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Misconceptions have recently been found in the definition of a partial derivative (in the case of the presence of
both explicit and implicit dependencies of the function subjected to differentiation) in the classical analysis. We
investigate the possible influence of this discovery on quantum mechanics and the classical/quantum field theory.
Surprisingly, some commutators of operators of space-time 4-coordinates do not equal to zero. Thus, we provide the
bases for new-fashioned noncommutative field theory.

To the best of my knowledge, the assumption that
the operators of coordinates do not commute [x̂µ, x̂ν ]−
6= 0 has been made by H. Snyder [1]. The Lorentz
symmetry thus may be broken. Much interest has re-
cently been attracted to this idea [2, 3] in the context
of “brane theories”.

Moreover, the famous Feynman-Dyson proof of
Maxwell equations [4] contains intrinsically the non-
commutativity of velocities [ẋi(t), ẋj(t)]− 6= 0 that
also may be considered as a contradiction with the
well-accepted theories.

On the other hand, it was recently discovered that
the concept of partial derivative is not well defined in
the case of both explicit and implicit dependence of
the corresponding function, which the derivatives act
upon [5, 7] (see also the discussion in [6]). The well-
known example of such a situation is the field of an
accelerated charge [8].3

Let us study the case when we deal with explicite
and implicite dependencies f(p, E(p)). It is well
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on t′ and only through t′+R(t′)/c = t they depended implicitly
on x, y, z, t . However, later (in calculating the formula (63.7))
they used the explicit dependence of R on the space coordinates
of the observation point too. Chubykalo and Vlayev claimed that
the time derivative and curl do not commute in their case. Jack-
son, in fact, disagreed with their claim on the basis of the defini-
tions (“the equations representing Faraday’s law and the absence
of magnetic charges ... are satisfied automatically”; see his In-
troduction in [6b]). But, he agrees with [8] that one should find
“a contribution to the spatial partial derivative for fixed time t
from explicit spatial coordinate dependence (of the observation
point).” Škovrlj and Ivezić [6c] calls this partial derivative as
‘complete partial derivative’; Chubykalo and Vlayev [6a], as ‘to-
tal derivative with respect to a given variable’; the terminology
suggested by Brownstein [7] is ‘the whole-partial derivative’.

known that the energy in the relativism is connected
with the 3-momentum as E = ±

√
p2 + m2 ; the unit

system c = h̄ = 1 is used. In other words, we must
choose the 3-dimensional hyperboloid from the entire
Minkowski space and the energy is not an independent
quantity anymore. Let us calculate the commutator of
the whole derivative ∂̂/∂̂E and ∂̂/∂̂pi .4 In the general
case one has
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Applying this rule, we surprisingly find
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So, if E = ±
√

m2 + p2 and one uses the generally-
accepted representation form of ∂E/∂pi = pi/E , one
has that the expression (2) appears to be equal to
(pi/E2)∂f(p,E(p))

∂E . Within the choice of the normal-
ization the coefficient is the longitudinal electric field
in the helicity basis (the electric/magnetic fields can

4In order to make distinction between differentiating the ex-
plicit function and that which contains both explicit and implicit
dependencies, the ‘whole partial derivative’ may be denoted as
∂̂ .
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be derived from the 4-potentials which have been pre-
sented in [9]). On the other hand, the commutator

[
∂̂

∂̂pi

,
∂̂

∂̂pj

]−f(p, E(p)) =

=
1
|E|3

∂f(p, E(p))
∂E

[pi, pj ]− . (3)

This may be considered to be zero unless we would
trust to the genious Feynman. He postulated that the
velocity (or, of course, the 3-momentum) commutator
is equal to [pi, pj ] ∼ ih̄εijkBk , i.e., to the magnetic
field.5

Furthermore, since the energy derivative corre-
sponds to the operator of time and the i-component
momentum derivative, to x̂i , we put forward the fol-
lowing anzatz in the momentum representation:

[x̂µ, x̂ν ]− = ω(p, E(p))Fµν
||

∂

∂E
, (4)

with some weight function ω being different for differ-
ent choices of the antisymmetric tensor spin basis.

In the modern literature, the idea of the broken
Lorentz invariance by this method concurrs with the
idea of the fundamental length, first introduced by V.
G. Kadyshevsky [10] on the basis of old papers by M.
Markov. Both ideas and corresponding theories are ex-
tensively discussed, e.g. [11]. In my opinion, the main
question is: what is the space scale, when the relativity
theory becomes incorrect.

Conclusions

We found that the commutator of two derivatives may
be not equal to zero. As a consequence, for instance, the
question arises, if the derivative ∂̂2f/∂̂pν ∂̂pµ is equal to
the derivative ∂̂2f/∂̂pµ∂̂pν in all cases?6 The presented
consideration permits us to provide some bases for non-
commutative field theories and induces us to look for
further development of the classical analysis in order
to provide a rigorous mathematical basis for operations
with functions which have both explicit and implicit
dependencies.
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5In fact, if we put in the corespondence to the momenta their
quantum-mechanical operators (of course, with the appropriate

clarification ∂ → ∂̂ ), we obtain again that, in general, the deriva-

tives do not commute [ ∂̂

∂̂xµ
, ∂̂

∂̂xν
]− 6= 0.

6The same question can be put forward when we have dif-
ferentiation with respect to the coordinates too, that may have
impact on the correct calculations of the problem of accelerated
charge in classical electrodynamics.

where this idea has arisen, for discussions. Old pa-
pers (cited here) and old discussions with their authors
helped me to realize new trends in modern physics.
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