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Abstract: Various line-elements purporting different types of black hole 

universes have been advanced by cosmologists but a means by which the 

required infinite set of equivalent metrics can be generated has evaded 

them. Without such a means the theory of black holes is not only 

incomplete but also ill-posed. Notwithstanding, the mathematical form by 

which the infinite set of equivalent metrics is generated was first revealed 

in 2005, from other quarters and it has in turn revealed significant 

properties of black hole universes which cosmology has not realised. The 

general metric ground-form from which the infinite set of equivalent 

‘black hole’ metrics can be generated is presented herein and its 

consequences explored. 
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Introduction 

The simplest black hole solution to Einstein’s field 

equations is the ‘Schwarzschild solution’. A means for 

generating the required infinite set of equivalent metrics 

for spherically symmetric Schwarzschild spacetime was 

recently sought by (Fromholz et al., 2013), without 

success (Crothers, 2014a). In this case the fundamental 

issue is the vacuum state, described by the Einstein field 

equations Rµν = 0, for a static gravitational field in the 

absence of matter (Einstein, 1916). Cosmology has 

failed to find a mathematical generator for the necessary 

infinite set. However, such a generator exists and was 

first revealed in 2005 (Crothers, 2005a). Moreover, 

purported black hole metrics are not restricted to 

spherical symmetry or the absence of matter, the latter 

being, according to Einstein, everything except his 

gravitational field (Einstein, 1916). Accordingly, a 

means for generating an infinite set of equivalent 

solutions for black hole universes must not be restricted 

to spherical symmetry in the absence of matter; the 

restriction applied by (Fromholz et al., 2013). The 

sought for metric ground-form must encapsulate all 

types of supposed black hole universes; otherwise it is 

incomplete. Such a means was also first revealed in 2005 

(Crothers, 2005b). 

 Cosmology has often rendered the Schwarzschild 

solution in isotropic coordinates. This involves a 

conformal transformation on the usual line-element for 

Schwarzschild spacetime. Any isotropic solution must 

also be produced by an isotropic metric ground-form for 

an infinite set of equivalent solutions. Cosmology has 

never found such means. However, the isotropic metric 

ground-form was first revealed in 2006 (Crothers, 2006). 

With the discovery of the necessary metric ground-

forms for generation of infinite sets of equivalent 

solutions, the methods of metric extension, by which all 

types of black hole universes are produced, have been 

proven to violate the metric ground-form and are 

consequently inadmissible. This is perhaps most easily 

seen by the fact that if any one metric of the infinite set 

is not extendible then none are extendible, owing to 

equivalence. A comprehensive analysis of this issue was 

recently presented (Crothers, 2014b), as an elaboration 

on a number of previous publications over a period of 

ten years.  

The Static Einstein Field Equations in the 

Absence of Matter 

Einstein’s field equations couple his gravitational 

field to its material sources so that there is a causal 

connexion between matter and spacetime geometry. 

Einstein’s field equations: 

 

 “Couple the gravitational field (contained in 

the curvature of spacetime) with its 

sources.”(Foster and Nightingale, 1995)  

 

“Since gravitation is determined by the matter 

present, the same must then be postulated for 
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geometry, too. The geometry of space is not 

given a priori, but is only determined by 

matter”(Pauli, 1981) 
 

“Again, just as the electric field, for its part, 

depends upon the charges and is instrumental 

in producing mechanical interaction between 

the charges, so we must assume here that the 

metrical field (or, in mathematical language, 

the tensor with components gik ) is related to 

the material filling the world” (Weyl, 1952) 
 

“In general relativity, the stress-energy or 

energy-momentum tensor T
ab

 acts as the 

source of the gravitational field. It is related 

to the Einstein tensor and hence to the 

curvature of spacetime via the Einstein 

equation”(McMahon, 2006) 
 

“Mass acts on spacetime, telling it how to 

curve. Spacetime in turn acts on mass, telling 

it how to move.” (Carroll and Ostlie, 2007) 

 
The material sources of Einstein’s gravitational field 

are described by the energy-momentum tensor Tµν and 
the gravitational field, manifest in curved spacetime 
geometry, is described by the Einstein tensor Gµν = Rµν-
½Rgµν. His field equations are: 
 

G Tµν µνκ= −  (1) 

 

where, κ is a coupling constant (Einstein (1917) added a 

‘cosmological term’: Gµν + Λgµν = -κTµν, which led to de 

Sitter’s empty world). Equation (1) is expressed in words 

by the following relation: 

 

( )  = − κspacetime geometry material sources   (2) 

 

Einstein contended that if material sources = 0, his 

field equations become: 
 

 = spacetime geometry 0  (3) 

 
Which in mathematical form is: 

 
 =µνR 0  (4) 

 
because in this case it turns out that R = 0 in Gµν. 

Einstein claimed that Equation 4 describes his 
gravitational field outside a body such as a star, where 
the Tµν vanish. However, expression (3) clearly shows 
that there are no material sources present in the field 
Equation 4. Bearing in mind that Einstein’s field 
equations couple his gravitational field (spacetime 
geometry) to its material sources, since matter is the 
source of his gravitational field, what then is the material 

source of the gravitational field described by Equation 4? 
The invariable answer given by cosmology is that it is 
the body outside of which the supposed gravitational 
field exists. This is a circular argument because Einstein 
removed on the one hand all material sources from (2) 
and hence from (1), by setting material sources = 0 to 
get (3) and hence (4) and on the other hand, immediately 
reinstated the presence of a material source by asserting 
that Equation 4 describes his gravitational field outside a 
body such as a star. Since Equation 4 contains no 
material sources the system of nonlinear differential 
equations resulting from (4), on the assumption of a 4-
dimensional pseudo-Riemannian metric with spherical 
symmetry, also do not contain any material sources, as 
expression (3) emphasizes. Consequently the so-called 
‘Schwarzschild solution’ for Equation 4 cannot contain a 
material source. Thus, when Tµν = 0, material sources = 
0, there are no material sources and hence no 
gravitational field. 

