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Abstract — In this paper, a gentle introduction to Game Theory is presented in the form of
basic concepts and examples. Minimax and Nash’s theorem are introduced as the formal
definitions for optimal strategies and equilibria in zero-sum and nonzero-sum games. Several
elements of cooperaive gaming, coalitions, voting ensembles, voting power and collective
efficiency are described in brief. Analytical (matrix) and extended (tree-graph) forms of
game representation is illustrated as the basic tools for identifying optimal strategies and
“solutions” in games of any kind. Next, a typology of four standard nonzero-sum games is
investigated, analyzing the Nash equilibria and the optimal strategies in each case. Signaling,
stance and third-party intermediates are described as very important properties when analyzing
strategic moves, while credibility and reputation is described as crucial factors when signaling
promises or threats. Utility is introduced as a generalization of typical cost/gain functions
and it is used to explain the incentives of irrational players under the scope of “rational
irrationality”. Finally, a brief reference is presented for several other more advanced concepts
of gaming, including emergence of cooperation, evolutionary stable strategies, two-level
games, metagames, hypergames and the Harsanyi transformation.

Index Terms — Game Theory, Minimax theorem, Nash equilibrium, coalitional gaming,
indices of power, voting ensembles, analytical form, extended form, Leader, Battle of
the Sexes, Chicken, Prisoner’s Dilemma, Hostage Situation, Kamikaze, signaling, bluff,
credibility, promises, threats, utility, rational irrationality, two-level games, hypergames,
evolutionary stable strategies, Harsanyi transformation, metagames.

GAME THEORY is a vast scientific and research area,
based almost entirely on Mathematics and some experimen-
tal methods, with applications that vary from simple board
games to Evolutionary Psychology and Sociology-Biology
in group behavior of humans and animals. Conflict situa-
tions are presented everywhere in the real world, every day,
for thousands of years - not only in human societies but also
in animals. The seller and the buyer have to come up with
a mutually acceptable price for the grocery. The employer
and the employee have to bargain in order to reach a mutu-
ally satisfying value for the salary. A buyer in an auction
has to continuously estimate the cost/gain value of making
(or not) the next higher bid for some object. The primary
adversaries in a wolf pack have to decide when it is bene-
ficial to fight over the leadership and when to stop before
they are severely wounded. A swarm of fish has to collec-
tively “decide” what is the optimal number and distance of
the piket members or “scouts” that serve as the early warning
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for the group, perhaps even self-sacrificing if required. All
these cases are typical examples, simpler or more complex,
of conflict situations that depend on bargaining, coordination
and evolutionary optimization. Game Theory provides a uni-
fied framework with robust mathematical foundations for the
proper formulation and analysis of such systems.

The building blocks

In principle, the mathematical theory of games and gam-
ing was first developed as a model for situations of conflict.
Game Theory is the area of research that provides mathe-
matical formulations and a proper framework for studying
adversarial situations. Although E. Borel looked at similar
problems in the 1920s, John Von Neumann and Oskar Mor-
genstern provided two breakthrough papers (1928, 1937) as
a kick-start of the field. Since the early 1940’s, with the end
of World War II and stepping into the era of the Cold War
that followed, the work of Von Neumann and Morgenstern
has provided a solid foundation for the most simple types of
games, as well as analytical forms for their solutions, with
many applications to Economics, Operations Research and
Logistics. However, there are several limitations that fail
to explain various aspects of real-world conflicts (Luce &
Raiffa, 1957), especially when the human factor is a major
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factor. The application of game-theoretic formulations in
designing experiments in Psychology and Sociology is usu-
ally referred to as gaming (Thomas, 1984; Camerer, Ho, &
Chong, 2002).

Games, strategies and solutions

The term game is the mathematical formulation of adver-
sarial situations, where two or more players are involved in
competitive or cooperative acts. The zero-sum games are
able to model situations of conflict between two or more
players, where one’s gain is the other’s loss and vice versa.
Most military problems can be modeled as some form of two-
player zero-sum game. When the structure of the game and
the rationale of the players is known to all, then the game is
one of complete information, while if some of these infor-
mation is somehow hidden or unknown to some players, it
is one of incomplete information. Furthermore, if all play-
ers are fully informed about their opponents’ decisions, the
game is one of perfect information. In contrast, if some of
the information about the other players’ moves, the game is
one of partial or imperfect information. Such games of both
complete and perfect information are all board games, like
Chess, Go and Checkers, and they are all zero-sum by nature.

Von Neumann and Morgenstern (von Neumann & Mor-
genstern, 1947) proved that there is at least one optimal
plan of decisions or strategy for each player in all zero-sum
games, as well as a solution to the game that comes naturally
as a result of all players following their optimal strategies. At
the game’s solution, each player can guarantee that the maxi-
mum gain an opponent can gain is kept under a specific min-
imal limit, defined only by this player’s own strategy. This
assertion was formulated as a theorem called Minimax and in
the simple case of two opposing players with only two strate-
gies each the Minimax solution of the game can be calculated
analytically as a solution of a 2x2 set of linear equations,
which determine the stable solution or saddle-point.

The consequences of the Minimax theorem have been
thoroughly studied for many years after its proof. As an ex-
ample, it mathematically proves the assertion that all board
games, including the most complex ones like Chess, have at
least one solution, i.e., an optimal (pure) strategy for both
players that can be analytically calculated, at least in theory
(Stahl, 1999; Thomas, 1984; Prywes, 1999). Of course, in
the case of Chess the game space is so huge that it is still un-
feasible today to calculate this theoretically optimal strategy,
even with the help of parallel processing in supercomputers.
In contrast, Checkers is a much smaller (3x3) and simpler
game, making it possible to create the complete game space
in any typical desktop computer1 and calculate the exact op-
timal strategy - in fact, it is the same strategy that every child
soon learns by trial-and-error, playing in a way that always
leads to a win or a draw (never loose).

In general, if the chosen strategy of one player is known
to its opponent, then an optimal counter-strategy is always
available. Hence, in simultaneous games where the opposing
moves are conducted at the same time, each player would
normally try not to employ a deterministic way of choos-

ing its strategy and conceal this choice until the very last
moment. However, the Minimax theorem provides a math-
ematically solid way of nullifying any stochastic aspect in
determining the opponent’s choice and, in essence, make its
exact choice irrelevant: no matter what the opponent does,
the Minimax solution ensures the minimum losses to each
player, given a specific game setup. In other words, it pro-
vides an analytic way to determine the best defensive strat-
egy, instead of a preference to offensive strategies. In some
zero-sum games this leads to one stable outcome or equi-
librium, where each player would have no incentive not to
choose its Minimax strategy; however, if this choice leads to
a negative handicap for this player if it is known with com-
plete certainty by the others, then this choice should not be
manifested as certain. In practice this means that the Min-
imax solution would not be any single one of the player’s
pure strategies but rather a weighted combination of them in
a mixed strategy scheme, where each weight corresponds to
the probability of choosing one of the available pure strate-
gies via a random mechanism. This notion of using mix-
tures of pure strategies for randomly choosing between them
leads to a false sense of security in single-turn games, since
the optimality of the expected outcome of the mixed strat-
egy scheme refers to the asymptotic (long-term) and not the
“spot” (one-shot) payoff. Moreover, a game may involve an
infinite number of strategies for the players, in a discrete or
continuous set; in this case the game is labeled as continuous
or infinite, while a finite game is one with a limited number
of (discrete) strategies (Dresher, 1961; Thomas, 1984).

When the game is inherently repetitive or iterative, i.e.,
includes multiple turns and not just one, even the pure strat-
egy suggested by Minimax should not be chosen determin-
istically in every turn if according to the game setup this in-
formation might provide a handicap to the opponent. This
is a topic of enthusiastic discussion about the optimality of
the Minimax solution and its inherent defensive nature, as it
is not clear in general when information about an opponent’s
next move is available and trustworthy enough to justify any
deviation from this Minimax strategy.

1 In Checkers, the board size is 3x3 and each position can be
either empty or host the mark of of one of the two players, “X” or
“O”. Hence, if the two players are treated as interchangeable (i.e.,
who plays first) and no other symmetries are considered, the total
number of all possible distinct board setups is: 9 ·8 · . . . ·2 ·1 = 9! =

362, 880. After applying the game rules and pruning the game tree
for early stops (with incomplete boards), the true number of game
states is about 2/3 of that set. Using simple tree-node representation
for each board setup, e.g. a 3-value 9-positions vector dictionary
(= 39 ' 214.265 ≤ 215 < 216 = 2 bytes), such a program would
only require about 484 KB or less than 0.5 MB. This is roughly the
size of a small-sized photo taken by the camera of a low-end smart-
phone today, while in the ’80s this was almost the total size of RAM
in a typical PC.
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Summary:
• In zero-sum games, one player’s gains is another’s
losses (and vice versa).
• Information about the game structure and the oppo-
nents’ moves may be complete or not, perfect or not.
• All board games are inherently zero-sum, of com-
plete and perfect information.
• The Minimax theorem assures that all board games
have at least one theoretically optimal way to play
them, although its exact calculation may be unfeasible
in practice for some games (e.g. Chess, Go).
• The Minimax solution of a game is the combina-
tion of players’ strategies that lead to an equilibrium
or saddle-point.

