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Geometric algebra is a powerful mathematical tool for description of physical 

phenomena. The article [2] gives a description of Cl3 as a possible framework for physical 

theories, especially the new, broader definition of Lorentz transformations. Here we discuss 

several consequences from that broader definition. Among other things, we derived some 

consequences to the special theory of relativity. Also, relying on [3], we comment on some 

mathematical aspects of multivectors inCl3. 
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1. Time 
 

Geometric algebra is a promising platform for mathematical analysis of physical 

phenomena. The simplicity and naturalness of the initial assumptions and the possibility of 

formulation of (all?) main theories with the same mathematical language imposes the need for 

a serious study of this beautiful mathematical structure. Many authors have made significant 

contributions and there is some surprising conclusions. Important one is certainly the 

possibility of natural defining Minkowski metrics within Euclidean 3D space without the need 

for the introduction of negative signature, that is, without the need to define time as the fourth 

dimension ([1, 8]). It is possible to ask many questions about time as a special dimension, but 

let's focus on Cl3now. 

2. Brief introduction to geometric algebra 
 

This short introduction has a purpose of motivation. In Appendix one can find some 

additional material and we also recommend further reading (see references). 

If we ask without prejudice how to multiply vectors, then we probably covet real 

numbers-like multiplication. Clearly, we cannot expect commutativity (think of the cross 

product), except for parallel vectors. For orthogonal vectors we can expect anticommutativity. 

It's amazing, but these two simple assumptions, with the additional property that the product 

of parallel vectors is positive real number, produce an enormous amount of beautiful 

mathematics. Product of two vectors (geometric product, due to Clifford) can be written as a 

sum of symmetric and antisymmetric parts  

   
1 1

.
2 2

   ab ab ba ab ba
 

 

From assumption that 2aa a is positive scalar we have 
 

   
2 22 2 2 2,          a b a ab ba b ab ba a b a b  

 

(1) 
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so symmetric part of the product ab is also a scalar (inner product).It is not difficult (at least 

for orthogonal unit vectors) to show that antisymmetric part of the product is not a vector 

(outer product), because its square is negative. Orthogonal vectors are anticommutative and 

symmetric part of geometric product is 0   ab ba ab ab , antisymmetric part is

   / 2 / 2    ab ba ab ab ab 2 2 1     abab baab a b . Geometric product is 

associative and distributive and has the possibility of dividing by vectors, in particular, 

defining the inverse of vector, 1 2/ a a a . These arguments are often seen in the literature, 

but their simplicity and motivational strength justify repeating them here, to some extent. 

Typically, geometric product is written as    ab a b a b , where a b is symmetric (inner 

product), a a b  antisymmetric (wedge or outer product) part. 

Geometric algebra is a language in which we can make sentences like abbcdca …, 

which is very suitable for programming. An example of the simplicity is the rotation and 

scaling of vector a by operator 1ba : 1 ba a b . Or one can take abba to find connection 

between scalar and bivector part of the geometric product. 

In Euclidean 3D space we define orthogonal unit vectors 1 2 3, , e e e with the property 

2 1i e , 0i j j i e e e e , 
 

so one could recognize the rule for multiplication of Pauli matrices. Each element of algebra 

(Cl3) can be expressed as linear combination of elements of 23 – dimensional basis (Clifford 

basis) 

 1 2 3 1 2 3 1 2 3 1 2 31,  ,  ,  ,  ,  ,  ,  e e e e e e e e e e e e , 
 

where we have a scalar, three vectors, three bivectors and pseudoscalar. According to the 

number of unit vectors in the product we are talking about the odd or even elements. If we 

define 1 2 3j  e e e it is easy to show that pseudoscalar j has two interesting properties: 1) 

2 1j   , 2) jX Xj , for any element X  of algebra, and behaves like an ordinary imaginary 

unit, which enables as to study a rich complex structure of Cl3. This property we have for n = 

3, 7, … [3]. Bivectors can be expressed as product of pseudoscalars and vectors, vj . It is 

worthwhile to note that unit vectors can be used to create multivectors ,   ,n a b a b

(paravectors) having multiplication table like spacetime (hypercomplex) numbers (for fixed 

n) ([13]). 