That Equation 4 contain no material sources and so 
does not describe a gravitational field outside a body such 
as a star, is reaffirmed by the static homogeneous 
cosmological solutions. There are only three possible 
static homogeneous cosmological universes in General 
Relativity: (i) Einstein’s cylindrical world; (ii) de Sitter’s 
empty world; (iii) empty Minkowski spacetime. In 
Einstein’s cylindrical world Tµν ≠ 0; in de Sitter’s empty 
world Tµν = 0; in Minkowski spacetime Tµν = 0 since there 
is no matter present in its metric, which is given by: 
 

( )2 2 2 2 2 2 2 2= − − +θ θ φds c dt dr r d sin d  (5) 

 
Now de Sitter’s empty world is the solution to the 

field equations, 
 

= Λµν µνR g  (6) 

 
where, Λ is the ‘cosmological constant’. There are no 
material sources present in (6) because Tµν = 0: which is 
precisely why de Sitter’s empty universe is completely 
empty. Although (6) contains no material sources 
because Tµν = 0, Einstein contended that (4) contains a 
material source even though Tµν = 0 there as well. Thus, 
Tµν = 0 both includes and excludes material sources. 
This however is impossible-material sources cannot be 
both present and absent by the very same mathematical 
constraint. Equation 4 contains no material sources by 
mathematical construction just as Equation 5 and 6 
contain no material sources by mathematical 
construction. Consequently the Schwarzschild solution 
for Equation 4 contains no material source either; it 
therefore does not describe any gravitational field; it is 
physically meaningless precisely because Rµν = 0 is 
physically meaningless. Furthermore, all experiments 
attest that gravity is an interaction between two or more 
bodies. General Relativity cannot account for the simple 
experimental fact that two stationary suspended bodies 
approach one another upon release. 
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Metric Ground-Form for Schwarzschild 

Spacetime 

In paragraph 9 of § I of (Fromholz et al., 2013) 
appear the following remarks: 

 
“Furthermore, although one solution of the 
LL equations yields the Schwarzschild metric 
in the so-called harmonic radial coordinate 
rH, related to the standard Schwarzschild 
coordinate rS by rH = rS-M, where M is the 
mass of the object, … ” 

 

This raises two issues: (i) the correct identity of rS, 

(ii) the identity of M as mass. These Authors call rS the 

“Schwarzschild coordinate” and rH = rS-M the 

“harmonic radial coordinate”. What really is rS? 

Cosmology has variously and vaguely called it “the 

distance”, “the radius”, “the radius of a 2-sphere”, “the 

coordinate radius”, “the radial coordinate”, “the radial 

space coordinate”, “the Schwarzschild radial coordinate”, 

“the areal radius”, “the reduced circumference”, “the 

shortest distance a ray of light must travel to the centre” 

and even “a gauge choice: It defines the coordinate r”. 

That rS goes by so many different identities attests to 

uncertainty. However, in cosmology it is always treated as 

the radius and this is clear from the fact that cosmologists 

always call r = rS = 2m = 2GM/c
2
 the “Schwarzschild 

radius” or the “gravitational radius”, which is, they 

maintain, the ‘radius’ of a black hole event horizon. 

However, none of these various and vague concepts 

of what r is are correct because the irrefutable 

geometrical fact is that r is the inverse square root of the 

Gaussian curvature of the spherically symmetric 

geodesic surface in the spatial section and as such it is 

neither a radius nor a distance in the metric. To see this 

consider Hilbert’s solution, incorrectly attributed to 

Schwarzschild (Abrams, 1989): 

 

( ) rddr

dr
r

M
dt

r

M
ds

≤+−

−







−−








−=

−

0,sin

2
1

2
1

2222

2

1

22

ϕθθ

 (7) 

                         

In metric (7) the constants c and G are both set to unity, 

according to the general practice of cosmology. This is 

however very deceptive. Consider therefore Hilbert’s metric 

with c and G explicit, so that nothing is hidden: 

 

( ) rddr

dr
rc

GM
dt

rc

GM
cds

≤+−

−







−−








−=

−

0,sin

2
1

2
1

2222

2

1

2

2

2

22

ϕθθ

 (8) 

                         

To correctly identify r in Hilbert’s metric (8), 

consider first the spatial section thereof. It is given by: 

( )22222

1

2

2 sin
2

1 ϕθθ ddrdr
rc

GM
ds ++








−=

−

 (9) 

Now consider the surface in the spatial section (9); it 

is given by: 
 

( )
2

= +

= +

θ θ φ

θ θ φ

2 2 2 2 2

2 2 2 2

ds r d sin d

r d r sin d
 (10) 

 
This is a simple case of the First Fundamental 

Quadratic Form of a surface. The intrinsic geometry of a 

surface is entirely independent of any embedding space 

and so when it is embedded into a higher dimensional 

space the intrinsic geometry of the surface is not altered 

in any way. Therefore the intrinsic geometry of the 

surface (10) is the same in (8): 

 

“And in any case, if the metric form of a 

surface is known for a certain system of 

intrinsic coordinates, then all the results 

concerning the intrinsic geometry of this 

surface can be obtained without appealing to 

the embedding space.”(Efimov, 1980) 

 

A very important aspect of the intrinsic geometry of a 

surface is its Gaussian curvature. 

Gauss’ Theorema Egregium 

The Gaussian curvature K at any point P of a 

surface depends only on the values at P of the 

coefficients in the First Fundamental Form 

and their first and second derivatives. 

 

The Gaussian curvature K of a surface can be 

calculated by means of the following relation (Crothers 

2008a, 2008b, 2014b): 
 

= 1212R
K

g
 (11) 

 
where, R1212 is a component of the Riemann tensor of the 

first kind and g is the determinant of the metric tensor. 

Applying (11) to (10) yields: 
 

2

1

r
K =  (12) 

 

From (11) and (12), it is clear that r is neither a radius 

nor a distance in (10) and that (10) does indeed describe 

a spherical surface (because the Gaussian curvature has a 

constant positive value -a surface which has a constant 

positive Gaussian curvature is called a spherical surface; 

a surface which has a constant negative Gaussian 

curvature is called a pseudo-spherical surface). The 

spherical surface described by (10) does not have a 
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radius because it is a surface, which is entirely 

independent of any embedding space and therefore 

retains its character in Hilbert’s metric (8). Thus, r in 

Hilbert’s metric is the inverse square root of the 

Gaussian curvature of the spherically symmetric 

geodesic surface in the spatial section thereof; it is 

neither the radius nor a distance in (8) or in (9). Thus, the 

Schwarzschild radius is neither a distance nor a radius of 

anything in Hilbert’s solution. It is therefore not the ‘radius’ 

of the event horizon of an associated ‘black hole’. 