Nonzero-sum games and Nash equilibria

Although the Minimax theorem provided a solid base for
solving many types of games, it is only applicable in prac-
tice for the zero-sum type of games. In reality, it is com-
mon that in a conflict not all players receive their opponents’
looses as their own gain and vice versa. In other words, it
is very common a specific combination of decisions between
the players to result in a certain amount of “loss” to one and
a corresponding “gain”, not of equal magnitude, to another.
In this case, the game is called nonzero-sum and it requires
a new set of rules for estimating optimal strategies and so-
lutions. As each player’s gains and losses are not directly
related to the opponents’, the optimal solution is only based
on the assertion that it should be the one that ensures that the
player has “no regrets” when choosing between possible de-
cision options. This essentially means that, since each player
is now interested in his/her own gains and losses, the opti-
mal solution should only focus on maximizing each player’s
own expectations (Owen, 1995; Montet & Serra, 2003; Dixit
& Nalebuff, 2008). The Minimax property can still be ap-
plied in principle when the single most “secure” option must
be identified, but now the solution of the game gains a new
meaning.

During the early 1950’s, John Nash has focused primar-
ily on the problem of finding a set of equilibrium points in
nonzero-sum games, where the players eventually settle af-
ter a series of competitive rounds of the game (Nash, 1950a,
1950b). The failure of the Minimax approach to predict real-
world outcomes in nonzero-sum games comes from the fact
that the players are assumed to act independently and si-
multaneously, while in reality they usually are not. Expe-
rience shows that possibly better payoffs with what a player
might choose, after observing the opponent’s moves, is a very
strong motivator when choosing its actual strategy (Mero,
1998). In strict mathematical terms, these equilibrium points
would not be the same in essence with the Minimax solu-
tions, as they would come as a result of the players’ com-
petitive behavior over several “turns” of moves and not as
an algebraic solution of the mathematical formulation in a
single-turn game.

In 1957 Nash has successfully proved that indeed such
equilibrium points exist in all nonzero-sum games, in a way
that is analogous to the Minimax theorem assertion. This
new type of stable outcome is referred to as Nash equilibrium
after his name and can be considered a generalization of the
corresponding Minimax equilibrium in zero-sum games. In
essence, they are the manifestation of the no regrets princi-
ple for all players, i.e., not regretting their final choice after
observing their opponents’ behavior (Stahl, 1999; Thomas,
1984). However, although the Nash theorem ensures that at
least one such Nash equilibrium exists in all nonzero-sum
games, there is no clear indication on how the game’s so-
lution can be analytically calculated at this point. In other
words, although a solution is known to exist, there is no
closed form for nonzero-sum games until today. Seminal
works by C. Daskalakis & Ch. Papadimitriou in 2006-2007
and on have proved that, while Nash equilibria exist, they
may be unattainable and/or practically impossible to calcu-
late due to the inherent algorithmic complexity of this prob-
lem, e.g. see: (Daskalakis & Papadimitriou, 2006; Papadim-
itriou, 2011).

It should be noted that players participating in a nonzero-
sum game may or may not have the same options available
as alternative course of action, or the same set of options
may lead to different gains or payoffs between the players.
When players are fully interchangeable and their ordering in
the game makes not difference to the game setup and its solu-
tions, the game is called symmetrical. Otherwise, if exchang-
ing players’ position does not yield a proportional exchange
of their payoffs, then the game is called asymmetrical. Nat-
urally, symmetrical games lead to Nash equilibrium points
that appear in pairs, as an exchange between players creates
its symmetrical counterpart.

Summary:
• In nonzero-sum games, the payoffs of the players are
separated (although may be correlated).
• If players are allowed to observe their opponents
moves over several iterations, then the “no regrets”
principle is a strong incentive to revise their own strate-
gies, even though their payoffs are separated.
• The Nash equilibrium theorem ensures that, under
these conditions, there are indeed stable solutions in
nonzero-sum games, similarly to the Minimax theorem
for zero-sum games.
• However, calculating the optimal strategies and the
game solution for these Nash equilibria is a vastly more
complex and generally unfeasible task.

Cooperation instead of
competitiveness

The seminal work of Nash and others in nonzero-sum
games was a breakthrough in understanding the outcome in
real-world adversarial situations. However, the Nash equi-
librium points are not always the globally optimal option
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for the players. In fact, the Nash equilibrium is optimal
only when players are strictly competitive, i.e., when there is
no chance for a mutually agreed solution that benefits them
more. These strictly competitive forms of games are called
non-cooperative games. The alternative option, the one that
allows communication and prior arrangements between the
players, is called a cooperative game and it is generally a
much more complicated form of nonzero-sum gaming. Nat-
urally, there is no option of having cooperative zero-sum
games, since the game structure itself prohibits any other set-
tlement between the players other than the Minimax solution.

The cooperative option

The problem of cooperative or possibly cooperative gam-
ing is the most common form of conflict in real life situations.
Since nonzero-sum games have at least one equilibrium point
when studied under the strictly competitive form, Nash has
extensively studied the cooperative option as an extension to
it. However, the possibility of finding and mutually adopting
a solution that is better for both players than the one sug-
gested by the Nash equilibrium, essentially involves a set of
behavioral rules regarding the players’ stance and “mental”
state, rather than strict optimality procedures (Mero, 1998).
Nash named this process a bargain between the players, try-
ing to mutually agree on one solution between multiple can-
didates within a bargaining set or negotiation set. In practice,
each player should enter a bargaining procedure if and only
if there is a chance that a cooperative solution exists and it
provides at least the same gain as the best strictly competitive
solution, i.e., the best Nash equilibrium. In this case, if such a
solution is agreed between the players, it is called bargaining
solution of the game (Montet & Serra, 2003; Owen, 1995).

As mentioned earlier, each player acts upon the property
of no regrets, i.e., follow the decisions that maximize their
own expectations. Nevertheless, the game setup itself pro-
vides means of improving the final gain in an agreed solu-
tion. In some cases, the bargaining process may involve the
option of threats, that is a player may express the intention
to follow a strategy that is particularly costly for the oppo-
nent. Of course, the opponent can do the same, focusing on
a similar threat. This procedure is still a cooperative bar-
gaining process, with the threshold of expectations raised for
both players. The result of such a process may be a mutually
deterring solution, which in this case is called a threatening
solution or threat equilibrium. There is also evidence that,
while cooperative strategies do exist, in some cases “coop-
eration” may be the result of extortion between players with
unbalanced power and choices (Press & Dyson, 2012).

In his work, Nash has formulated a general and fairly log-
ical set of six axioms, the Nash’s bargaining axioms, regard-
ing the behavior of rational players, in order to establish a
non-empty bargaining set, i.e., to have at least one stable
solution (equilibrium) (Montet & Serra, 2003; Owen, 1995;
Nash, 1950a). In non-strict form, these axioms can be sum-
marized in the following propositions:
• Any of the cooperative options under consideration

must be feasible and yield at least the same payoff as the

best strictly non-cooperative option for all players, i.e., co-
operation must be mutually beneficial.
• Strict (mathematical) constraints: Pareto optimality, in-

dependence of irrelevant alternatives, invariance under lin-
ear transformations, symmetry (Thomas, 1984; Owen, 1995;
Montet & Serra, 2003).
The first proposition essentially defines the term “rational-
ity” for a player: he/she always acts with the goal of max-
imizing own gains and minimizing losses, regardless if this
means strictly competitive or possibly cooperative behavior.
The second proposition names a set of strict mathematical
preconditions (not always satisfied in practice), in order for
such a bargaining set to exist. Having settled on these ax-
ioms, Nash was able to prove the corresponding bargaining
theorem: under these axioms, there exists such a bargaining
process, it is unique and it leads to a bargaining solution, i.e.,
equilibrium. However, as in the general case of strictly com-
petitive games, Nash’s bargaining theorem does not provide
analytical means of finding such solutions.

The notion of bargaining sets and threat equilibrium is of-
ten extended in special forms of games that include iterative
or recursive steps in gaming, either in the form of multi-step
analysis (meta-games) or focusing on the transitional aspects
of the game (differential games). Modern research is focused
on methods that introduce probabilistic models into games of
multiple realizations and/or multiple stages (Owen, 1995).

Summary:
• In nonzero-sum games, there may be non-
competitive (cooperative) options that are mutually
beneficial to all players.
• Under some general rationality principles, Nash’s
bargaining theorem ensures that these cooperative out-
comes may indeed become the game solution, pro-
vided that strict competitiveness yields lower gains for
all.
• The procedure of structuring the “common ground”
of cooperation between the players, normally con-
ducted over several iterations, is the bargaining pro-
cess.

Coalitions, stable sets, the Core
Nash’s work on the Nash equilibrium and bargaining the-

orem provides the necessary means to study n-person non-
cooperative and cooperative games under a unifying point
of view. Specifically, a nonzero-sum game can be realized
as a strictly competitive or a possibly cooperative form, ac-
cording to the game’s rules and restrictions. Therefore, the
cooperative option can be viewed as a generalization to the
strictly competitive mode of gaming.

When players are allowed to cooperate in order to agree
on a mutually beneficial solution of game, they essentially
choose one strategy over the others and bargain this option
with all the others in order to come to an agreement. For
symmetrical games, this is like each player chooses to join a
group of other players with similar preference over their ini-
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tial choice. Each of these groups is called a coalition and it
constitutes the basic module in this new type of gaming: the
members of each coalition act as cooperative players joined
together and at the same time each coalition competes over
the others in order to impose its own position and become the
winning coalition. This setup is very common when model-
ing voting schemes, where the group that captures the rela-
tive majority of the votes becomes the winner.

