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1 Introduction and test of the CHSH

The CHSH inequality is an important element in the discussion about the existence or

nonexistence of additional local hidden parameters [1]. The CHSH inequality [2] is derived

from Bells formula for the correlation [3], E(a, b), between distant spin measurements with

setting setting parameters a and b. Generally,

E(a, b) =

∫
dλρλAλ(a)Bλ(b) (1.1)

In (1.1) we can identify the probability density ρλ ≥ 0, with
∫
dλρλ = 1. The λ are

introduced to explain the correlation and need to have a local effect. This can e.g. be

accomplished [5] if a λ1 is assigned to the A measurement instrument and λ2 to the B

instrument. Furthermore, the measurement functions Aλ(a) and Bλ(b) both project in

{−1, 1} to represent binairy spin variables (e.g. up=1, down=-1). The CHSH inequality is

based on the following expression,

S = E(1, 1)− E(1, 2)− E(2, 1)− E(2, 2) (1.2)

The quartet of setting pairs Q = {(1, 1), (1, 2), (2, 1), (2, 2)} occurs random in a series of

N spin measurements of entangled particle pairs. Alice and Bob are two assitents in the

experiment who, per trial or particle pair measurement, randomly select the setting of

their measurement instrument. The argument in favor of the CHSH inequality [4] and

against a possible probability loophole [5] is as follows. From (1.1) and (1.2) we may write,

suppressing the hidden variables index λ, notation for the moment,

S = E{A(1)[B(1)−B(2)]−A(2)[B(1) +B(2)]}. (1.3)

According to [4], because, A and B are both ∈ {−1, 1}, we see that when B(1) = B(2),

then S = ±2, while, when B(1) = −B(2), it again flollows, S = ±2. Hence, |S| based

on (1.1) cannot be larger than 2 and therefore the nonzero probability of |S| > 2 with

a local hidden variables model of [5] must be based on a mistake. It will be demon-

strated in the next section that this claim is untrue. In the paper we show that this

argument does not hold in general. The loophole paper [5] has the intention to derive a
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test of the strength of conclusions that can be derived from the CHSH inequality. Tests

of strength are not uncommon in statistcs. In [5] this is done via a reformulation of Bells

formula. Let us define sets based on the difference E(a, b) − E(x, y), (a, b) and (x, y)

are different settings. We have, Ω+(a, b;x, y) = {λ |Aλ(a)Bλ(b) = Aλ(x)Bλ(y) = +1},
together with Ω−(a, b;x, y) = {λ |Aλ(a)Bλ(b) = Aλ(x)Bλ(y) = −1} and Ω0(a, b;x, y) =

{λ |Aλ(a)Bλ(b) = −Aλ(x)Bλ(y) = ±1}. The three sets are disjoint and if Λ denotes the

universe set of the λ variables we also have Λ = Ω+(a, b;x, y)∪Ω−(a, b;x, y)∪Ω0(a, b;x, y).

Note that in E(a, b)− E(x, y) only the λ ∈ Ω0(a, b;x, y) contribute. Therefore

E(a, b)− E(x, y) = −2

∫
λ∈Ω0(a,b;x,y)

Aλ(x)Bλ(y)dλ (1.4)

If subsequently, E(a, b) = 0 and we write Ω′0(x, y) = Ω0(a, b;x, y) and (a, b) such that

E(a, b) = 0, then

E(x, y) = 2

∫
λ∈Ω′0(x,y)

ρλAλ(x)Bλ(y)dλ (1.5)

With E(x, y) = ET (x, y). Subsequently from E(a, b) = 0 it follows [5] that,

EC(x, y) = 2

∫
λ∈Ω′+(x,y)

ρλdλ− 2

∫
λ∈Ω′−(x,y)

ρλdλ (1.6)

and, of course, EC(x, y) = E(x, y) via E(a, b) = 0.