The radius Rp of the spherically symmetric 3-space 

described by (9) is given by (Crothers, 2005a; 2005b): 

 
1

2

2 2

2

2

2

1

−

   
= − = − +   

   

 
+ − 

 +
 
 
 

∫p

2GM 2GM
R dr r r

c r c

2GM
r r

2GM c
ln

c 2GM

c

 (13) 

 

This is the non-Euclidean radius in the spatial section 

of Hilbert’s metric (8). The true geometric identity of r is 

given by (12), which also determines the nature of the 

surface (10) as a spherical surface. This is not an 

interpretation; it is a definite geometric quantity 

determined from the metric itself, according to Gauss’ 

theory of surfaces. Cosmology has neither correctly 

identified r in Hilbert’s metric nor correctly specified a 

spherical surface. That is why there are so many 

different ‘interpretations’ of Hilbert’s r by cosmology. 
Note that when r = 2GM/c

2
 in expression (13), Rp = 0 

and Hilbert’s metric (8) is undefined. This fixes the 

range on r to 2GM/c
2
 ≤ r in Hilbert’s metric, with the 

equality producing singularity (i.e., an undefined 

equation). Since r is neither the radius nor a distance in 

Hilbert’s metric, there is no a priori reason to even 

suppose that 0 ≤ r therein. When r = 2GM/c
2
: 

 

=
4

2 2

c
K

4G M
 (14) 

 

Compare now to (Schwarzschild, 1916): 
 

( )
( ) rrR

ddR

dR
R

dt
r

ds

≤+=

+−

−







−−








−=

−

0,

sin

11

3
1

33

2222

2

1

22

α

ϕθθ

αα

 (15) 

 

Here α is a positive but otherwise indeterminable 

constant. Note that Schwarzschild also set c = 1. He did 

not assign α = 2GM/c
2
 to get a mass M to appear. 

Examination of Schwarzschild’s original paper reveals 

that 2 2 2= + +r x y z , which can never be less than 0 by 

mathematical construction. Furthermore, Schwarzschild’s 

metric is undefined (or singular) only at r = 0. 

The Gaussian curvature K of the surface in the spatial 

section of Schwarzschild’s actual solution is: 

 

( ) 3
2

33
2

11

α+
==

rR
K

 (16) 

 

The radius is given by: 

 

( )

( ) 3
1

33

2
1

,ln

1

α
α

α
α

α
α

+=








 −+
+

+−=







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−

rR
RR

RRdR
R

Rp  (17) 

 
This has been generalised in order to generate all 

possible equivalent forms (Crothers, 2005a; 2005b): 
 

( )

( ) +

−

∈∈+−=

+−

−







−−




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


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RnRrrrrR

ddR

dR
R

dt
R

ds

o

nnn

oc

c

cc

,,;

sin

11

1

2222

2

1

22

α

ϕθθ

αα

 (18) 

 

where, ro and n are entirely arbitrary constants. 

Expressions (18) constitute the metric ground-form for 

generating the infinite set of equivalent solutions for 

Schwarzschild spacetime. For instance, setting ro = 0, n 

= 3, r ≥ ro, yields Schwarzschild’s actual solution. 

Setting ro = α, n = 1, r ≥ ro, yields (Droste’s, 1917) 

solution (which is the correct from of Hilbert’s 

‘solution’). Setting ro = 0, n = 1, r ≥ ro, α = 2m, yields 

(Brillouin’s, 1923) solution. Setting ro = M, n = 1, r ≥ ro, 

α = 2M yields the correct form of the solution in the so-

called “harmonic radial coordinate”. Equivalent 

solutions can be generated from (18) in which r is 

always less than zero. Indeed, (18) is singular at only 

ever one value of r on the whole real line; at r = ro. None 

of the equivalent solutions generated by expressions (18) 

permit g00 = (1-α/Rc) to change signature from + to −. To 

do so would not only violate the geometry but also 

change the metric into a non-static solution for a static 

problem and thereby bear no relation to the required 

static form (Brillouin, 1923). 

Invalidity of Black Hole ‘Metric Extensions’ 

It is apparent that (18) is not ‘extendible’ to produce 
a black hole universe. Since (18) generates all the 
possible equivalent solutions in Schwarzschild form, if 
any one of them is extendible then all of them must be 
extendible. In other words, if any one from (18) cannot 
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be extended then none can be extended. Thus, if 
Hilbert’s solution is equivalent it must require that in 
Schwarzschild’s actual solution –α ≤ r. 

Similarly this must require that –α ≤ r in 

Brillouin’s solution and 0 ≤ r in Droste’s solution. It 

is evident from (18) that this is impossible. To 

amplify this, consider the specific case ro = 0, n = 2, 

for which (18) yields: 

 

( )
( ) 2

1
22

2222

222

1

22

sin

11

α

ϕθθ

αα

+=

+=Ω

Ω−

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


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






−=

−
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ddd

dRdR
R

dt
R
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c

c

cc

 (19) 

 

According to Hilbert’s solution this would require 

the range –α2
 ≤ r

2
 in (19). However, although r can 

now take any real value whatsoever, r
2
 cannot take 

values < 0. Thus, (19) cannot be ‘extended’ by any 

means. Therefore, owing to equivalence, no solution 

generated by (18) can be extended. Consequently, the 

supposed extension of Droste’s solution to values 0 ≤ 

r by means of the Kruskal-Szekeres ‘coordinates’, the 

Eddington-Finkelstein ‘coordinates’ and also the 

Lemaître ‘coordinates’, are all fallacious. Cosmology 

most often effects its extensions by means of Kruskal-

Szekeres ‘coordinates’. Putting Rc from (18) into the 

Kruskal-Szekeres form yields: 
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c

R

c
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R
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c

c

1
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4

α
α

ϕθθ

α

α

α
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
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
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 (20) 

 

This does not extend Droste’s metric to 0 ≤ r since 

the minimum value of Rc is Rc(ro) = α for all ro for all n. 

No equivalent solution generated by (18) is extendible to 

produce a black hole universe (Crothers, (2014b) for a 

detailed analysis). Hilbert’s solution is not equivalent to 

(18) and therefore not equivalent to Schwarzschild’s 

solution. A further consequence of this is that the 

‘singularity theorems’ of Hawking and Penrose are 

invalid (Crothers, 2013a). 