Coalition Theory is closely related to the classical Game
Theory, especially the cooperating gaming (Owen, 1995;
Montet & Serra, 2003). In essence, each player still tries
to maximize its own expectations, not individually any more
but instead as part of a greater opposing term. Therefore,
the individual gains and capabilities of each player is now
considered in close relation to the coalition this player be-
longs, as well as how its individual decision to join or leave a
coalition affects this coalition’s winning position. As in clas-
sic nonzero-sum games, the notion of equilibrium points and
solutions is considered under the scope of domination or not
in the game at hand. Furthermore, the theoretical implica-
tions of having competing coalitions of cooperative players is
purely combinatorial in nature, thus making its analysis very
complex and cumbersome. There are also special cases of
collective decision schemes where a single player is allowed
to abstain completely from the voting procedure, or prohibit
a contrary outcome of the group via a veto option.

In order to study the properties of a single player partici-
pating in a game of coalitions, it is necessary to analyze the
wining conditions of each coalition. Usually each player is
assigned a fixed value of “importance” or “weight” when par-
ticipating in this type of games and each coalition’s power is
measured as a sum over the individual weights of all players
participating in this coalition. The coalition that ends up with
the highest cumulative value of power is the winning coali-
tion. Therefore, it is clear that, while each player’s power is
related to its individual weight, this relation is not directly
mapped on how the participation in any arbitrary coalition
may affect this coalition’s winning or losing position. As
this process stands true for all possible coalitions that can be
formed, this competitive type of “claiming” over the avail-
able pool of players/voters by each coalition suggests that
there are indeed configurations that marginally favor the one
or the other coalition, i.e., a set of “solutions”.

The notion of solution in coalition games is somewhat
different from the one suggested for typical nonzero-sum
games, as it identifies minimal settings for coalitions that
dominate all the others. In other words, they do not iden-
tify points of maximal gain for a player or even a coalition,
but equilibrium “points” that determine which of the form-
ing coalitions is the winning one. This type of “solutions”
in coalition games is defined in close relation to domination
and stability of such points and they are often referred to as
the Core. Von Neumann and Morgenstern have defined a
somewhat more relaxed definition of such conditions and the
corresponding solutions are called stable sets (Owen, 1995;
Montet & Serra, 2003). It should be noted that, in contrast
to Nash’s theorems and the Minimax assertion of solutions,
there is generally no guarantee that solutions in the context of

the Core and stable sets need to exist in an arbitrary coalition
game.

Summary:
• Players of similar preferences and mutual benefits
may join in groups or coalitions; these coalitions may
be competing with each other, similarly to competitive
games between single players.
• The study of games between coalitions is inherently
more complex than with single players, as in this case
every player contributes to the collective “power” and
enjoys a share of the wins.
• In general, coalitions are formed and structured un-
der the scope of voting ensembles, where the voting
weight of each individual player contributes to the
combined weight of the coalition.

Indices of power in committees
The notion of the Core and stable sets in coalition gaming

is of vital importance when trying to identify the winning
conditions and the relative power of each individual player
in affecting the outcome of the game. The observation that a
player’s weight in a weighted system may not intuitively cor-
respond to its voting “power” goes back at least to Shapley
and Shubik (1954). For example, a specific weight distribu-
tion to the players may make them relatively equivalent in
terms of voting power, while only a slight variation of the
weights may render some of them completely irrelevant on
determining the winning coalition (Taylor & Zwicker, 1993).

Shapley and Shubik (1954) and later Banzhaf and Cole-
man (1965, 1971) suggested a set of well-defined equations
for calculating the relative power of each player, as well as
each forming coalitions as a whole (Owen, 1995; Montet &
Serra, 2003). The Shapley-Shubik index of power is based
on the calculation of the actual contribution of each player
entering a coalition, in terms of improving a coalition’s gain
and winning position. Similarly, the Banzhaf-Coleman index
of power calculates how an individual player’s decision to
join or leave a coalition (“swing vote”) results in a winning
or loosing position for this coalition, accordingly. Both in-
dexes are basically means of translating each player’s indi-
vidual importance or weight within the coalition game into
a quantitative measure of power in terms of determining the
winner. While both indices include combinatorial realiza-
tions, the Banzhaf index is usually easier to calculate, as it
is based on the sum of “shifts” on the winning condition a
player can incur (Berg, 1997). Furthermore, its importance
in coalition games is made clearer when the Banzhaf index
is viewed as the direct result of calculating the derivatives of
a weighted majority game (WMG).

Seminal work by L. S. Penrose (Penrose, 1952), as well
as more recent studies with computer simulations (Chang,
Chua, & Machover, 2006), have shown that this discrepancy
between voting weights and actual voting power is clearly
evident when there is large variance in the weighting profile
and/or when the voting group has less than 12-15 members.
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Even in large voting pools, the task of designing optimal vot-
ing mechanisms and protocols with regard to some collective
efficiency criterion is one of the most challenging topics in
Decision Theory.

Summary:
• Weighted majority games (WMG) are the typical
theoretical structures of the process of formulating the
collective decision within a coalition.
• In voting ensembles, each player’s voting weight is
not directly proportional to his/her true voting power
within the group, i.e., the level of steering the collec-
tive decision towards its own choices.

Voting ensembles and majority winners

In most cases, majority functions that are employed in
practice very simplistic when it comes to weighting distri-
bution profile or they imply a completely uniform weight
distribution. However, a specific weighting profile usually
produces better results, provided that is simple enough to be
applied in practice and attain a consensus in accepting it as
“fair” by the voters. Taylor and Zwicker (Taylor & Zwicker,
1993) have defined a voting system as trade robust if an ar-
bitrary series of trades among several winning coalitions can
never simultaneously render them losing. Furthermore, they
proved that a voting system is trade robust if and only if
it is weighted. This means that, if appropriate weights are
applied, at least one winning coalition can benefit from this
procedure.

As an example, institutional policies usually apply a non-
uniform voting scheme when it comes to collective board de-
cisions. This is often referred to as the “inner cabinet rule”.
In a hospital, senior staff members may attain increased
voting power or the chairman may hold the right of a tie-
breaking vote. It has been proven both in theory and in prac-
tice that such schemes are more efficient than simple majority
rules or any restricted versions of them like trimmed means.
Nitzan and Paroush (Nitzan & Paroush, 1982) have studied
the problem of optimal weighted majority rules (WMR) ex-
tensively and they have proved that they are indeed the opti-
mal decision rules for a group of decision makers in dichoto-
mous choice situations. This proof was later extended by
Ben-Yashar and Paroush, from dichotomous to polychoto-
mous choice situations (Ben-Yashar & Nitzan, 2001); hence,
the optimality of the WMR formulation has been proven the-
oretically for any n-label voting task.

The weight optimization procedure has been applied ex-
perimentally in trained or other types of combination rules,
but analytical solutions for the weights is not commonly
used. However, Shapley and Grofman (Shapley & Grof-
man, 1984) have established that an analytical solution for
the weighting profile exists and it is indeed related to the in-
dividual player skill levels or competencies (Karotkin, 1998).
Specifically, if decision independence is assumed for the par-
ticipating players, the optimal weights in a WMR scheme can

be calculated as the log-odds of their respective skill proba-
bilities, i.e.:

wk = log (Ok) = log
(

pk

1 − pk

)
(1)

where pk is the competency of player k and wk is its corre-
sponding voting weight. Interestingly enough, this is exactly
the solution found by analytical Bayesian-based approaches
in the context of decision fusion of independent experts in
Machine Learning (Kuncheva, 2004). The optimality asser-
tion regarding the WMR, together with an analytical solu-
tion for the optimal weighting profile, provides an extremely
powerful tool for designing theoretically optimal collective
decision rules. Even when the independence assumption is
only partially satisfied in practice, studies have proved that
WMR-based models employing log-odds weighting profiles
for combining pattern classifiers confirm these theoretical re-
sults (Georgiou, Mavroforakis, & Theodoridis, 2006; Geor-
giou & Mavroforakis, 2013).

Summary:
• Weighted majority rules (WMR) have been proven
theoretically as the optimal decision-making structures
in weighted majority games.
• The log-odds model has been proven both as the the-
oretically optimal way to weight the individual player’s
votes, provided that they decide independently.
• The optimality of the log-odds weighting method
has also been proven experimentally, even when the
independence assumption is only partially satisfied.

Collective efficiency
Condorcet (1785) (Condorcet, 1989) was the first to ad-

dress the problem of how to design and evaluate an efficient
voting system, in terms of fairness among the people that
participating in the voting process, as well as the optimal
outcome for the winner(s). This first attempt to create a prob-
abilistic model of a voting body is known today as the Con-
dorcet Jury Theorem (Young, 1988). In essence, this theo-
rem says that if each of the voting individuals is somewhat
more likely than not to make the “better” choice from a set
of alternative options; and if each individual makes its own
choice independently from all the others, then the probability
that the group majority is “correct” is greater than the indi-
vidual probabilities of the voters. Moreover, this probability
of correct choice by the group increases as the number of
independent voters increases. In practice, this means that if
each voter decides independently and performs marginally
higher than 50%, then a group of such voters is guaranteed
to perform better than each of the participating individuals.
This assertion has been used in Social sciences for decades as
a proof that decentralized decision making, like in a group of
juries in a court, performs better than centralized expertise,
i.e., a sole judge. The Condorcet Jury Theorem and its impli-
cations have been used as one guideline for estimating the ef-
ficiency of any voting system and decision making in general
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(Young, 1988). Under this context, the coalition games are
studied by applying quantitative measures on collective com-
petence and optimal distribution of power in the ensemble,
e.g. tools like the Banzhaf or Shapley indices of power. The
degree of consistency of such a voting scheme on establish-
ing the pair-wise winner(s), as the Condorcet Jury Theorem
indicates, is often referred to as the Condorcet criterion.