The settings that we employ are, for Alice, 1A = (1, 0, 0)T and 2A = (0, 0, 1)T . The

superscript T means transposed of a vector. For Bob we take, 1B = 1√
2
(1, 1, 0)T and

2B = 1√
2
(−1, 0,−1)T . If the A and B indices in 1A etc, are not necessary they will

be omitted. With this selection of setting vectors and taking the quantum correlation

innerproduct 〈a, b〉 =
∑3

i=1 aibi, the S from (1.2) will produce |S| = 3√
2
> 2. Like in [5] we

take the probability density, ρλ = ρλ1,λ2 and ρλ1,λ2 = ρλ1ρλ2 . The separate λ1, is assigned

to A and λ2, is assigned to B. For, j = 1, 2,

ρλj = {
1√
2
, λj ∈

[
− 1√

2
, 1√

2

]
= Λj

0, λj /∈
[
− 1√

2
, 1√

2

] (1.7)

with the universal set, Λ = Λ1 × Λ2. Furthermore, Ω′±(x, y), is the Cartesian product of a

λ1 and a λ2 interval, i.e. Ω′±(x, y) = Ω′A±(x)× Ω′B±(y). Similar as in [5] let us take

Ω′A±(1) ∈
{
∅, {λ1 | − 1 + 1√

2
≤ λ1 ≤ 1√

2
}
}
, Ω′B±(1) ∈

{
∅, {λ2 | − 1√

2
≤ λ2 ≤ 0}

}
Ω′A±(2) ∈

{
∅, {λ1 | − 1√

2
≤ λ1 ≤ 1− 1√

2
}
}
, Ω′B±(2) ∈

{
∅, {λ2 | 0 < λ2 ≤ 1√

2
}
} (1.8)

Note,
∫
λj∈∅ ρλjdλj = 0. The following form will be used in the study of (1.3),

EC(x, y) =

∫
Ω′A+(x)

dλ1

∫
Ω′B+(y)

dλ2 −
∫

Ω′A−(x)
dλ1

∫
Ω′B−(y)

dλ2 (1.9)
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In order to have a similar approach as in (1.3) we introduce θ··,·(x). Those variables are

associated to the sets in (1.8). For instance let us define

θ±Aλ1(x) = { 1, λ1 ∈ Ω′A±(x) 6= ∅,
0, λ1 /∈ Ω′A±(x).

(1.10)

We note that θ±Aλ1(x) = 0, when, Ω′A±(x) = ∅. Similarly,

θ±B λ2(y) = { 1, λ2 ∈ Ω′B±(y) 6= ∅,
0, λ2 /∈ Ω′B±(y).

(1.11)

and θ±B λ2(y) = 0 when Ω′B±(y) = ∅. Given the expressions in (1.9) - (1.11), the S in (1.3)

can be written as

S =
∫

Λ1
dλ1

∫
Λ2
dλ2[θ+

Aλ1
(1)θ+

B λ2
(1)− θ−Aλ1(1)θ−B λ2(1)

−θ+
Aλ1

(1)θ+
B λ2

(2) + θ−Aλ1(1)θ−B λ2(2)

−θ+
Aλ1

(2)θ+
B λ2

(1) + θ−Aλ1(2)θ−B λ2(1)

−θ+
Aλ1

(2)θ+
B λ2

(2) + θ−Aλ1(2)θ−B λ2(2)]

(1.12)

Suppose we take the following values for the θ··,· ∈ {0, 1} variables in (1.12).

θ+
Aλ1

(1) = θ+
B λ2

(1) = 1, θ−Aλ1(1) = 1, θ−B λ2(1) = 0,

θ−Aλ1(2) = θ−B λ2(2) = 1, θ+
Aλ1

(2) = θ+
B λ2

(2) = 0.
(1.13)

The possibility of selection of θ··,· ∈ {0, 1} such as in (1.13) cannot be rejected. With

this selection of θ··,· ∈ {0, 1} variables, possible confusion of ”multiple random models” is

avoided. The averaging over models L such as was done in [4] does not apply to the present

case. Its use in [4] was already questionable. In [5] there is only one single fixed model

with random input. In the present paper the line of reasoning presented in (1.3) which was

also used in [4] to reject the conclusions from [5] leads us to

S =

∫ + 1√
2

−1+ 1√
2

dλ1

∫ 0

− 1√
2

dλ2 +

∫ + 1√
2

−1+ 1√
2

dλ1

∫ 1√
2

0
λ2 +

∫ 1− 1√
2

− 1√
2

dλ1

∫ 1√
2

0
dλ2 (1.14)

Hence, S = 3√
2

and therefore |S| > 2 with a single fixed local hidden variables model where

the method of deriving S is similar to the way it is used in [4].

2 Numerical consistency

The previous analysis was done in terms of Ω+ and Ω− sets. Here we show that the method

is consistent. First we define the measurement functions A and B. We have, α = ±1 and

sgn(ξ) = ±1, for ξ real.