Metric Ground-form for Isotropic 

Schwarzschild Spacetime 

Consider now Hilbert’s metric in isotropic 

coordinates. It is given by: 
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r

M

dt

r

M
r

M

ds

≤++







+−

−



















+

−
=

0,sin
2

1

2
1

2
1

22222

4

2

2

2

ϕθθ

 (21) 

 
This is again very deceptive, so rewrite (21) with G 

and c explicit: 
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Consider now the spatial section of metric (22): 
 

( )[ ]22222

4

2

2 sin
2

1 ϕθθ ddrdr
rc

GM
ds ++






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The surface in the spatial section is described by: 

 

( )2222

4

2

2
sin

2
1 ϕθθ ddr

rc

GM
ds +








+=  (24) 

 
This is once again a simple First Fundamental 

Quadratic Form for a surface. Applying expression (11) 
to expression (24) the Gaussian curvature K of the 
surface (24) is: 

2

4

22
1

1

r
rc

GM
K









+

=
 (25) 

 

The quantity r is thus related to the Gaussian 

curvature of expression (24) and hence retains that role 

in (22) and (23). It acts as a parameter for expressions 

(21) to (25). Equations (5) and (25) reveal the nature of 

this parameter -it is both the radius and the inverse 

square root of the Gaussian curvature of the spherically 

symmetric surface in the spatial section of metric (5) for 

Minkowski spacetime. Note that the terms within the 

square brackets in each of expressions (21), (22) and 

(23) is the metric for Euclidean 3- space. The actual 

range of r in metric (22) is determined by the radius for 

(22), thus (Crothers, 2006): 
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Note that when r = GM/2c
2
, Rp = 0 (a scalar 

invariant) and the Gaussian curvature is: 

 

2
=

4

2

c
K

4G M
 (27) 

 

This is the very same result (14) for Hilbert’s metric 

(8). This value of K is a scalar invariant. 

The metric ground-form to generate an infinite set of 

equivalent solutions for Schwarzschild spacetime in 

isotropic coordinates is (Crothers, 2006): 
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If α = 2GM/c
2
, n = 1, ro = α/4, ro ≤ r, then the metric 

(22) is obtained, except that by (26) the range on r is 

GM/2c
2
 ≤ r, not 0 ≤ r. Note that no matter what values 

are chosen for n and ro the Gaussian curvature of the 

spherically symmetric geodesic surface at r = ro is 

always the same; K = 1/α2
. This is a scalar invariant for 

the Schwarzschild forms. 

Since (28) can be obtained by a transformation on (18), 

either set of expressions can be used to generate an infinite 

set of equivalent solutions for Schwarzschild spacetime. 

In (18) and (28) α is an entirely arbitrary constant 

from the strictly mathematical standpoint. Cosmology 

contends however that it is associated with a material 

source, as assigned in Hilbert’s solution (7) and (8) 

above. However, since Rµν = 0 contains no matter by 

mathematical construction, if the constant α is to be 

associated with material sources then it must be that α = 

0 (no matter). In this case the metric ground-forms (18) 

and (28) trivially reduce to that for empty Minkowski 

spacetime, expression (5). 

Insinuation of Newton’s Escape Velocity 

Consider further Hilbert’s metric in the revealing form 

(8) above. According to cosmology, the radius of the event 

horizon of an associated black hole, the so-called 

‘Schwarzschild radius’ thereof, is given by: 

 

=s 2

2GM
r

c
 (29) 

From this ‘radius’ expression the escape speed (often 

called ‘escape velocity’) of a black hole is determined by 

solving for c: 

 

sr

GM
c

2
=  (30) 

 

This is immediately recognised as Newton’s 

expression for escape speed. From this expression 

cosmology asserts that the ‘escape velocity’ of a black 

hole is the speed of light c. But Newton’s expression 

for escape speed is an implicit two-body relation: One 

body escapes from another body. It cannot therefore 

rightly appear in what is supposed to be a solution for 

a one-body problem (but which is in fact a zero-body 

problem). Furthermore, if a black hole event horizon 

has an escape speed c, as cosmology claims by 

equation (30), then, by definition, light can escape, 

contrary to the invariable claim of cosmology that it 

cannot even leave. 

The mass appearing in Hilbert’s solution is 

obtained by arbitrarily and inadmissibly inserting, 

post hoc, Newton’s expression for escape speed in 

order to satisfy the false claim that a material source 

is present in Rµν = 0. For example, (McMahon, 2006) 

says in relation to Hilbert’s solution, 
 

“… the Schwarzschild radius. In terms of the 

mass of the object that is the source of the 

gravitational field, it is given by: 

 

=s 2

2GM
r

c
 

 

In keeping with Equation (30) cosmology claims on 

the one hand that a black hole has an escape velocity: 

 

“black hole A region of spacetime from which 

the escape velocity exceeds the velocity of 

light” (Matzner, 2001) 

“black hole A massive object so dense that no 

light or any other radiation can escape from 

it; its escape velocity exceeds the speed of 

light” (Ian, 2001) 

 

“A black hole is, ah, a massive object and 

it’s something which is so massive that light 

can’t even escape. … some objects are so 

massive that the escape speed is basically 

the speed of light and therefore not even 

light escapes. … so black holes themselves 

are, are basically inert, massive and 

nothing escapes.” (Bland-Hawthorn, 2013) 
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Yet on the other hand cosmology also claims that 

nothing can even leave a black hole: 
 

“I had already discussed with Roger 

Penrose the idea of defining a black hole as 

a set of events from which it is not possible 

to escape to a large distance. It means that 

the boundary of the black hole, the event 

horizon, is formed by rays of light that just 

fail to get away from the black hole. 

Instead, they stay forever hovering on the 

edge of the black hole ” (Hawking, 2002) 
 

“The problem we now consider is that of the 

gravitational collapse of a body to a volume 

so small that a trapped surface forms 

around it; as we have stated, from such a 

surface no light can emerge.” 

(Chandrasekhar, 1972) 

 

“It is clear from this picture that the surface 

r = 2m is a one-way membrane, letting 

future-directed timelike and null curves 

cross only from the outside (region I) to the 

inside (region II).” (d’Inverno, 1992) 

 

“Thus we cannot have direct observational 

knowledge of the region r < 2m. Such a 

region is called a black hole, because 

things can fall into it (taking an infinite 

time, by our clocks, to do so) but nothing 

can come out.” (Dirac, 1996) 

 

Not only is light not able to even leave the event 

horizon, neither can ponderable bodies. However, escape 

velocity does not prevent bodies from leaving, only from 

escaping, if the speed of a body does not reach escape 

speed. Thus, according to cosmology, a black hole has 

and does not have an escape velocity simultaneously at 

the same place (the event horizon); which is however 

quite impossible. The very concept of black hole escape 

velocity is nothing but a play on the words “escape 

velocity” (McVittie, 1978). 

Einstein introduced multiple masses into his empty 

universe, Rµν = 0, by applying the Principle of 

Superposition where the Principle of Superposition is 

in fact invalid. In relation to Hilbert’s solution 

(Einstein, 1967) contended: 

 

“M denotes the sun’s mass, centrally 

symmetrically placed about the origin of 

co-ordinates; the solution (109a) is valid 

only outside of this mass, where all the Tµν 

vanish. If the motion of the planet takes 

place in the x1-x2 plane then we must 

replace (109a) by: 

2 ϕ
 

= − − − 
   − 
 

2 2 2A dr2
ds 1 dt r d

Ar
1

r

” 

 
where A = κM/4π. Notice that Einstein not only 
introduced a material source M, post hoc, he also 
introduced a planet outside this ‘source’, by superposing 
it. However, the Principle of Superposition does not hold 
in General Relativity because the latter is nonlinear. 