Shapley-Shubik and Banzhaf-Coleman are only two of
several formulations for the indices of power in voting en-
sembles, each defining different payoff distributions or real-
izations among the members of winning coalitions. In gen-
eral, these formulations are collectively referred to as semi-
value functions or semivalues and they are considered more
or less equivalent in principle, although may be different in
exact values. Almost all of them are based on combinatorial
functions (inclusion-exclusion operations in subsets) and, as
a result, there is no easy way to formulate proper inverse
functions that can be calculated in polynomial time. There-
fore, the design of exact voting profiles with weights based
on semivalues, instead of competencies as described above
(log-odds), is generally impractical even for ensembles of
small sizes.

For further insight on weighted majority games, weighted
majority voting, collective decision efficiency and Condorcet
efficiency, as well as applications to Machine Learning for
designing pattern classifiers, see (Georgiou, 2015; Georgiou
et al., 2006; Georgiou & Mavroforakis, 2013).

Summary:
• Under the assumption of independent voters and that
each decides “correctly” marginally higher than 50%
of the time, then their collective decision as a group
is theoretically proven to be asymptotically better any
single member of the ensemble.
• Furthermore, as the size of the ensemble increases,
its collective competency is guaranteed to increase too.
• In the other hand, the problem of formulating an an-
alytical solution for the optimal distribution of voting
power within such a group, i.e., the design of theo-
retically optimal voting mechanisms, is still an open
research topic.

Game Analysis & Solution
Concepts

One of the most important factors in understanding and
analyzing games correctly is the way they are represented.
Games can be represented and analyzed in two generic for-
mulations: (a) the analytical or normal form, where each
player is manifested as one dimension and its available
choices (strategies) as offsets on it, and (b) the extensive or
tree-graph form, where each player’s “move” correspond to
a node split in a tree representation. Each one of them has its
own advantages and disadvantages, but theoretically they are
equivalent.

Table 1
Generic 2x2 zero-sum game in analytical form.

Game
example

Player-2
y 1 − y

Player-1 x a b
1 − x c d

Games in analytical (matrix) form
In Table 1, an example of a zero-sum game in analyti-

cal form is presented. Player-1 is usually referred to as the
“max” player and Player-2 is referred to as the “min” player,
while rows and columns correspond to each player’s avail-
able strategies, respectively. Since this is a zero-sum game
and one player’s gains is the other player’s losses, the “max”
player tries to maximize the game value (outcome) while the
“min” player tries to minimize it. In the context of the Min-
imax theorem, Player-2 chooses the maximum-of-minimums,
while Player-2 chooses the minimum-of-maximums. The x
and y correspond to the weight or probability of choosing the
first strategy and, since this is a 2x2 game, the other strategies
are attributed with the complementary probabilities, 1-x and
1-y.

The exact Minimax solution for x and y depends solely
on the values of the individual payoffs for each of the four
outcomes. Here, it is assumed that there is no domination in
strategies, i.e., there is no row/column that is strictly “bet-
ter” than another row/column (column-wise/row-wise, re-
spectively, all payoffs). For example, Player-1 would have
a dominating strategy in the first row if and only if a ≥ c
and b ≥ d. Based on this generic setup, this is a typical 2x2
system of linear equations and, if no domination is present,
its solution can be determined analytically as (Stahl, 1999;
Dresher, 1961; Maschler, Solan, & Zamir, 2013):

[x, 1 − x] =

[
d − c

a − b − c + d
,

a − b
a − b − c + d

]
(2)

[
y, 1 − y

]
=

[
d − b

a − b − c + d
,

a − c
a − b − c + d

]
(3)

u =
ad − bc

a − b − c + d
(4)

The Minimax solution [x, y] determines the saddle-point,
i.e., the equilibrium that is reached when both opponents
play optimally in the Minimax sense, when the game has no
pure (non-mixed) solution. In this case, the expected pay-
off or value of the game for both players is calculated by
u (remember, this is a zero-sum game). If the game has a
pure solution, then it is determined as either 0 or 1 for each
probability x and y. Table 2 illustrates a zero-sum game and
the corresponding pure Minimax solution, by selecting the
appropriate strategies for each player. In this case, “max”
Player-1 chooses the the maximum {1} between the two min-
imum values {-3,1} from its own two possible worst-case
outcomes, while “min” Player-2 chooses the the minimum
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Table 2
Example 2x2 zero-sum game in analytical form.

Game
example

Player-2
(0) (1)

Player-1 (0) 0 -3
(1) 4 1

Table 3
Example of a 2x2 nonzero-sum game in analytical form.

Game
example

Player-2
y 1 − y

Player-1 x (a1,a2) (b1,b2)
1 − x (c1,c2) (d1,d2)

{1} between the two maximum values {4,1} from its own
two possible worst-case outcomes. Hence, the pure solution
[1,1] is the Minimax outcome.

In nonzero-sum games, the analytical form is still a ma-
trix, but now the payoffs for each player are separate, as il-
lustrated in Table 3. Here, since the payoffs are separated,
both players are treated as “max” and the Minimax solu-
tion for each one is calculated by selecting the maximum-of-
minimums as described before for zero-sum games, focused
solely on its own payoffs from each value pair.

Although a (pure) Minimax solution can always be cal-
culated for nonzero-sum games, the exact Nash equilibrium
solution is a non-trivial task that cannot be solved analyt-
ically in the general case. However, pure Nash equilibrium
outcomes can be identified by locating any payoff pairs (z,w)
such that z is the maximum of its column and w is the max-
imum of its row. In other words, every row for Player-1 is
scanned and every entry in it is compared to the values in
the same column, marking it if it is the maximum among
them; the same process is conducted for every column for
Player-2, scanning each value row-wise for its maximum;
any payoff pair that has both values marked as maximums
is a Nash equilibrium in the game. Table 4 illustrates such
an example, where asterisk (*) marks the identified max-
values and the single Nash equilibrium for [A,B] at (2,4).
Here, although the strategies are the same for both play-
ers, their (separated) payoffs are not, hence the game is re-
ferred to as asymmetric. According to the oddness theo-
rem by Wilson (1971), the Nash equilibria almost always ap-
pear in odd numbers (Stahl, 1999; Owen, 1995), at least for
non-degenerate games, where mixed strategies are calculated
upon k linearly independent pure strategies.

Table 4
Example of a 2x2 nonzero-sum game with one Nash equilib-
rium at [A,B]:(2,4).

Game
example

Player-2
A B

Player-1 A (3,3) (2*,4*)
B (4*,1) (1,2*)

Summary:
• Game representation in analytical form introduces a
game matrix, with row and column positions associated
to the strategies available to the players and contents as-
sociated to the corresponding payoffs.
• Analytical-form representation introduces very conve-
nient ways to identify Minimax solutions and Nash equi-
libria in games.
• However, they are appropriate mostly for 2-player si-
multaneous games, since any other configuration cannot
be fully illustrated.

Games in extensive (tree-graph) form

In the extensive form the game is represented as a tree-
graph, where each node is a state labeled by a player’s num-
ber and each (directed) edge is a player’s choice or “move”.
Strictly speaking, this is a form of state-transition diagram
that illustrates how the game evolves as the players choose
their strategies. Figure 1 shows such a 2x2 nonzero-sum
game of perfect information, while Figure 2 shows a similar
2x2 game of imperfect information (Thomas, 1984; Montet
& Serra, 2003; Wikipedia.org, n.d.-a; Schalk, 2003; Fuden-
berg & Tirole, 1991; Dresher, 1961). Nodes with numbers
indicate players, edges with letters indicate chosen strategies
(here, symmetric) and separated payoffs (in parentheses) in-
dicate the game outcome after one full round. The dashed
line between the two nodes for Player-2 indicate that its cur-
rent true state is not clearly defined due to imperfect infor-
mation regarding Player-1’s move. In practice, these two
states form an information set for Player-2, which has no ad-
ditional information to differentiate between them. This is
also valid in the case of simultaneous moves, where Player-2
cannot observe Player-1’s move in advance of its own, and
vice versa. In extensive form, an information set is indicated
by a dotted line or by a loop, connecting all nodes in that set.

The extensive form of game is usually the preferred way
to represent the tree-graph of simple 2-player board games,
where each node is clearly a state and each edge is a player’s
move. Even in single-player games, where a puzzle has to
be solved through a series of moves (e.g. Rubik’s cube)2, the

2 The combinatorial analysis of the classic 3x3x6 Rubik’s cube
should take into account tile permutations that can only be reached
by the available shifts and turns of the slices of the device. There-
fore, a totally “free” permutation scheme would produce: 8! · 38 ·
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Figure 1. Example of a 2x2 nonzero-sum game of perfect infor-
mation.

Figure 2. Example of a 2x2 nonzero-sum game of imperfect infor-
mation.

tree-graph is a very effective way to organize the game under
an algorithmic perspective, in order to program a “solver”
in a computer. In practice, the problem is structured as se-
quences of states and transitions in a tree-graph manner and
the “game” is explored as it is evolving, move after move, ex-
panding the tree-graph from every terminal node. The tree-
graph can be expanded either by full a level (“breadth-first”),
or from a branch all the way down to non-expandable ter-
minal nodes (“depth-first”), or some hybrid scheme between
these two alternatives.