Aλ1(x) = {α(x), λ1 ∈ I(x)

sgn{ζ(x)− λ1}, λ1 ∈ Λ1\I(x)
(2.1)
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With I(x) ⊂ Λ1 and ζ(x) ∈ Λ1\I(x). For Bλ2(y) a similar form is given, β(y) = ±1,

Bλ2(y) = { β(y), λ2 ∈ J(y)

sgn{η(y)− λ2}, λ2 ∈ Λ2\J(y)
(2.2)

With J(y) ⊂ Λ2 and η(y) ∈ Λ2\J(y). Let us look at the setting pair, (1, 1). If θ+
Aλ1

(1) = 1

then, λ1 ∈ {λ1 | − 1√
2
≤ λ1 < −1+ 1√

2
} = Λ1\I(1), is available to build Ω0. For θ+

B λ2
(1) = 1,

we have λ2 ∈ {λ2 | 0 < λ2 ≤ 1√
2
} = Λ2\J(1). Hence,

Ω′0(1, 1) = {λ1 | − 1 + 1√
2
≤ λ1 <

1√
2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

∪{λ1 | − 1√
2
≤ λ1 < −1 + 1√

2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

∪{λ1 | − 1√
2
≤ λ1 < −1 + 1√

2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

(2.3)

From equation (1.5) and definitions in (2.1) and (2.2) employing (2.3) the following expres-

sion obtains

ET (1, 1) = α(1)
(∫ η(1)

0 dλ2 −
∫ 1/
√

2
η(1) dλ2

)
+ β(1)√

2

(∫ ζ(1)

−1/
√

2
dλ1 −

∫ −1+1/
√

2
ζ(1) dλ1

)
+
(∫ ζ(1)

−1/
√

2
dλ1 −

∫ −1+1/
√

2
ζ(1) dλ1

)(∫ η(1)
0 dλ2 −

∫ 1/
√

2
η(1) dλ2

) (2.4)

This gives,

ET (1, 1) = α(1)

(
2η(1)− 1√

2

)
+
β(1)√

2
(2ζ(1) + 1) + (2ζ(1) + 1)

(
2η(1)− 1√

2

)
(2.5)

Here we note that, η(1) ∈ {η | 0 < η ≤ 1√
2
} and ζ(1) ∈ {ζ | − 1√

2
≤ ζ < −1 + 1√

2
}. In the

numerical study we found, α(1) = β(1) = −1 and ζ(1) ≈ −0.63786, and η(1) ≈ 0.15284.

This gives E(1, 1) ≈ 0.70707. This agrees with 1A = (1, 0, 0)T and 1B = 1√
2
(1, 1, 0)T . For

setting pair (2, 1) we have in a similar way for Ω0,

Ω′0(2, 1) = {λ1 | − 1√
2
≤ λ1 < 1− 1√

2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

∪{λ1 | 1− 1√
2
< λ1 <

1√
2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

∪{λ1 | 1− 1√
2
< λ1 <

1√
2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

(2.6)

In a similar manner it follows that

ET (2, 1) = α(2)

(
2η(1)− 1√

2

)
+
β(1)√

2
(2ζ(2)− 1) + (2ζ(2)− 1)

(
2η(1)− 1√

2

)
(2.7)

The η(1) ∈ {η | 0 < η ≤ 1√
2
} and is already established approximately, η(1) ≈ 0.15284. For

ζ(2) we must see ζ(2) ∈ {ζ | 1− 1√
2
< ζ < 1√

2
}. Numerical study gives approximately, ζ(2) ≈

0.68110, together with α(2) = −1. The result of the numerical values for α(2), β(1), ζ(2)

and η(1) is that E(2, 1) ≈ −8.1913 × 10−5. This agrees with 2A = (0, 0, 1)T and 1B =
1√
2
(1, 1, 0)T . For pair (1, 2) we similarly have

Ω′0(1, 2) = {λ1 | − 1 + 1√
2
≤ λ1 ≤ 1√

2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

∪{λ1 | − 1√
2
≤ λ1 < −1 + 1√

2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

∪{λ1 | − 1√
2
≤ λ1 < −1 + 1√

2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

(2.8)
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Hence,

ET (1, 2) = α(1)

(
2η(2) +

1√
2

)
+
β(2)√

2
(2ζ(1) + 1) + (2ζ(1) + 1)

(
2η(2) +

1√
2

)
(2.9)

We already had, ζ(1) ∈ {ζ | − 1√
2
≤ ζ < −1 + 1√

2
} and numerically, ζ(1) ≈ −0.63786,

together with α(1) = −1. For η(2) we found in numerical study, η(2) ≈ −3.7137 × 10−5

and it is required that η(2) ∈ {η | − 1√
2
≤ η ≤ 0}. This gives E(1, 2) ≈ −0.70701, with,