We define a general element of algebra (multivector) 
 

,      ,      x n F F x n         M t j jb z z t jb j  
 

where z is complex scalar and an element of center of algebra, while F , by analogy, is a 

complex vector. Complex conjugation is
† ,   z z t jb †

F F x n
    j . The complex 

structure allows different ways of expressing multivectors, one is 

 x n n x       M t j jb t j j b j , 
 

where multivector of the form v̂a vj belongs to even part of algebra and can be associated 

with rotations, spinors or quaternions. Also we could treat multivector as ([15])
3

0

1

,     i i k

i

M   


   e  and implement it relying on ordinary complex numbers. 
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There is theorem (with some minor exceptions, [8])  

A B A Be e e , iff AB BA .  
 

In the case of multivectors A and B  that do not commute we can solve the equation A B Xe e e

using results from [3]. The generally valid for multivector M = z + F is 

 ˆ ˆcos sin ,       F F F F F F  M ze e , 

21 ,    for   0F
F F  e , 

ˆlog log ,       arg arctan
F

F   M M M
z

   

 

(definition of M is given below). Frequently we have 1M , so principal value of logarithm 

is zero and there remains complex vector F̂ . Now 

log   A B XC e e e X C . 
 

In order to define metrics let us discuss some involutions in geometric algebra. 

Involution is an automorphism if  I(XY) = I(X) I(Y), or anti-automorphism if I(XY) = I(Y) I(X). 

Usually (like [2, 3]) one defines three involutions: 

1) grade involution: M̂ t j jb   x n  

2) reverse (adjoint):  
†M t j jb z      x n F  

3) Clifford conjugation:   x n F F       M t j jb z z , 
 

asterisk stands for a complex conjugate. Grade involution is transformation ˆ  x x    (space 

inversion), while reverse in Cl3 is like complex conjugation, † †,   j j  x x . Clifford 

conjugation is combination †ˆ ,   ,    M M j j   x x . Bivectors given as a wedge product 

could be expressed as j  x y x y , where x y  is a cross product. Application of 

involutions is easy now. 

Defining paravector p t  x  we have   
2 2 2pp t t t t x      x x x  and we 

have usual metric of special relativity.  

From ˆM M M t j    n , even part of algebra (spinors). 

From 
†M M M t    x , paravector; Reverse is anti-automorphism  

†
† †MM MM , so

†MM  (square of multivector magnitude, [2]) is a paravector. 

From M M M t jb z     , complex scalar. Clifford conjugation is anti-automorphism, 

MM MM , so MM  (square of multivector amplitude, [2]) is a complex scalar and there is 

no other “amplitude” with such a property. Let's look at all involutions  I M such that

 I z (center of algebra),    I z M MI z .  
 

Theorem 1. If  I z , then    I M M MI M  iff  I  F F . 
 

Condition    I M M MI M leads to 
 

            0z I z I I z I z            F F F F  

(2) 

(2a) 

(2c) 
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    0F F F F  I I  I  F F . 
 

This condition is met by Clifford conjugation (up to a sign), but also by, say, F
 z , 

unfortunately lacking in complex scalar amplitude  MI M .  

Theorem 2. Clifford conjugation is the unique involution that meets MM . 
 

Proof relays on fact that 2
F is a complex scalar, while  F FI generally contains vector x nj  

as component, orthogonal to vectors   and  x n , except for Clifford conjugation

  2
F F F  I .Straightforward proof can be easily obtained by multiplying multivectors 

([2], formula (6)) 

  0 1 2 3 ,      1x n x n       it j jb s t s js js b s , 
 

where will appear  1 2 1 2nx xn  j s s s s (to have double inner product in brackets). 

 

3. Bilinear transformations (BT) and relativity 
 

In [2] is defined multivector amplitude M  (hereinafter MA) 
 

 
2 2 2 2 2 2 x n       MM M t x n b j tb

 
 

and postulated that all bilinear transformations that preserve MM  are Lorentz 

transformations (extended). From M XMY  follows that the general transformations that 

preserve MM can be written as 
j jM e Me   p q r s , 

 

which is transformation with twelve parameters. It follows from 
 

2 2 2 2
       M XMY M M M XMYYMX X Y M , 

 

so, obvious solution is 
2 2

1 X Y ,but we could include transformations with

2 2
1  X Y (discussed later). From 2F F  z z ze e e a question arises about phase 

transformations with / 2z j such that  MI M  is invariant (multivector magnitude 

†MM discussed in [2] obviously is). 
 