As described above, small games like Checkers can be
structured and expanded fully, with their tree-graph having
only internal (already expanded) and terminal nodes; how-
ever, in larger games like Chess or Go this is practically un-
feasible even with super-computers. In such cases, the algo-
rithm should assess the “optimality” of each expandable ter-
minal node with regard to relevance towards the predefined
goal (“win” or “solution”), sort all these nodes according to
their ranking and choose the “best” ones for expansion in
the next iteration. This way, the search is sub-optimal but

totally feasible with almost any memory constraints - this
is exactly how most computer players are programmed for
playing board games or solving complex puzzle games. In
Artificial Intelligence, algorithms like A* and AB solve this
type of problems as a path-finding optimization procedure
towards a specified goal (Russell & Norvig, 2009; Nilsson,
1998).

Figure 3 illustrates the way a path-finding algorithm like
A* would work in expanding a tree-graph as described
above. The “root” node is the starting state in a puzzle game
(single-player) and each node represents a new state after a
valid move. The numbers indicate the sequence in which the
nodes are expanded, according to some optimality-ranking
function (not relevant here). For example, node “4” in the
3rd level is expanded before node “5” in the 2nd level, node
“21” in the 5th level is expanded before node “22” in the 3rd
level, etc. Here, node “30” in the 5th level is the last and most
relevant terminal node (still expandable) towards the goal,
hence the optimal path from the “root” state is currently the:
“5”→“7”→“11”→“30” and the next “best” single-step move
is the one towards “5”. The tree-graph can be expanded in an
arbitrary number of levels according to the current memory
constraints for the program, but the same path-finding pro-
cedure has to be reset and re-applied after the realization of
each step when two or more players are involved, since every
response from the opponent effectively nullifies every other
branch of the tree-graph.

It should be mentioned that, although the extensive form
of game representation is often inefficient for large games
like Chess, it can be used as a tool in the proof of the ex-
istence of an optimal solution (Ferguson, 2014; Thomas,
1984). Specifically, in every such game of complete and per-
fect information (all board games), each player knows its ex-
act position in the graph-tree prior to choosing the next move.
In other words, each player is not only aware of the complete
structure of the game but also knows all the past moves of
the game, including the ones of random choice. Hence, since
there is no uncertainty in the moves, each player can remove
the dominated strategies and subsequently identify the op-
timal choice, which is always a pure strategy, i.e., the one
that corresponds to the saddle-point of the game. This proof
actually ensures the existence of a (pure) optimal strategy in
every typical board game, no matter how large or complex it
is. Examples include Tic-Tac-Toe, Chess, Backgammon, etc.

12! · 212 = 519, 024, 039, 293, 878, 272, 000 cube instances, while
in practice the possible permutations are only: 8! · 37 · (12!/2) ·
211 = 43, 252, 003, 274, 489, 856, 000 cube instances (about 12
times fewer) (Wikipedia.org, n.d.-b).
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Figure 3. Example of the way a path-finding algorithm like A* would work in expanding the tree-graph of a single-player “puzzle” game
like Rubik’s cube.

Summary:
• Game representation in extended form introduces a
tree-graph, with nodes associated to individual play-
ers and (directed) edges associated to selected strategies
(“moves”).
• Extended-form representation introduces very conve-
nient ways to identify chains of moves and solution paths.
• However, the calculation of Minimax solutions and
Nash equilibria is not straight-forward.

The four interesting cases

In the real world, games may be either zero-sum or
nonzero-sum by nature. As described previously, the case of
zero-sum games can be considered simpler and much easier
to solve analytically, since it can be formulated as a typi-
cal algebraic set of linear equations that define the Minimax
solution, regardless if it contains pure or mixed strategies
(Stahl, 1999; Dresher, 1961). However, nonzero-sum games
are inherently much more complex and require non-trivial
solution approaches, usually via some Linear Programming
(constraint) optimization procedure, e.g. see: (Gu, 2008;
Sierksma, 2001). In fact, it has been proven that the gen-
eral task of finding the Nash equilibria is algorithmically in-
tractable3 (Daskalakis & Papadimitriou, 2006; Daskalakis,
Goldberg, & Papadimitriou, 2009a, 2009b; Papadimitriou,
2011) - something that puts into a “philosophical” question
the very nature and practical usefulness of having proof of
game solutions (i.e., stable outcomes) that we may not be

Table 5
The general analytical (matrix) form of a 2x2 nonzero-sum
symmetric game.

Game
template

Player-2
C D

Player-1 C (R,R) (S,T)
D (T,S) (P,P)

able to calculate.
Some cases of nonzero-sum games are particularly inter-

esting, especially when they involve symmetric configura-
tions. The players can switch places, the actual payoff values
are usually of much less importance than their relative order-
ing as a simple preference list, the Minimax and Nash equi-
libria can be easily identified, yet these simple games seem
to capture the very essence of bargaining and strategic play
in a vast set of real-world conflict situations with no trivial
outcomes.

Table 5 shows a generic template for such very simple
symmetric nonzero-sum games, employing only two strate-
gies and four payoff values to completely define such games
in analytical (matrix) form. Here, the game is symmetric

3 In their seminal works, Daskalakis, Goldberg and Papadim-
itriou have shown that the task of finding a Nash equilibrium is
PPAD-complete; informally, PPAD is the class of all search prob-
lems which always have a solution and whose proof is based on the
parity argument for directed graphs. Due to the proof of intractabil-
ity, the existence of Nash equilibrium in all nonzero-sum games
somewhat loses its credibility as a predictor of behavior.
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because the players can switch roles without any effect in
their corresponding payoff pairs. Furthermore, they share
two common strategies C and D, named typically after the
choices of “cooperate” or “defect”, while constants P, R, S
and T are the real-valued payoffs in each case (Casti, 1997).

In practice, a player’s preference of strategies (and hence,
the equilibria) depends only on the relative ordering of the
corresponding payoffs and not their exact values, which be-
come of real importance only when the actual payoff value of
the game solution is to be calculated for each player. There is
a finite number of rank combinations, i.e., permutations, of
these four constants, which produce all the possible unique
game matrices of this type. Specifically, there are 4! = 24
different ways to order these four numbers, 12 of which can
be discarded as qualitatively equivalent to other game config-
urations. Out of the 12 remaining games, eight of them pos-
sess optimal pure strategies for both players, therefore they
can be considered trivial in terms of calculating their solu-
tion. The four remaining configurations are the most inter-
esting ones, as they do not possess any optimal pure strategy.
These are the following:
• Leader: T > S > R > P.
• Battle of the Sexes: S > T > R > P.
• Chicken: T > R > S > P.
• Prisoner’s Dilemma: T > R > P > S .

These four qualitatively unique games seem to capture the
essence of most of the majority real-world conflict situations
historically. Although they have been studied extensively in
the past, there are still many open research topics regarding
the feasibility, tractability and stability of the theoretical so-
lutions.

Leader

The Leader or Coordination game (Montet & Serra, 2003;
Owen, 1995; Thomas, 1984; Stahl, 1999; Casti, 1997; Fu-
denberg & Tirole, 1991) is named after the typical problem
of two drivers attempting to enter a stream of increased traf-
fic from opposite sides of an intersection. When the road is
clear, each driver has to decide whether to move in immedi-
ately or concede and wait for the other driver to move first.
If both drivers move in (i.e., choose D), they risk crashing
onto each other, while if they both wait (i.e., choose C), they
will waste time and possibly the opportunity to enter the traf-
fic. The former case is the worst, hence the payoff of (1,1),
while the later case is slightly more preferable with a payoff
of (2,2). The best outcome is for one driver to become the
“leader” and move first, while the other becomes the “fol-
lower” and move second. There is still some difference in
their absolute gains, but now the deadlock is resolved in the
best possible way, no matter who is actually the leader and
who is the follower.

Table 6 illustrates the analytical form of this game setup,
where numbers indicate relative preferences rather than ab-
solute gain values. There are two pure Nash equilibria, (3,4)
and (4,3), which correspond to the proper assignment of roles
to the players, explicitly or implicitly, such that coordination
is achieved. Since the game is symmetric the two players can

Table 6
The typical setup of the Leader game with two players. Nash
equilibria are marked with paired asterisks and the Minimax
solution with bold numbers.

Leader
game

Player-2
C D

Player-1 C (2,2) (3*,4*)
D (4*,3*) (1,1)

switch roles, with only marginal increase/decrease to their
payoffs. In terms of Minimax strategies, each player is free
to choose the strategy that guarantees the maximum-of-the-
minimums without any concern about the opponent’s pay-
offs, since this is a nonzero-sum game. Hence, the Minimax
solution is [C,C] at (2,2) marked in bold.

In the real world, the assignment of roles as
leader/follower is more effective when applied explicitly,
typically by some external mechanism or a predefined set
of rules. Street signs, traffic policemen and highway code
for driving properly are all such mechanisms for explicit
resolution of deadlocks via priority assignment in traffic.

Battle of the Sexes

In the Battle of the Sexes game (Montet & Serra, 2003;
Owen, 1995; Thomas, 1984; Casti, 1997; Fudenberg & Ti-
role, 1991), a married couple has to decide between enter-
tainment options for the evening. The husband prefers one
choice, while the wife prefers another. The problem is that
they would both prefer to concede to the same choice to-
gether even if it is not their own, rather than follow their own
choices alone. For example, of he wants to watch a sports
match on TV and she wants to go out for dinner, they both
prefer either watching TV or going out for dinner as long as
they are together.