β(2) = −1. This agrees with 1A = (1, 0, 0)T and 2B = 1√
2
(−1, 0,−1)T . Finally, we have all

α, β, ζ and η numerical values and need to check for E(2, 2). The Ω0 is

Ω′0(2, 2) = {λ1 | − 1√
2
≤ λ1 < 1− 1√

2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

∪{λ1 | 1− 1√
2
< λ1 <

1√
2
} × {λ2 | 0 < λ2 ≤ 1√

2
}

∪{λ1 | 1− 1√
2
< λ1 <

1√
2
} × {λ2 | − 1√

2
≤ λ2 ≤ 0}

(2.10)

This then leads us to

ET (2, 2) = α(2)

(
2η(2) +

1√
2

)
+
β(2)√

2
(2ζ(2)− 1) + (2ζ(2)− 1)

(
2η(2) +

1√
2

)
(2.11)

We already found α(2) = β(2) = −1 and ζ(2) ≈ 0.68110, with, η(2) ≈ −3.7137 × 10−5.

This resulted in E(2, 2) ≈ −0.70706 and this agrees with 2A = (0, 0, 1)T and 2B =
1√
2
(−1, 0,−1)T .

Plugging the results of this single fixed and definitely not random model into the

CHSH criterion we find that S = E(1, 1)−E(2, 1)−E(1, 2)−E(2, 2) ≈ 2.12122 > 2. The

numerical error fluctuates in the sixth decimal. The local hidden variables model presented

in the preceding pages violates the CHSH criterion. In the present section numerical

consistency was demonstrated. The numerical consistency supports the Ω+ and Ω− analysis

of the previous section. This nullifies the argument implicit in [4] that only (random)

variating models can violate the criterion. It also rejects the claim that ”compact” version

S = E{A(1)[B(1) − B(2)] − A(2)[B(1) + B(2)]} forbids locality to violate with nonzero

probability the CHSH criterion such as given in [5].

3 Conclusion & Discussion

We conclude that the conjecture in [4] that ”there must be a mistake in [5]” is unjustified.

There is a single fixed local variables model that can violate the ±2 CHSH criterion. A

possible objection that A and B functions do not exist is definitely unfounded. Both EC
as well as ET are equivalent to the same Bell formula. Conclusions for EC are valid for ET
and vice versa. We devoted a chapeter to the numerical underpinning of the latter claim.

In this paper it was demonstrated that the step from term-by-term: S = E(1, 1) −
E(1, 2)−E(2, 1)−E(2, 2), to compact S = E{A(1)[B(1)−B(2)]−A(2)[B(1) +B(2)]} and

therefore S for A and B both ∈ {−1, 1} exclusively varying between and including −2 and

2, does not hold in all local hidden variable model cases. If the step from term-by-term to

compact is allowed in the original expression of Bells formula then it is allowed in the Ω

set analysis of Bells formula in [5].
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In [5] it was demonstrated that a nonzero probability for 2
√

2 violation of the CHSH

exists with local hidden variables. In the present paper we showed with a single fixed model

that violation amounts to 3√
2
. The latter is, of course, larger than 2 and shows that the

”there must be a mistake” argument in [4] based on |S| ≤ 2, is false. The reader should

note that the objection ”it is not possible to violate maximally” was already dealt with by

showing nonzero probability in [5]. Shifting the goal-post from 2 in the direction of 2
√

2

and therewith reject the possibility that CHSH has a probability loophole, can be judged

as an extremely weak defense of a criterion that sternly eliminates certain types of models.

Furthermore, the model in [5] is fixed and only the data used in the model varies randomly.

Hence, the L argument of [4] certainly does not apply to the present case and is also invalid

for the case of [5].

Concludingly, it was demonstrated that a single fixed model of local hidden variables

may violate the CHSH, ±2, bounds. Therefore, local hidden variables are possible. We

may think of a form of ’tHoofts predeterminism [6], interpreted as random events that are,

to nature, a logical progression of the unfolding of events. We can also mention the possible

existence of mirror matter [7], [8], [9], [10], [11] as an unknown in the explanation of the

entanglement. However, hypothetical mirror matter and matter exchange information via

gravity and the mixing of mirror-photons and photons [8]. In entanglement, the mixing of

the two types of photons then should be held responsible.

Finally, perhaps that there is no explanation for entanglement. It is then however

reasonable to expect that this conclusion is arrived at with the most stringently possible

tested statistics.
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