Given definition of Lorentz transformations (LT) differs from the usual ([1, 8]), where 

it is assumed that LT should act on the real part only (real scalars and vectors), which means
† M LML .The key idea here is that starting with point we obtain a line by translation, then 

rotating line we obtain area, and translating area follows volume. Which one is the most 

important? Neither. So, let’s try to treat them equally.  
 

Important example of BT is a boost B e n , n is a unit vector, tanh v  ,so 
 

  2cosh sinh 1 ,      1/ 1e v v         n
n n , 

 

   ln 1 1 lnv v k     , k is a Bondi factor. 
 

(3) 

(4) 

(5) 
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Note that the speed can be obtained as the ratio of the norm of vector part and scalar 

part of paravector  cosh sinh 1n
n n   e v    .New boost gives ( n is parallel to m, 

n

is orthogonal to m) 

 2 1 2 2 2 2 2 2/2 /2 /2 /2 /2 /2

1 1 1 1 11e e e e v e e v e e
             

m n m m m m m m
n n  

  1 2 1 2 1 11 1v v v     n m n . 
 

Boosts do not change an orthogonal component of a vector. Two boosts 1 2n m v w je e e
 

generally do not result in a boost (Thomas rotation, [2]). 
 

For two boosts in n direction we have 
 

     1 2 1 2 1 2 1 2 1 21 1 1v v v v v v        n n n  
 

and ratio immediately gives overall speed  1 2 1 2/ (1 )v v v v  , so we obtained a new boost 
 

   1 2
1 2 1 2 1 2 1 2

1 2

1 1 1 .
1

v v
v v v v

v v
    

 
     

 
n

 
 

It is convenient to express a boost (paravector) in new basis, using idempotents 
 

   1 / 2,      1 / 2,u n u n     2 ,    ,    1,    0u u u u n u u u u             , 

      1 21 1/ 1 / 1 ,       v a a a a k v v k k k               n u u . 
 

Mathematics for boosts could be extended to general LT, obtaining generalized Bondi factor. 
 

From general expression for MA comparing real and imaginary part we have 
 

2 2 2 2 2 2 2 2t x n b t x n b           

tb t b       x n x n . 
 

Defining differential of multivector dX dt d jd jdb   x n , we have MA of differential 
 

 2 2 2 2 2dX dt dx dn db j dbdt d d      x n , 
 

so we can ask the question which conditions must be met to be defined real proper time  . 

This question could be related to Lagrangian [2], because if we can define real proper time

d dX we could also define a real action (up to a scale factor – mass) and Lagrangian 

independent of multivector variables 
 

   
dX

S dX d
d




 L 1 
dX

d
. 

 

A direct consequence is the existence of conserved quantities ([2]). 
 

There is a possibility to define proper time as 
0

 
v

d dX , but then generally 

remains dependence of ratio /dt dt  on quantities from different referent frames. In [2] is 

commented possibility of defining a complex Lagrangian, but that would be inconsistent with 

reality of proper time. Certainly, the idea that model with invariant MA serves as 

mathematical basis for the principle of relativity opens up a whole series of questions. The 

fact that (all?) classical relativistic results follow from this model could not be ignored, but 

there is a question of existence of physical arguments to possibly limit a use of model. Where 

(6) 

(7) 

(8) 

(9) 

(9a) 

(10) 

(10a) 

(11) 

(12) 
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are the opportunities for new physics, and where we may have been too broad in the definition 

of the model? 

One can easily obtain a proper time assuming that all quantities in dX , except dt , 

are equal to zero. Assuming that this is not the case and still regarding reality of a proper time, 

imaginary part of MA must be zero for every referent frame: 

   2 2 0 ,x n x n x n x n           dbdt d d dt db d d dt h d d h d d
 

 

where we defined db h , and h d d   x n . Defining n w we have h  w v . Bivector part of 

multivector is not transforming like area ([2]), so is reasonable to assume vector w to be 

proportional to some angular momentum-like quantity (AMLQ). Now w v  may be associated 

with flow of AMLQ. It turns out that this quantity could be associated with a new law of 

conservation (see below).  
 