Static and Non-Static ‘Solutions’ 

Schwarzschild and Reissner-Nordström spacetimes 

are static. Kerr and Kerr-Newman spacetimes are 

stationary. None of them are non-static. All black hole 

universes however involve a non-static spacetime. 

Consider Hilbert’s metric (7) and (8): 
 

“The most obvious pathology at r = 2M is the 

reversal there of the roles of t and r as 

timelike and spacelike coordinates. In the 

region r > 2M, the t direction, ∂/∂t, is timelike 

(gtt < 0) and the r direction, ∂/∂r, is spacelike 

(grr > 0); but in the region r < 2M, ∂/∂t, is 

spacelike (gtt > 0) and ∂/∂r, is timelike (grr < 0). 
 

“What does it mean for r to ‘change in 

character from a spacelike coordinate to a 

timelike one’? The explorer in his jet-

powered spaceship prior to arrival at r 

=2M always has the option to turn on his 

jets and change his motion from decreasing 

r (infall) to increasing r (escape). Quite the 

contrary in the situation when he has once 

allowed himself to fall inside r =2M. Then 

the further decrease of r represents the 

passage of time. No command that the 

traveler can give to his jet engine will turn 

back time. That unseen power of the world 

which drags everyone forward willy-nilly 

from age twenty to forty and from forty to 

eighty also drags the rocket in from time 

coordinate r =2M to the later time 

coordinate r =0. No human act of will, no 

engine, no rocket, no force (see exercise 

31.3) can make time stand still. As surely as 

cells die, as surely as the traveler’s watch 

ticks away ‘the unforgiving minutes’, with 

equal certainty and with never one halt 

along the way, r drops from 2M to 0. 
 

“At r =2M, where r and t exchange roles as 

space and time coordinates, gtt vanishes while 

grr is infinite” (Misner et al., 1973) 
 

“There is no alternative to the matter 

collapsing to an infinite density at a 
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singularity once a point of no-return is 

passed. The reason is that once the event 

horizon is passed, all timelike trajectories 

must necessarily get to the singularity: ‘all the 

King’s horses and all the King’s men’ cannot 

prevent it.”(Chandrasekhar 1972) 

 

“This is worth stressing; not only can you not 

escape back to region I, you cannot even stop 

yourself from moving in the direction of 

decreasing r, since this is simply the timelike 

direction. (This could have been seen in our 

original coordinate system; for r < 2GM, t 

becomes spacelike and r becomes timelike). 

Thus you can no more stop moving toward the 

singularity than you can stop getting older.” 

(Carroll, 1997) 

 

“For r < 2GM/c
2
, however, the component goo 

becomes negative and grr, positive, so that in 

this domain, the role of time-like coordinate is 

played by r, whereas that of space-like 

coordinate by t. Thus in this domain, the 

gravitational field depends significantly on 

time (r) and does not depend on the coordinate 

t” (Vladmimirov et al., 1984) 

 

To amplify this, set t = r* and r = t*. Then for 0 ≤ r < 

2M, Hilbert’s solution (7) becomes: 

 

( )
Mt
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 (31) 

 

It now becomes quite clear that this is a time-

dependent (i.e., non-static) metric since all the 

components of the metric tensor are now functions of the 

timelike t* and so this metric bears no relationship to the 

original time-independent (i.e., static) problem that was 

initially posed (Droste, 1917; Brillouin, 1923; Crothers, 

2014b). In other words, this metric is a non-static 

solution to a static problem: Contra hype! Furthermore, 

the signature of the metric changes from (+, −, −, −) to 

(−, +, −, −) and so is no longer Lorentzian. 

Metric Ground-form for Kerr-newman 

Spacetime 

The Kerr-Newman spacetime subsumes the Kerr, 

Reissner-Nordström and Schwarzschild spacetimes. The 

metric ground-form for generation of the infinite set of 

equivalent solutions for all these forms was obtained by 

(Crothers, 2005b). The metric ground-form is: 
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 (32) 

 
Here ro and n are entirely arbitrary. Charge is denoted 

by q and angular momentum is contained in a. If ro = ξ, n 
= 1, ro ≤ r, the correct form of the Kerr-Newman 
‘solution’ in Boyer- Lindquist coordinates is obtained. 
Just as in the case of Schwarzschild spacetime, there is 
no ‘event horizon’ and hence no black hole. Since Rc(ro) 
= ξ for all ro for all n, no solution generated by 
expressions (32) can be extended. This is amplified by 
the case of ro = 0, n = 2 in (32), in which case: 
 

( ) 2
1

22 ξ+= rRc
 (33) 

 
This is defined for all real values of r and can never 

be zero. Owing to equivalence, no solution generated by 
(32) can be extended. A detailed analysis has been 
presented by (Crothers, 2014b). 

Note that if a = 0 and q = 0, then (32) reduces to the 
Schwarzschild ground-form. 

Similarly, Gaussian curvature for the surface in the 
spatial section of the Kerr-Newman ground-form (32) 
has been obtained (Crothers, 2014b), which also reduces 
to the Schwarzschild form. It is given by: 
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Since K of (34) is not a positive constant the 

surface in the spatial section of (32) is not spherically 

symmetric. Thus the Kerr and Kerr-Newman 

spacetimes are not spherically symmetric. However, if 

a = 0 (32) and (34) yield spherical symmetry-

Schwarzschild spacetime and Reissner-Nordström 

spacetime are spherically symmetric. Details can be 

found in (Crothers 2005a; 2005b; 2014b). 

Metric Ground-form for Reissner-

Nordström Spacetime 

When a = 0 expressions (32) reduce to the Reissner-
Nordström metric ground-form: 
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 (35) 

 

This is the metric ground-form that generates the 
infinite set of equivalent solutions for Reissner-
Nordström spacetime. It is singular at only one point, 
r = ro. The values of ro and n remain entirely arbitrary. 

The radius for (35) is (Crothers, 2005b): 
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where, Rc = Rc(r) is given in (35). When r = ro, Rp = 0. 

By means of (34) the Gaussian curvature of the 

surface in the spatial section is: 
 

2

1

cR
K =  (37) 

 
This proves that the surface is a spherical surface. 