Table 7 illustrates the analytical form of the game, where
strategy C is for conceding to the other’s preference and D
is for defecting to his/her own choice. If they both concede
the payoff (1,1) is the worst outcome, since they both end up
miserable and bored. If they both defect the payoff (2,2) is
marginally better for both, but they end up being alone. The
two other cases of someone following the other yields the
best payoffs for both, since the game is symmetric and they
can switch places. The outcomes (3,4) and (4,3) are actually
the two Nash equilibria, similarly to the Leader game; how-
ever, the Minimax solution (2,2) here corresponds to both
players choosing D (not C as in Leader) as their best Mini-
max strategy.

Chicken

One of the most well-known strategic games is Chicken
(Ferguson, 2014; Maschler et al., 2013; Montet & Serra,
2003; Owen, 1995; Thomas, 1984; Casti, 1997), dating back
at least as far as the Homeric era. Two or more adversaries
engage in a very dangerous or even lethal confrontation, each
having a set of choices at his/her disposal and each of these
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Table 7
The typical setup of the Battle of the Sexes game with two
players. Nash equilibria are marked with paired asterisks
and the Minimax solution with bold numbers.

Battle of
the Sexes

Player-2
C D

Player-1 C (1,1) (3*,4*)
D (4*,3*) (2,2)

Table 8
The typical setup of the Chicken game with two players.
Nash equilibria are marked with paired asterisks and the
Minimax solution with bold numbers.

Chicken
game

Player-2
C D

Player-1 C (3,3) (2*,4*)
D (4*,2*) (1,1)

choices producing more or less damage to all players if their
choice is the same. Typically, this translates to the Holly-
wood’s favorite version of two cars speeding towards each
other, the drivers can choose to turn and avoid collision or
keep the course and risk death if the other driver do not turn
either. The game seems simple enough, but there are several
theoretical implications that make it one of the most chal-
lenging situations, appearing in many real-world conflicts
throughout History.

Table 8 illustrates the typical Chicken game setup with two
players and two strategic choices. Option C corresponds to
turning away (“swerve”) and losing the game, while option D
corresponds to keeping the course and risk death. The worst
possible outcome is at (1,1) when players persist in keep-
ing course and eventually crashing against each other. The
mutually beneficial outcome or “draw” is at (3,3) when both
players decide to play safe and turn away; this is actually
the Minimax solution of the game, i.e., the most conserva-
tive and “rational” outcome if the game is a one-off round.
On the other hand, there are two Nash equilibria for the two
outcomes when only one player turns away and one persists.

One particularly interesting feature of the Chicken game
is that it is impossible to avoid playing it with some insistent
adversary, since refusing to play is effectively equivalent to
choosing C (swerve). Furthermore, the player who succeeds
in making his/her commitment to D adequately convincing
is always the one that can win at the expense of the other
player, assuming that the other player is rational and would
inevitably decide to avoid disaster. In other words, the player
that is somehow bounded to avoid losing at any cost and
makes this commitment very clear to the opponent, is the
one that will always win against any rational player.

This aspect of credible commitment is closely related to
the notion of reputation, as well as the strange conclusion
that in this game the most effectively “rational” strategy is
the manifestation of “irrational” commitment to lethal risk.
This becomes especially relevant in cases where the game

Table 9
The typical setup of the Prisoner’s Dilemma game with two
players. Nash equilibria are marked with paired asterisks
and the Minimax solution with bold numbers.

Prisoner’s
Dilemma

Player-2
C D

Player-1 C (3,3) (1,4*)
D (4*,1) (2*,2*)

is played a number of times repeatedly and previous behav-
iors directly affect the players’ strategic choices in the fu-
ture: once the risky player starts winning he/she may main-
tain or even improve this advantage, as confidence and prior
“risky” behavior makes it more and more difficult for future
opponents to decide and deviate from their cautious Minimax
choice of swerving. The Chicken game is perhaps the most
descriptive and simple case where players’ previous behav-
ior (i.e., reputation) is of such importance for predicting the
actual outcome.

Prisoner’s Dilemma

This forth basic type of non-trivial, nonzero-sum game is
by far the most interesting one. The Prisoner’s Dilemma
game (Ferguson, 2014; Maschler et al., 2013; Montet &
Serra, 2003; Owen, 1995; Thomas, 1984; Stahl, 1999; Casti,
1997; Fudenberg & Tirole, 1991) typically involves two pris-
oners who are accused of a crime. Each of them has the op-
tion of remaining silent and withholding any information or
confessing to the police and accusing the other by disclosing
details about the crime. The first choice C is effectively the
cooperative option, while the second choice D corresponds
to purely competitive behavior in order to reduce he/her own
damages.

Table 9 illustrates the typical Prisoner’s Dilemma game
setup with two players and two strategic choices. The payoffs
here correspond simply to preferences and not real gain/cost
values, but the essence and the strategic properties of the
game remain intact. In practice, what the game matrix says
is that if the two prisoner’s remain silent, i.e., mutually co-
operate, they will not be freed but they will share an equal,
relatively mild conviction. If they both talk and accuse each
other, i.e., mutually defect, they will share and equal but
more severe conviction. If only one of them talks to the po-
lice and the other remains silent, the one that talked is freed
and the other serves a full-time conviction for both. It is of
course imperative that the two prisoners are immediately sep-
arated upon capture and no communication between them is
allowed; this does not nullifies any prior arrangements they
may have, but isolation after being captured means that nei-
ther of them can confirm they loyalty of the other. This is
one of the main reasons why police always isolates suspects
prior and during any similar investigation.

The real beauty and singularity of the Prisoner’s Dilemma
is that it implies a paradox. A quick analysis of the payoffs in
Table 9 yields two extremes at (1,4) and (4,1), corresponding
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to the two interchangeable cases one player cooperating (C)
and one not (D), but in contrast to the three previous games
these are not Nash equilibria. There is only one Nash equi-
librium at (2,2), which is in fact the Minimax solution too.
This means that under the solution concepts of both Mini-
max strategy and Nash equilibrium, theory suggests that the
two prisoner’s will probably choose to betray one another,
despite any previous arrangements. It is clearly evident that
the outcome (3,3) is mutually beneficial and at the same time
unattainable due to lack of communication. However, in
therms of strict personal gain, defecting (D) is the dominant
strategy for both and neither of them has any incentive to
deviate from it. In other words, it appears that defecting is
always the optimal choice regardless of what the other pris-
oner does - but if both adopt the same rationale, they will
end up at (2,2) which is clearly worse than the (3,3) that they
could have gotten if they had chosen mutual cooperation.

The essence of the paradox of Prisoner’s Dilemma lies
in the inherent conflict between individual and collective ra-
tionality. While individual rationality is well-understood,
collective rationality deals with the scope of optimizing the
mutual gain of the players. This is not a default behavior
in strictly competitive situations, as in zero-sum games, or
nonzero-sum games that do not imply cooperation. How-
ever, nonzero-sum games permit the idea of mutually optimal
gains as a combination of simultaneously optimal separate
payoffs. Under this broader scope, even (4,1) and (1,4) are
worse than (3,3) since they yield a sum of 5 in gain value
rather than 6, respectively.

It should also be noted that the single Nash equilibrium in
Prisoner’s Dilemma is stable, while the corresponding pairs
of Nash equilibria in the three previous games are inherently
unstable, since the players are not in agreement as to which
of the two equilibria is preferable. Furthermore, in the three
previous games the worst possible outcome comes when both
players choose their non-Minimax strategy; in Prisoner’s
Dilemma this is not so. In fact, Prisoner’s Dilemma has pro-
duced lengthy academic debates and hundreds of studies in
a wide range of disciplines, from Game Theory and Math-
ematics to Sociology and Evolutionary Biology. The para-
dox of this game (as described above) has been illustrated as
a notorious example where theory often fails to predict the
true “gaming” outcomes in the real world: cooperation can
emerge spontaneously, even though theory says it should not
(Axelrod, 1984; Axelrod & Dion, 1988; Mero, 1998; Casti,
1997).

Summary:
• There are four basic nonzero-sum game types of partic-
ular interest namely: Leader (or Coordination), Battle of
the Sexes, Chicken and Prisoner’s Dilemma.
• Three of these games (except Prisoner’s Dilemma)
have two “mirrored” pure Nash equilibria and players re-
ceive the worst possible payoff when they choose to devi-
ate from their optimal Minimax strategy.
• Prisoner’s Dilemma is a very unique type of game,
since neither Minimax solution or Nash equilibrium (sin-
gle one in this case) point to the best mutually beneficial
outcome; this is informally labeled as the paradox of this
game.

Signals, Mechanisms &
Rationality

Game formulation and representation in analytical or ex-
tensive form are imperative for proper analysis and identi-
fication of equilibria. However, they fail to capture many
elements of gaming as a multi-aspect process, especially in
relation to strategic moves; these are actions performed by
the players at different places and times, even before the
realization of the current game, with the goal of enhanc-
ing strategic advantages and increasing the effectiveness of
chosen strategies. Sometimes the “moves” are no more than
message exchanges between the players, explicit or implicit,
or simply tracking the history of previous choices in iterated
games. Formulating these factors into a proper mathematical
model can be very difficult, but nevertheless they are matters
of great importance in real-world conflict situations.