One could regard conditions for real proper time to be: 
 

i) d  

ii)    / , / .dt dt M M M dt d        
 

Condition ii) is natural, relativistic factor now depends on quantities from single reference 

frame only. From i) and ii) follows 
 

2 2 2 2 2     dX dX d dt dx dn db ,
 

 

 
2 2 2 2

2 2 2 2

2 2 2 2
1 1 1

 
        

 

dt dx dn db
v w h

d dt dt dt



, 

 

 
22 2 2 2 2 2 21/ 1 1/ 1 cosw v        v w v w w v  . 

 

Recalling that factor is real (ratio of two reals) we have the condition 
 

2
2 2 2 2 2

max 2 2

1
1 cos 0

1 cos


     



w
v w w v v

w


 . 
 

For cos 1  is vmax = 1, but vmax> 1 otherwise. 
 

So, for vector w given a physical meaning it follows that the maximum speed varies. 

Natural assumption is that we do not require 0 w generally because it could be an internal 

characteristic of a system (like spin)and could not be reduced to zero by the selection of a 

suitable reference frame, i.e., there is no reference frame for an electron ceased to be a 

fermion. 
 

We have real  2 2 2 2 2 21 cos         dX dt v w w v  , so it would be easiest to 

conclude that the 0,    0  w v , as discussed. Regarding 0 v relativistic factor  becomes 

dependent on w , so, remains possibility 2 2 2 2 2cos 0       v w w v  , which means 

 2 21 cos


 

 

w
v

w



 , 

 

and one has a proper time in a referent frame of moving particle. What could be a physical 

meaning of that? In relativistic physics one usually relays on real scalars and real vectors and 

(13) 

(14) 

(15) 

(16) 
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defines a proper time regarding 0p . But under bilinear transformations that preserve MA 

one could regard 2 2 2 2 2cos 0v w w v         . This could be possible to justify physically, 

because extending Lorentz transformations and including all other motions and their 

symmetries there is no preferable momentum-zero condition but „center of energy-

momentum-AMLQ-flow-zero“ condition, whatever that means. Conclusion on limiting 

speed1 is based on preferring momentum as the main form of motion in space-time. Also, 

important motivation for the use of geometry contained in Cl3isjust equal treatment of all kind 

of movements (for author surely). It is interesting that speed v  generally could be greater than 

1, having upper limit1/ cos   (but there is a question of limiting AMLQ somehow). Finally, 

is there any evidence of rest electrons? 
 

Having a(really) real proper time we could define derivative of multivector by proper 

time 

 1
x n

v w        
dX dt d dt d dt db dt

V j j j jh
d d dt d dt d dt d


    

, 

 

2

1 0    
d V dV dV

V V V
d d d  

, 

 

which we could understand as kind of orthogonality of multivectors(velocity and 

acceleration).Defining /A dV d we have 0   AV VA AV AV  which means that 

multivector AV (or VA ) is a complex vector, so, using ,   F F   V V A AV z A z  we have 

from (A.2) condition  0,    / 2F F F F F F F F     V A V A V A V A A Vz z . 
 

Multiplying  / 1 v w    V dX d j jh   by mass m (rest mass) one obtains ([2]) 

2 2 2 2 2,     P mV E j jH P E p l H m         p l , 
 

but according to i) and ii) we have H mh l v   (flow) and so AMLQ related to conserved 

quantity. Geometry of model is in multivector V, mass is just a scaling factor. 
 

Let summarize a little: 
 

1) Pseudoscalar part of multivector is related to flow, wherein part of area is replaced by 

AMLQ (it does not transforms like area) 

2) Limiting speed varies (depending on AMLQ and his flow) 

3) for /E m  with non-zero AMLQ speed is greater than with zero AMLQ 

4) flow of AMLQ is conserved 
 

Statement 3) is easy to show: 

 
22 2/ 1/ 1 w v      E m v w  

 

 

2 2 22 2 2
2 2

22 2 2

1 / /1 /
1 /

1 cos 1 / cos

  
   

 

l E m Ew m E
v m E

w l E 
. 

