrarily large depending on 
the volumes of ice cubes. This fact violates the limit 
given in the literature [5]; see Eq. 13 with the limit of 

 Ediss ≈ 0.6 kT  obtained when we disregard the fact 
that the information entropy is always zero and 
assume the information entropy change of 1 bit in a 
single-bit memory. Instead, for a 10 cm3 ice cube we 
have  Ediss ≈ 1024  kT , thus indicating the limitations 

of even the most advanced thermodynamic approach 
[5] to memories. 

We observe that it is possible to swap the bit 
values of phases and assume that the ice phase is the 
bit value 0 and the water phase is 1. We can do this 
by assuming that the ambient temperature is below 
freezing. In this case, the erasure yields positive 
energy dissipation and the writing is cooling. 
However, such swapping of the bit value meanings is 
pointless in the information-theoretic erasure 
schemes above. 
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