Signals, carriers & bluffs

The exchange of messages between the players is a very
useful option when a player is trying to model or even pre-
dict the behavior of its opponent(s). A message or signal
from one player to another may be voluntary or involuntary,
direct or indirect, explicit or implicit (Thomas, 1984; Stahl,
1999). In any case, it carries some sort of strategic informa-
tion, which is always valuable to the other player if it can be
asserted as credible with a high degree of confidence. On the
other hand, if this credibility can be manipulated and falsely
asserted as such, the source player may gain some strategic
advantage by means of deceiving its opponent.

Strategic signaling is the process of information exchange
between two or more players in a game, using any means
or intermediate third-parties as carriers. If the source player
does this deliberately, the purpose is to project some strate-
gic preference or stance (“posturing”) in the game without
making any actual “move”, in order to intimidate or coordi-
nate with the opponent(s). This is particularly useful in sit-
uations where mutually beneficial equilibria are achievable
but lack of preference ranking can lead to disastrous lack of
coordination. The Leader and Battle of the Sexes games are
such examples (see Tables 6 and 7). On the other hand, if
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the source player signals its opponent unintentionally, this
strategic information could be a “leak” of such importance
that may determine the actual outcome of the game.

Explicit signaling means that the source player sends out
a clear message with undeniable association and content. An
explicit signal may be voluntary or involuntary; in the later
case, the message is simply a “leak” with very clear origin
and content. Implicit signaling happens when the origin or
(most commonly) the content of the message is somehow in-
conclusive or “plausibly deniable” as to the intentions of the
source player. A signal exchange may occur directly between
the players or via a third-party that performs the role of a car-
rier. A number of combinations of these attributes are possi-
ble in practice, employing direct/indirect messaging, volun-
tary/involuntary information exchange, with explicit/implicit
messages. For example, a third-party carrier may share an
implicit signal or “leaked” (involuntary) information about a
player’s stance with another player, participating in the game
only as a mediator, coordinator or “referee”, rather than an
actively involved player.

A very special type of signaling is when the message ex-
change involves false information, i.e., a bluff. This kind
of signals is a very common practice in games of imper-
fect and/or incomplete information, where the players do not
have a complete view of the game structure itself and/or the
opponents’ choices, respectively. In this case, false signaling
or bluffing is usually a strategic option by itself, exploiting
this uncertainty regarding the true status of the game to en-
hance advantages or mitigate disadvantages. A very com-
mon example of such games is Poker, where a player with
weaker deck of cards can project a false stance to its op-
ponents, in order to avoid defeat or even secure a victory
against players with better decks of cards (Thomas, 1984;
Stahl, 1999). Bluffing can be realized directly between play-
ers or indirectly via a third-party carrier. In the later case,
especially when the signaling is implicit and assumed invol-
untary, the credibility of the assertion is strongly associated
with the credibility of the carrier itself. In other words, even
if the source player could not project a successful bluff on
its own, a credible third-party carrier might be the necessary
intermediate to achieve such a move. The role of third-party
mediators in signaling is a special topic in the study of strate-
gic moves and how they affect the final outcome in games.

Summary:
• A signal between players is a voluntary or involuntary,
direct or indirect, explicit or implicit exchange of a mes-
sage; it is usually a declaration of stance (“posture”) in
the game, i.e., intent to include or exclude a strategy from
a set of open options.
• Strategic moves, e.g. signaling, project some strategic
preference without making any actual “move”, in order to
intimidate or coordinate with the other player(s).
• A bluff is a projection of false information, i.e., exploit-
ing the incomplete/imperfect information structure of a
game to gain some strategic advantage that could not be
achievable if the game was of complete/perfect informa-
tion.

Credibility, reputation, promises & threats

The effectiveness of projecting a strategic stance via sig-
naling, regardless if it is true or bluff, depends heavily on
the credibility of that signal, as well as the credibility of the
player itself (Thomas, 1984; Stahl, 1999). When it comes
to a single signal or stance, the credibility is closely linked
to the level of compatibility of that signal or stance with the
rationality of the player. Although rationality per se may be
only an assumption with regard to one’s opponent, in general
terms it is fairly easy to examine the matrix or the tree-graph
representation of a game and establish whether a declared
stance is beneficial or not to the associated player. In other
words, if that player is assumed to behave rationally, Mini-
max strategies and Nash equilibria can be used to filter out
choices that are clearly excluded, at least with a high proba-
bility.

The set of previous stances and/or moves, as well as their
associated credibility values, can be used as the history or
reputation of that player, which is in fact the a priori prob-
ability for any future stance and/or move of being consis-
tent with its previous behavior (Mero, 1998). Since games of
complete and perfect information, e.g. Chess, are not com-
patible with false signaling and bluffs, the true theoretical
aspect of credibility and reputation is relevant only in games
of incomplete and/or imperfect information. Hence, Poker
players are indeed characterized as being cautious or risk-
takers according to their reputation on using bluffs in lower
or higher frequency, respectively.

A player with a specific reputation can signal a specific
stance to the others, projecting either a promise or a threat.
A promise is a signal that usually declares the intent to coop-
erate, i.e., choose the less aggressive approach. This is par-
ticularly useful when the players need to coordinate in order
to avoid much worse outcomes, as in the games Leader and
Battle of the Sexes (see Tables 6 and 7). On the other hand, a
threat is a signal that usually declares the intent to compete,
i.e., choose the more aggressive approach. This is still useful
as the means to enforce some kind of coordination, now in
the form of extortion rather than willful cooperation. The
Chicken game is such any example (see Table 8), where one
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player must force the other to swerve, in order to naturally
end up in one of the two Nash equilibria and avoid the worst
outcome of crash.

As it was mentioned earlier, Prisoner’s Dilemma is a very
special type of game, since neither Minimax solution or Nash
equilibrium points to the mutually beneficial option of coop-
eration; however, if signaling between the prisoners is possi-
ble, i.e., if they are allowed to communicate with each other,
cooperation becomes much more plausible: all they have to
do is to promise each other to remain silent and threat to ac-
cuse the other as a retaliation if they see the other doing such
thing. One of the most interesting topics in modern Game
Theory is the study and analytical formulation of the condi-
tions, the constraints and the exact processes of the evolution
of cooperation in games like Prisoner’s Dilemma, where typ-
ical theory fails to predict optimal strategies, although such
strategies seem to exist, usually in accordance to some Tit-
for-Tat variation (Axelrod, 1984; Axelrod & Dion, 1988;
Mero, 1998; Casti, 1997).

In any case, whether it is a promise or a threat, the sig-
nal or stance is labeled as credible or not. Hence, a credi-
ble promise is one that comes from a player with a reputa-
tion of being consistently reliable in fulfilling that promise,
i.e., actually choosing less aggressive strategies when signal-
ing intent to cooperate. Similarly, a credible threat is one
that comes from a player with a reputation of being consis-
tently reliable in fulfilling that threat, i.e., actually choosing
more aggressive strategies when signaling intent to compete
(Montet & Serra, 2003; Owen, 1995).

Summary:
• Promise is a signal that usually declares the intent to
cooperate, i.e., choose the less aggressive approach; it is
useful when players need to coordinate in order to avoid
much worse outcomes.
• Threat is a signal that usually declares the intent to
compete, i.e., choose the more aggressive approach; it is
useful a player wants to enforce some kind of coordina-
tion, in the form of extortion.
• Credibility is closely linked to the level of compatibil-
ity of a signal or stance with the rationality of the player;
in practice, it is a measure (probability) of whether the
player will fulfill a promise or a threat, if necessary.
• Reputation of a player is the a priori probability for any
future stance and/or move of being consistent with its pre-
vious behavior.
• Credible promises and credible threats are associated
with the reputation and credibility of each player, as well
as the actual payoffs in the corresponding game matrix.

Utility, incentives & “rational irrationality”
As it was mentioned earlier, if that player is assumed to

behave rationally, i.e., trying to minimize losses and maxi-
mize gains in terms of actual payoffs in each outcome, the
credibility of a promise or a threat can be easily established
with a high probability. Nevertheless, the fact that this is just

a probability and not a perfect forecast comes from the fact
that, in turn, the level of rationality of that player cannot be
evaluated perfectly and in exact terms.

Rationality and incentives of a player emerge naturally
from the exact formulation of its own utility function, which
is nothing more than a generalization of the loss/gain func-
tion that is described by the matrix or the tree-graph of the
game (Owen, 1995; Fudenberg & Tirole, 1991; Montet &
Serra, 2003). If the formulation of the game’s payoff matrix
is perfect, then it is clear when a strategy is optimal for a
player and when it is not. However, the truth is that these
payoff values may not reflect the exact utility, i.e., overall
loss/gain value for that player, usually due to some “hidden”
outcomes or side-effects. For example, a game matrix may
describe the payoffs for each outcome and each player cor-
rectly, but with the assumption that these players are rational
in the same way: winning over their opponent; this may not
be true, e.g. when one player cares more about securing that
their opponent does not win, rather than securing their own
win. In other words, when the players’ rationality is not sym-
metrically the same, then they do not share the same utility
function and the true payoffs in the game matrix may actually
be quite different.