 

Relation (20) shows that quantities E, p, l and H  are in a way equal, especially if we 

connect them to their origin in multivector. Scalars, vectors, bivectors and pseudoscalars are 

defining subspaces in the linear spaceCl3, conserved quantities are result of symmetries in 

that’s pace, and so, there is no reason to treat them unequally. It suggests that we should really 

rethink hard on old chap Euclidian 3D space in regard to branching physics tree. 
 

(17) 

(18) 

(19) 

(20) 

(21) 
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As example of non-existence of real proper time let look at the formally constructed 

multivector  

 2 2 2 2 2W t j j W t x k j t             x k k x . 

 

Imaginary part is a phase of wave. For electromagnetic wave in vacuum real part could be 

zero, so, there is no proper time, there is no rest frame. For electromagnetic field in vacuum 

we have 

2,  0E B j        E B F E B F F . 

 

4. Transformations, transformations 
 

 

Besides boosts and rotations we can now define other transformations. 
 

Generally is valid        1 2 1 2exp exp exp expF F F F F   .From  exp F f z

we have 

   ˆ ˆln ln ,      arctan /z z z        F f f f f f , 

because        
2

1 2 2 1exp exp exp exp 1f F F F F    z . Usually there is a vector 

component in F orthogonal to defining vectors for Fi.  
 

1) Another example of bilinear transformation is ([14, 16]) 
 

2 2
n n

e Me
 

, 
 

which leaves  complex scalar unchanged, so let see effect on vectors. Using components of 

vector parallel and orthogonal to n we have 
 

 2 2 cosh sinh
n n

n
x x x x x x x n



         e e e
 

   , 

2 2
22 2

1 1 1 1 2cosh sinhe e e
 

  


   
e e

e
e e e e e , 

 

so, there isa bivector as a part of result. Physical interpretation is needed. 
 

2) Next interesting example is 

 
2

1Me  
 

 

and ignoring solutions from center of algebra we have   2exp ,    1,F F  M  so 
 

 ˆ sinh cosh ,   1,    
2 2

F n m n m     M j n m
 

  . 

 

Now we have FtF = -t. 
 

3) For 2 1F  is   exp 1 / 2F F j , 2 1FF F    , so FMF could be regarded as 

transformation keeping MA. 
 

4) Reflection of multivector M is defined as –nMn, n is unit vector with MA equal to –

nn = n(–n) = –1, so, reflection meets condition
2

1 X . Logarithm of unit vector is

 log 1 / 2n n j ,so   exp 1 / 2n n  j . 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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5) From 2 0N  follows     
2

exp 1 1 1N N N     and we have another bilinear 

transformation preserving MA. 
 

There are many other possibilities, recall that bilinear transformations that preserve 

MA have twelve parameters (from four defining vectors). 

 

Conclusion 

 

Starting from the articles [2, 3] is shown a few consequences of introduction of 

bilinear transformations of multivectors that preserve multivector amplitude, defined using  

Clifford conjugation in Cl3. As a result of regarding that proper time is a real positive scalar 

dependent on quantities from single reference frame follows several conclusions. The first is 

that there is a new conserved quantity associated with the flow of angular momentum-like 

quantities (AMLQ). The second is that the maximum speed of the particles with AMLQ may 

be greater than 1, and that the speed at fixed energy is higher with than without AMLQ. 

Limiting speed varies depending on angle between momentum vector and AMLQ. Finally, 

from request that reference frame exist such that / dt dt is independent of components of  

multivector M follows existence of minimal speed of particles with AMLQ in such reference 

frame, meaning that real proper time is not defined using 0p  , but rather including other 

possible motions in Euclidian 3D space. 

 

 

Appendix 

 

As the Lorentz transformation here are generally defined by expression  exp v w j , 

let's look at some properties of the complex vector. For j F v w  we have 
 

2 2 2 2F v w j     F v w ,    2ˆ /F F F  . 
 

Commutator and anticommutator of two complex vectors satisfy 

 

 1 2 2 1 1 2 2F F F F F F F F    , 
1 2 2 1 1 2 2F F F F F F F F   , 

 

so, commutator is a complex vector and anticommutator is a complex scalar.  