Also, the invariant Gaussian curvature of the spherical 

surface occurs at r = ro, in which case: 
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Note that if q = 0 expressions (35), (36), (37) and 

(38) reduce to those for the Schwarzschild ground-form. 

It is evident from (35) that the Reissner-Nordström 

metric ground-form cannot be extended to produce a 

black hole. Once again, this is amplified by the case n = 

2. Consequently, the application of ‘Kruskal-Szekeres 

coordinates’ does not extend Reissner-Nordström 

spacetime to produce a black hole. 

Metric Ground-form for Isotropic Reissner-

Nordström Spacetime 

The metric ground-form for Reissner-Nordström 

spacetime in isotropic coordinates is (Crothers, 2014b): 
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The radius for (39) is given by: 
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Note that for (40), Rp(ro) = 0 ∀ ro ∀ n, as it must. 

The Gaussian curvature of the surface in the spatial 

section of (39) is: 
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This proves that the surface is a spherical surface. 

The invariant Gaussian curvature occurs at r = ro, 

to yield: 
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Note that if q = 0 then (42) reduces to the invariant 
Gaussian curvature of the surface in the spatial section 
of the isotropic Schwarzschild ground-form. The 
invariant (42) is not the same as for the Reissner-
Nordström ground-form (38). This is due to the 
conformal transformation (Crothers, 2014b). This is 
most easily seen in the coordinate transformation that 
changes the Reissner-Nordström ground-form into the 
isotropic Reissner-Nordström ground-form: 
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and comparing with (35). 

Riemannian Curvature 

Riemannian (or sectional) curvature generalises the 
Gaussian curvature of a surface to dimensions higher 
than 2. Consequently, in the case of a surface the 
Riemannian curvature reduces to Gaussian curvature. In 
general, Riemannian curvature depends upon both 
position and direction. The Riemannian curvature 
demonstrates once again that none of the so-called black 
hole metrics can be extended to produce a black hole. 

The Riemannian curvature KS at any point in a metric 
space of dimensions n > 2 depends upon the Riemann-
Christoffel curvature tensor of the first kind Rijkl, the 
components of the metric tensor gik and two arbitrary n 
dimensional linearly independent contravariant direction 
vectors U

i
 and V

i
, as follows: 

 

ijkl

p q r s
=

= −

i j k 1

S

pqrs

pqrs pr qs ps qr

R U V U V
K

G U V U V

G g g g g

 (44) 

 

The Riemannian curvature for the Schwarzschild 

ground-form is given by (Crothers, 2014b): 
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Definition 

If the Riemannian curvature at any point is 

independent of direction vectors at that point 

then the point is called an isotropic point. 

 

Rc(ro) = α irrespective of the values of ro and n, in 

which case (45) reduces to: 

 

α
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Thus, (46) is entirely independent of the direction 

vectors U
i
 and V 

i
 and of θ. Hence, r = ro produces an 

isotropic point, which again shows that the 

Schwarzschild form cannot be extended. 

Comparing (46) with (27) and (34) for the 

Schwarzschild form at r = ro, yields: 
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Hence, at r = ro the Riemannian curvature of the 

Schwarzschild form is half the Gaussian curvature of the 

spherical surface in the spatial section of the 

Schwarzschild form. 

The Riemannian curvature for the Reissner-

Nordström ground-form is: 
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Rc(ro) = ξ irrespective of the values of ro and n, in 
which case (48) reduces to: 
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Equation (49) is entirely independent of the direction 

vectors U
i
 and V

i
 and of θ. Thus, r = ro produces an 

isotropic point, which again shows that the Reissner-

Nordström ground-form cannot be extended. Note that 

when q = 0, (48) and (49) reduce to the corresponding 

values for the Schwarzschild ground-form (45) and (46). 

The Riemannian curvature for the isotropic 

Schwarzschild ground-form is given by: 
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When r = ro, Rc = α/4, for all ro and for all n and the 

Riemannian curvature becomes: 
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Note that (51) differs from the Schwarzschild form 

(46) due only to the terms inŴ2323, due to the conformal 

transformation. Moreover, (51) also depends upon θ. At θ 
= 0 and θ = π, (51) reduces to the exact value for the 

Schwarzschild ground-form (46). Hence, at r = ro, θ = 0 

and θ = π produce the isotropic point of the Schwarzschild 

ground-form. This shows, once again, that the 

Schwarzschild and isotropic Schwarzschild ground-form 

cannot be extended. 

At θ = π/2 expression (51) becomes: 
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The Riemannian curvature for the isotropic Reissner-

Nordström ground-form is much more complicated. It is 

given by (Crothers, 2014b): 

 

( )
( )

( )
( )

2

2

2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆsin R
ˆ

ˆ ˆˆ ˆ ˆG sin

ˆ ˆˆ ˆ ˆsin

θ

θ

θ

θ

 + + +
 
 + + +  =
 + + +
 
 + + +  

2

0101 0101 0202 0202 0303

1212 1212 1313 2323 2323

S

0101 0101 0202 0202 0303

1212 1212 1313 2323 2323

R W R W W sin

R W W W
K

G W W W

G W W G W

 

 

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ ˆ

i j k l

ijkl i j k l

U U U U
W =

V V V V
 

 

o
ξ = − +

 

1
n nn

c
R r r  



Stephen J. Crothers / American Journal of Space Science 2015, ■■ (■): ■■.■■ 

DOI: 10.3844/ajssp.2015. ■■.■■ 

 

■■ 

+∈∈

<
−

=

RnRrr

q
q

o ,,

4
4

4 22

22

α
α

ξ  

 

( )ˆ + − −
= +

2

0101

c

64L F H IJ 64L KL
R

Z R Z
 

 

( )( )
( )( )

( )( )

( )( )
( )( )
( ) ( )[ ]

( ) ( )44

22

22222

22222

222

2424

844

4441616

44416

242464

24244

4416

qRqRZ

RqRL

RqqRK

qRqRJ

qRqRI

qRqRRH

RqRF

cc

cc

cc

cc

cc

ccc

cc

−+++=

+−+=

−−+−=

−++−=

−+++=

−+++=

++−=

αα

ααα

ααα

ααα

αα

αα

αα

 

 

( )2 2

c cˆ
α− − +

=

2

0202

8R 16R 4q L
R

64Z
 

 

( )ˆ −
= −1212 4 4

c

N O
R

4 R
 

 

( ) ( )( )

( ) ( )

N α α α

α α

 = − + + + − 

 = + − − +
 

2 2 2 2

c c c

2 2 2 2 2

c c

16R 4q 4R 12R 4q

O 4R 4q 48R 4q
 

 

( )

c

ˆ θ−
= −

2

2323 4 2

P Q sin
R

4 R
 

 

( )

( )

α

α

 = + −
 

= − −

2
2 2

c

2
2 2 2

c

P 4R 4q

Q 16R 4q

 

 

( )

( )

( ) ( )

( ) ( )
48

244

2323

68

44

1212

24

2222

0202

44

2222

0101

4

sin2424ˆ

4

2424ˆ

4

416ˆ

4

416ˆ

c

cc

c

cc

c

c

c

c

R

qRqR
G

R

qRqR
G

R

qR
G

R

qR
G

θαα

αα

α

α

−+++
=

−+++
=

+−
−=

+−
−=

 (53) 

 

When 2 2, 4 / 4o cr r R qξ α= = = − for all ro and for all 

n and the Riemannian curvature (53) becomes: 
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Expressions (54) depend upon the direction vectors 
ˆ iU and ˆ iV and also upon the curvilinear coordinate θ. 