 

 

(fig. 1., whirl, figures are created in GAViewer) 

 

 

 

 

 

 

 

 

 

 

 

E

B

Bj

2 0F  2 1F 

2 1F  

(A.1) 

(A.2) 
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In [3] was shown that for F M z demanding
2  M c jd we have or 0F or

0F  and 0z  ,
2 2 ,     2c v w d   v w . Multivectors that square to complex scalars and 

have some vector component could be also found like this 
 

 
22 2 2 2 2 2 2

2 2

2 2 0 2

,   2 .

F F F F F F v w

v w

                 

    

z c jd z z z z z c jd v w j

c v w d
 

Recalling that  2
F  , one could expect 2

F F  z z . Of course, there is a usual 

solution for z , just use ordinary imaginary unit instead of  j. 
 

From  v w follows that vector v belongs to plane defined by bivector jw  (we could 

name such multivector whirl, for example, for EMV in vacuum j F E B , vector E  

belongs to plane defined by Bj ). Let's look at three interesting cases (with whirl 

2
F F  c c c ). 

 

1) 2 2

0 0F N   v w  
 

We have  exp 1N N   and such multivector gives general form of nilpotent

0F N , up to some factor ([12]). We also have 2 0N N   , so there is no inverse. 

Defining ˆ ˆ ˆ ˆ ˆ  = -j   k v w v w (direction of nilpotent)it is easy to show that 
 

 
2 2 2 0N N N N  z z z z , 

ˆ ˆkN Nk N   ,        ˆ1 2k N N  . 

 

In ([12]) is shown that multiplication of nilpotent by complex phase is equivalent to 

rotation of nilpotent about vector ˆ k , so that rotation around direction of nilpotent is thus 

reduced to the transformation U(1). Here is a simple proof  
 

ˆ ˆ
ˆ

2 2ˆ ˆ e  e e e
k k

k
kN Nk N N N N


      

j j
j j

 
  . 

 

EMV in vacuum is nilpotent.  In [8] was derived solution of Maxwell's equations in 

vacuum 

 
0 0

k x k x
F F F

    
j t j j te e e
  , 

 

where            0 0,0 0,0 ,    0,0 0,0 ,     0,0 0,0F E B E B   j E B  is nilpotent. One 

could regard 0

k x
F

 je as nilpotent field (nilpotent F0  rotated about his direction vector by angle 

dependent on space coordinate), so, that field is multiplied by time depending complex phase. 

Nilpotent field 0

k x
F

 je is rotating around k with frequency . 
 

2) 2 2 2

1 1
ˆ ˆ1 1F F v v      v w cosh j sinh   

 

We have   1 1exp 1 / 2F F j , 1

1 1

 F F and 
 

      
2

1 1 1 11 / 2 1 1 / 4 1 / 2F F F F        , 
 

So we have all idempotents of algebra [12, 16].  

(A.3) 

(A.4) 

(A.4a) 

(A.5) 

(A.6) 

(A.7) 
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Theorem 3. All idempotents in Cl3 have form  11 / 2F . 
 

Simple proof is 
 

 
2 2 2 2 2

12 1/ 2,   / 2.z z z z z z z           F F F F F F F  

Every such idempotent could be 

expressed as a sum of simple idempotent 

(like  11 / 2 e ) and nilpotent ([12]). 

Simple nilpotent is paravector  ˆ1 / 2v , 

with unit vector  
2ˆ 1v . 

 

Theorem 4. Every idempotent in 

Cl3can be expressed as a sum of simple 

idempotent and nilpotent. 
 

Let  1 / 2n   is simple idempo-

tent, then 
 

 

 

2

/ 2 0,

        

      

N N N

N nN Nn nN Nn
 

 

so vector n must be orthogonal on vectors 

from nilpotent. It means that is not every 

sum of simple idempotent and nilpotent 

idempotent.  
 

For non-simple idempotent we can define 

 

   

 

11 / 2 1 / 2

1 / 2 / 2,    ,

j

j

    

   

F v w

n N N u w
 

 

where bivector part of N must be unchanged because of linear independency. Now we have u 

= w, 2 2 2 21   v w v u , v n u  . Vectors ,  v ubelong to plane defined by bivector wj so 

must unit vector n , too. From 2 21 2v n u n u      v u and so must be n u  . We can 

find vectors ,  n u  explicitly (fig. 2.).  Defining a unit vector ˆ ˆm w v   (cross product) we 

have ( cosh ,    sinh v w  ) 
 

   1ˆ ˆ ˆ ˆ ˆcos sin sinh tanh ,u v m v m v w v


       w w wv w     

  1ˆ ˆ ˆ sinh coshn v u v w v


       . 
 

Now we have    N N N  leading to  
2

z z z z          N N N N , z , so, if I is 

simple idempotent and multivector   N is idempotent then z  N

 

is idempotent too. If z is 

real (say c) then this means that we deform triangle ( n , u ,v ): 

   2 2 21,  ,  1 1,  c ,  1w w w c w   . But if number z is imaginary (say jc) we have 

j c jc    n u w n w u , so there is a change of orientation of whirl. Interesting, direction 

of nilpotent u w  is not changed. 

 

 Fig. 2. 

(A.8) 

(A.8a) 
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Scalar 1 is trivial idempotent of algebra, but has decomposition 
 

      1 1 1 11 1 / 2 1 / 2,    1 1 0.F F F F        
 

Using whirl 1F we could define involutions   1FRI M M ,   1FLI M M ,

  1 1F F I M M , where right and left involutions are somewhat permutations of components 

of multivector in Clifford basis, while last one in special form
1 ,F n m  j ,n m 1 n m

represents interesting reflections. 
 

3) 2 2 2

1 1
ˆ ˆ1 1F F v v          v w sinh j cosh  . 

 

This is a non-trivial solution for 1  ([3]). We have  1 1exp / 2F F  ,  1

1 1



  F F . 

It is interesting to look at periodicity of integer powers of multivector  11 / 2F . 
 

Everything is “boost” 
 

For complex vector j F v w  we have 2
F  or 2

F F , so for 

2,   0F N N   we define 
2

1/ ,F F F 2

1 1F   and 
2

1
ˆ/F F F F    j . Suppose we 

have exponential form  1exp F , defining ([2, 3]) 2

1,   /F F F W W , tanh W , 

21/ 1  W ,      1 / 1 1     W W W (generalized Bondi factor, log  ) and 

idempotents  1 1 / 2f F   ,  0f f    we have 
 

 1 1

1 1e cosh sinh 1
F

F F f f


       W
     . 

 

Now we can read “speed” as ratio W/1 and it is easy to find successive “boosts” as 
 

      1 2 11 1 2 1 1 2
1 2 1 1 2 1 1 2 1 2 1

1 2

e e e 1 1 1 1
1

FF F
F F F

  
           

 

W W
W W WW

WW

  
, 

 

  1 2
1 2 1 2

1 2

1 ,    
1


     



W W
WW W

WW
, 

or 

        1 1 2 1 1 1 1 1

1 1 2 2 1 2 1 2 1 2e e
F F

f f f f f f
   

           
             . 

 

Generally we have a complex scalar R Ilog   j     (explicit formulae are rather 

cumbersome, one can use Mathematica and j i , i is ordinary imaginary unit) which leads 

to       1 R 1 I 1exp exp expF F F j   . 
 

From F v w  j ,  
2 2 2 2v w v w    W j v w j , for 0w   we have well 

known relations for boosts.  
 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.12a) 

(A.13) 
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From F w j  we have  
2 2

w   W j w jw , 
1

ˆ/F w w j jw , 

21/ 1  w ,    1 / 1  jw jw , log arctan  j w  ,    ˆ ˆexp 1w w   jw  and 

for successive transformations we have  
 

     1 2 1 2 1 2 1 21 ,    / 1       w w w w w w w . 

 

It is interesting possibility to interpret such transformations like “boosts”, defining new 

rotating frame of reference with time  t  , introducing thus rotating frames as “inertial”. 

Regarding invariance of MA instigates to reexamine paradigm “inertial frame of reference”. 
 

For a well known pure rotations  ˆexp nj  we have  ˆ ˆ /n nj j j j    ,  j  , 

 tanh tan W j j  , 
21/ 1 tan    ,    1 tan / 1 tan  j j   ,  ˆ1 / 2f n  

and so 

 ˆ ˆe 1 tann
n  j j  ,  

 1 2 1 21 tan tan ,        
 

     1 2 1 2 1 2tan tan tan / 1 tan tan tan           . 
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