Accordingly, at θ = 0 and θ = π, (53) becomes: 
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With all quantities therein given by (53). Then when r = 
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With all quantities therein given by (53). 

Similarly, at θ = π/2, (53) becomes, 
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With all quantities therein given by (53). 

If q = 0, (53) to (57) reduce to the values for the 

isotropic Schwarzschild form, which again shows that the 

Reissner-Nordström ground-form cannot be extended. 

For a full analysis (Crothers, 2014b). 

The Acceleration Invariant 

Doughty (1981) obtained the following expression 
for the acceleration ω of a point along a radial geodesic 
for the static spherically symmetric line-elements 
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By means of (32) for the spherically symmetric 

spacetimes, the acceleration is given by: 
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where, the components of the metric tensor are functions 
of Rc(r). Consequently, the acceleration for the Reissner-
Nordström ground-form is given by: 
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When q = 0 (61) reduces to the acceleration for the 

Schwarzschild ground-form: 
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According to (61) and (62), whether or not q = 0, 
r→ro ═> ω→∞, which constitutes an invariant condition 
and therefore reaffirms that the Schwarzschild and 
Reissner-Nordström forms cannot be extended and hence 
do not to produce black holes. 

For the isotropic Schwarzschild ground-form the 

acceleraion is given by: 
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The isotropic Schwarzschild acceleration invariant 

is then: 
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just as for the case of the Schwarzschild ground-form. 

For the isotropic Reissner-Nordström ground-form 

the acceleration is given by: 
 

( )

( )( )

( )( )

( ) ( )

( )

( )c 0R

ω

α α

α α

α α

α

ξ

+
=

= + + + −

= − − + +

= + + + −

= − +

= − +

2

C

c c c

2 2 2

c c

2 2

c c

2 2 2

c

1
n nn

8R A B

CD

A 64 4R 2q 4R 2q R

B 16 16R 4q 4R

C 4R 2q 4R 2q

D 16R 4q

r r

 

 

α α
ξ

−
= <

2 2 2
24q

q
4 4

 (65) 

 

The isotropic Reissner-Nordström acceleration 
invariant is then: 
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just as for the case of the isotropic Schwarzschild 
ground-form, the Schwarzschild ground form and the 
Reissner-Nordström ground-form. 

The Kretschmann Scalar 

Cosmology argues, without proof, that a ‘physical’ 

singularity can only occur where the Riemann tensor 
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scalar curvature invariant, also called the 

Kretschmann scalar, is unbounded (i.e., infinite 

spacetime curvature). The Kretschmann scalar f is 

given by f = RµνστR
µνστ

. However, since the ‘black 

hole’ metrics cannot be extended, there is no such 

curvature singularity. The Kretschmann scalar is 

always a finite scalar invariant corresponding to a 

metric ground form. 

The Kretschmann scalar for the Kerr-Newman 

ground-form is: 
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According to (67), at r = ro, Rc = ξ and so (67) becomes: 
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The Kretschmann scalar (68) is finite, irrespective of 

the values of ro and n. Note that (68) depends upon θ. 
When θ = 0 and when θ = π: 
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When θ = π/2 (68) reduces to: 
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Note that (70) does not contain the ‘angular 

momentum’ term a and that (70) is precisely that for 

the Reissner-Nordström ground-form (Crothers, 

2005b; 2014b). 

Expressions (67) reduce to the Kerr form when q = 

0, thus: 
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This too depends upon the value of θ. When θ = 0 

and when θ = π, (71) becomes: 
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When θ = π/2 (71) reduces to: 
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which is precisely the scalar curvature invariant for the 

Schwarzschild ground-form. Indeed, when a = 0 and q = 

0, expressions (68) reduce to those for the Schwarzschild 

ground-form (Crothers, 2005a; 2014b): 
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The Kretschmann scalar is finite in every case and so 

there are in fact no curvature singularities anywhere. 

Black Hole Universes and Big Bang 

Universes in Contrast 

There are four different types of black hole 

universes alleged by cosmology; (a) non-rotating 

charge neutral, (b) non-rotating charged, (c) rotating 

charge neutral, (d) rotating charged. Black hole 

masses or ‘sizes’, are not types, just masses or sizes of 

the foregoing types. There are three purported types of 

big bang universes and they are characterised by their 

constant k curvatures; (a) k = -1, negative spacetime 

curvature and spatially infinite, (b) k = 0, flat 

spacetime and spatially infinite, (c) k = 1, positive 

spacetime curvature and spatially finite. Compare now 

the generic defining characteristics of all black hole 

universes with those of all big bang universes 

(Crothers, 2013b). 

All black hole universes: 

 

• Are spatially infinite 

• Are eternal 

• Contain only one mass 

• Are not expanding (i.e., are not non-static) 

• Are either asymptotically flat or asymptotically curved 

 

All big bang universes: 

 

• Are either spatially finite (1 case; k = 1) or spatially 

infinite (2 different cases; k = -1, k = 0) 

• Are of finite age (~13.8 billion years) 

• Contain radiation and many masses 

• Are expanding (i.e., are non-static) 

• Are not asymptotically anything 

 

Note also that no black hole universe even possesses 

a big bang universe k-curvature. 

Comparison of the defining characteristics of all 

black hole universes with all big bang universes 

immediately reveals that they are contradictory and so 

they are mutually exclusive; they can’t co-exist. No 

proposed black hole universe can be superposed with 

any other type of black hole universe, with any big 

bang universe, or with itself. Similarly, no proposed 

type of big bang universe can be superposed with any 

other type of big bang universe, with any black hole 

universe, or with itself. 

Furthermore, General Relativity is a nonlinear 

theory and so the Principle of Superposition is invalid 

therein. Let X be some black hole universe and Y be 

some big bang universe. Then the linear combination 

(i.e., superposition) X + Y is not a universe. Indeed, X 

and Y pertain to completely different sets of Einstein 

field equations and so they have absolutely nothing to 

do with one another. 

Despite the contradictory nature of the defining 

characteristics of black hole universes and big bang 

universes and despite the fact that the Principle of 

Superposition is invalid in General Relativity, 

cosmology superposes to produce multiple unspecified 

black holes within an unspecified big bang universe. 

According to cosmology the finite mass of a black 

hole is concentrated in its ‘singularity’, where volume is 

zero, density is infinite and spacetime curvature is 

infinite. This singularity is said to be not merely a place 

in the equations where the equations are undefined, but 

is a real physical object. Now gravity is not a force in 

General Relativity, because it is spacetime curvature. 

Thus, according to cosmology, a finite mass produces 

infinite gravity. However, no finite mass can have zero 

volume and infinite density and no finite mass can 

produce infinite gravity anywhere. 

A black hole constitutes an independent universe 

because its spacetime is spatially infinite; its 

spacetime is not contained within its ‘event horizon’. 

The spacetime of a black hole is either asymptotically 

flat or asymptotically curved. There is no bound on 

asymptotic, for otherwise it would not be asymptotic. 

The Schwarzschild, Reissner-Nordström, Kerr and 

Kerr-Newman spacetimes are all asymptotically flat. 

Without the asymptotic condition the black hole 

equations do not even obtain. 

Cosmology routinely claims that Newton’s theory 

predicts black holes, derived by Michell and Laplace. 
 

“Laplace essentially predicted the black 

hole…” (Hawking and Ellis, 1973) 

 

“Eighteenth-century speculators had 

discussed the characteristics of stars so dense 

that light would be prevented from leaving 

them by the strength of their gravitational 

attraction; and according to Einstein’s 

General Relativity, such bizarre objects 

(today’s ’black holes’) were theoretically 

possible as end-products of stellar evolution, 

provided the stars were massive enough for 

their inward gravitational attraction to 

overwhelm the repulsive forces at work” 

(Michael and Hoskin, 1997) 
 

“Two important arrivals on the scene: The 

neutron star (1933) and the black hole (1795, 

1939)” (Misner et al., 1973) 
 

“That such a contingency can arise was 

surmised already by Laplace in 1798. Laplace 

argued as follows. For a particle to escape 

from the surface of a spherical body of mass 
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M and radius R, it must be projected with a 

velocity v such that ½v
2
 > GM/R; and it 

cannot escape if v
2
 < 2GM/R. On the basis of 

this last inequality, Laplace concluded that if 

R < 2GM/c
2
 =Rs (say) where c denotes the 

velocity of light, then light will not be able to 

escape from such a body and we will not be 

able to see it! 

 

“By a curious coincidence, the limit Rs 

discovered by Laplace is exactly the same that 

general relativity gives for the occurrence of 

the trapped surface around a spherical mass.” 

(Chandrasekhar, 1972) 

 

But it is not “a curious coincidence” that General 

Relativity gives the same Rs “discovered by Laplace” 

because the Newtonian expression for escape speed was 

deliberately inserted post hoc into Hilbert’s solution in 

order to make a mass appear in equations that contain no 

material sources by mathematical construction. 

 The theoretical Michell-Laplace dark body is not a black 

hole; it possesses an escape velocity at its surface, but 

the black hole has both an escape velocity and no 

escape velocity simultaneously at its ‘surface’ (i.e. 

event horizon); masses and light can leave a Michell-

Laplace dark body, but nothing can leave a black hole; 

it does not require irresistible gravitational collapse to 

form, whereas a black hole does (unless it is 

‘primordial’); it has no (infinitely dense) singularity, 

but a black hole does; it has no event horizon, but a 

black hole does; it has ‘infinite gravity’ nowhere, but 

a black hole has infinite gravity at its singularity; 

there is always a class of observers that can see a 

Michell-Laplace dark body, but there is no class of 

observers that can see a black hole (McVittie, 1978); the 

Michell-Laplace dark body persists in a space which can 

contain other Michell-Laplace dark bodies and other 

matter, but the spacetimes of all types of black hole 

universes permit no other black holes and no other 

masses; the Principle of Superposition holds for Michell-

Laplace dark bodies but not for black hole universes; the 

space of a Michell-Laplace dark body is 3-dimensional 

and Euclidean, but a black hole universe is a 4-

dimensional non-Euclidean (pseudo-Riemannian) 

spacetime; the space of a Michell-Laplace dark body 

is not asymptotically anything whereas the spacetime 

of a black hole is asymptotically flat or asymptotically 

curved; a black hole constitutes an independent 

universe, but a Michell-Laplace dark body does not; a 

Michell-Laplace dark body does not ‘curve’ a 

spacetime, but a black hole does (a Michell-Laplace 

dark body exerts a force of gravity but a black hole 

does not possess a gravitational force). Therefore, a 

Michell-Laplace dark body does not possess the 

characteristics of the black hole and so it is not a 

black hole. 

Conclusion 

Cosmology has failed in its few attempts to 

produce a means by which an infinite set of equivalent 

metrics that lead to black holes can be generated. 

Nonetheless, such metric ground-forms have in fact 

been obtained. These ground-forms prove that no 

metric can be extended by any means to produce a 

black hole universe. All methods used to extend 

metrics to produce black hole universes are invalid. 

Black hole universes are produced by invalid 

mathematical operations and inadmissible insinuation 

of the Newtonian expression for escape speed, from 

which the notion of black hole escape velocity was 

obtained along with the black hole event horizon and 

its ‘radius’. Black holes have and do not have an 

escape velocity simultaneously at the same place, the 

event horizon; but this is impossible. 

Multiple black holes within a big bang universe have 

been produced by applying the Principle of 

Superposition. However, the Principle of Superposition 

does not hold in General Relativity. Such superpositions 

are therefore invalid. Black hole universes and big bang 

universes are mutually exclusive by their very definitions. 

The finite mass of a black hole produces infinite 

gravity (infinite spacetime curvature) at the black hole 

singularity. However, no finite mass can produce infinite 

gravity anywhere. Similarly, no finite mass can have 

zero volume and infinite density. 

Newton’s theory does not predict black holes. The 

Michell-Laplace dark body is not a black hole 

because, other than mass, it shares none of the 

properties of a black hole. 

The metric ground-forms herein prove that black 

holes have no scientific basis. All reports of black holes 

being discovered have no scientific merit. 
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