A very classic example of such games, assumed to be
symmetric when they are actually asymmetric by nature, is
the Hostage Situation, described in analytical form by Table
10. If the two opponents are treated as similarly rational,
i.e., symmetric in terms of incentives and behavior, then the
game is not much different than the classic Chicken, where
one must convince the other to swerve first, in order to avoid
the crash. This translates to either the authorities give in to
the assaulter’s demands or the assaulter eventually surrenders
to the authorities, both outcomes assumed to be equally ra-
tional, correspondingly, to each player. However, if for some
reason the assaulter is more determined than initially pre-
sumed, preferring to fight to the death rather than surrender-
ing and ending up in jail, then the game is inherently asym-
metric and the payoff matrix is quite different, as illustrated
in Table 10. What the matrix shows is that now Player-1, i.e.,
the assaulter, has a dominant strategy of always choosing the
most aggressive stance, no matter what the authorities choose
to do. There is no pure Minimax solution here, since there
is no pure saddle-point (see payoffs “3” and “2” in bold);
however, there is now a single Nash equilibrium at (4,2), i.e.,
aggressive assaulter and passive authorities - this is in fact the
standard approach internationally in all hostage situations:
the authorities start with trying to establish a communication
link and negotiate with the assaulter, rather than choosing a
rescue operation by direct action that could put the hostages
in danger.

As it is evident from the Hostage Situation game of Table
10, the authorities are normally guided to a more passive and
cooperative approach of negotiating rather than using force,
because the incentive is to protect the hostages at all costs.
This effectively translates to employing a utility function that
includes a high priority on the hostages’ lives, higher than the
immediate capture or incapacitation of the assaulter. Hence,
the rationality of Player-2 dictates a more passive, cooper-
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Table 10
The typical setup of the Hostage Situation game with two
players. Player-1 is the assaulter and Player-2 is the rescuer-
protector.

Hostage
Situation

Player-2
C D

Player-1 C (2,3) (1,4*)
D (4*,2*) (3*,1)

Table 11
The typical setup of the Kamikaze game with two players.
Player-1 is the “kamikaze” and Player-2 is the defender.

Kamikaze Player-2
C D

Player-1 C (2,3) (1,4*)
D (4*,1) (3*,2*)

ative stance. This changes drastically if, during this evolu-
tion, the lives of hostages are put in severe danger, e.g. when
the assaulter poses a very credible threat or actually harms a
hostage (assuming there are more). In this case, the author-
ities should change stance and employ the more aggressive
option, because this is now the optimal response.

Table 11 illustrates the Kamikaze game, which is actually
a slightly modified Hostage Situation game in terms of payoff
matrix. The game is still asymmetric and the only variation
is the swapping of payoff values {2} and {1} for Player-2
(marked in italics), which illustrates the new fact that at this
point it is more harmful for the hostages to remain idle rather
than using direct force to rescue them, even if this too poses
some danger to them - again, this is exactly the standard ap-
proach internationally in all hostage situations: the authori-
ties follow strict rules-of-engagement which state that, once
it is established that the lives of hostages is in clear and severe
danger, direct action is to be employed immediately. The
same setup emerges when the Kamikaze game is studied ac-
cording to its name: when one player (assaulter) is more con-
cerned about damaging the opponent (defender) rather than
protecting itself, then there is indeed a dominant strategy of
always choosing the most aggressive stance, no matter what
the defender chooses to do. Likewise, the defender is now
forced to choose between its two worst outcomes and nat-
urally chooses the less damaging one, i.e., direct counter-
action rather than swerve. Here, the passive stance is estab-
lished as more damaging than all-out-conflict, exactly as in
Hostage Situation with a very aggressive assaulter. In terms
of game analysis, now there is indeed a pure Minimax solu-
tion at (3,2), which is also the single Nash equilibrium of the
game. This explains why there is practically no other ratio-
nal (strategically optimal) way to defend against a murder-
ous hostage-taker or a desperate kamikaze than employing
equally aggressive response.

The concepts described along the strategic analysis and
“rationalization” of the players in games like Hostage Sit-
uation and Kamikaze illustrate how a seemingly irrational

course of actions can be easily explained and even classi-
fied as rational behavior, if the proper utility functions are
employed. In other words, if the utility of each and ev-
ery player is defined correctly, then all players in any game
can be labeled as “rational” ones. This proposition is often
referred to as “rational irrationality” (valid/explainable be-
havior), rather than “irrational rationality” (incomprehensi-
ble behavior) (Mero, 1998).

Summary:
• Utility is the generalized cost/gain function of a player
in a specific game, depending on the outcomes but includ-
ing any “hidden” regards and side-effects.
• Given a specific utility function, a player’s incentives
emerge naturally as the rational behavior of the underly-
ing payoff-optimization process.
• A player’s behavior may seem “irrational” if its util-
ity function is incomplete; given a properly defined utility
function, a player’s behavior can always be labeled as ra-
tional per se.
• Hostage Situation and Kamikaze are two examples of
(asymmetric) stand-off games where the notion of “ratio-
nal irrationality” is fully explained via proper definition
of the corresponding utility functions for the assaulter.

The Frontier

This paper included only some of the most basic concepts
of Game Theory, including solution methods and represen-
tations of typical games of special interest, like Chicken and
Prisoner’s Dilemma. However, these are only a scratch on
the surface of what lies beneath, the rigorous mathematical
theory and the complex, some still unsolved, problems in this
extremely interesting and useful scientific area.

All the games and setups presented thus far was somewhat
“too perfect”, too simple compared to real-world situations
of conflict. There are few cases where only two players are
involved, their moves are full observable and their incentives
clear and consistent. In most conflicts, groups of players are
spiraling in alternating rounds competing and cooperating,
each knowing its own utility function and very little about
the others’, while signaling, third-party credibility assertions
and continuous bargaining are common things. Is there re-
ally a way Game Theory can address all these aspects in the
same clarity, mathematical robustness and universality as is
does with simple cases of zero-sum and nonzero-sum games
like the ones presented previously?

The short answer is “No”. Game Theory is the mathemati-
cal way to approach some of the most complex problems the
human mind has ever encountered. For example, what are
the prerequisites, the dynamics and the survivability of the
evolution of cooperation as a strategy, in human or animal
societies? What is the asymptotic behavior of such “cooper-
ative” groups? Can they survive in an environment of pure
competition? These issues are addressed in other aspects of
the theory, namely the Evolutionary Stable Strategies (ESS),
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not analyzed in this study. In short, ESS are patterns of be-
havior in games of pure competition and/or possible coop-
eration, such as the Prisoner’s Dilemma, that not only may
emerge spontaneously but also survive as optimal strategies
in iterative games. Tit-for-Tat (Axelrod, 1984; Axelrod &
Dion, 1988) is such an example of ESS in iterated Prisoner’s
Dilemma: cooperation can emerge spontaneously given a set
of conditions, primarily (a) players “start nicely”, (b) con-
tinue with reciprocity, (c) don’t know when the game fin-
ishes. Although it seems simple enough, spontaneous coop-
eration in conflict situations is one of the most intriguing and
theoretically complex problems in Game Theory today.

In a slightly simpler scenario, a player may be involved
in a game with another player, while at the same time its
strategic choices are relevant to a second game, with some
other player. For example, a politician may be in a “bargain”
with voters, trying to gain their support by promising specific
actions if elected, while at the same time a second “bargain”
may be taking place in parallel with the party’s main poli-
cies and governmental plan if it comes to power. If some
of that politician’s promises are on conflict with the party’s
main lines, then as a player is involved in what is called a
two-level game (Putnam & Henning, 1986; Putnam, 1988).
This form of gaming was first proposed by Putnam in the
late ’70s and it models two-level or multi-level conflict situa-
tions in general, where the strategic choices of a player affect
two or more simultaneous games. The solution concepts and
equilibria are not much different than those of simple games,
but now a strategy is optimal and produces a stable outcome
only if it is such simultaneously in all these games.

Another very interesting aspect of gaming in general is the
evolution of strategies and each player’s behavior as each ob-
serves the others’ moves. In single-step games, the Minimax
solution (pure or mixed) is the one that dictates the optimal
strategy for each player. The concept of iterative gaming is
much more general, since it includes cases where the same
players may face one another in the same single-step games
many times in the future. In this case, Nash equilibria predict
the most probable outcomes with much better accuracy. But
the knowledge that there will be a “next round”, especially
when players alternate moves and one can observe the other
before making its own (e.g. in Chess), then the game analysis
can expand to two or more steps ahead. In practice, the player
does not only take into account the strategic choices available
to the opponent(s) but also the “what if” combinations of
moves-countermoves. Hence, the corresponding game ma-
trix includes these combinations of composite states on the
opponent(s) side and the payoffs are estimated accordingly.
This type of composite multi-step setup is often referred to as
a metagame (Thomas, 1984). The extended-form represen-
tation of metagames is more natural than the analytical (ma-
trix) form, but the identification of equilibria and solutions is
somewhat less straight-forward.

Some games involve elements of chance regarding the
game’s state or partial information regarding the observabil-
ity of each player’s moves. In such games of imperfect infor-
mation, modeling via a game matrix or a tree-graph can be
problematic, since many of the paths may be mutually exclu-

sive and not just alternative choices. In the ’60s, very early
on in the history of Game Theory, Harsanyi introduced the
so-called Harsanyi transformation (Harsanyi, 1962, 1967;
Montet & Serra, 2003) for transforming a game of incom-
plete information to an equivalent game of complete but im-
perfect information. This may not seem much, but in real-
ity there is a very distinct and important difference between
them. If a random event dictates the exact structure and
payoffs of the games, perhaps even the strategic behavior of
the players, then the analysis of such a game is inherently
a very difficult task. On the other hand, the Harsanyi trans-
formation models this random event as a deterministic one,
removing the element of chance and introducing the notion
of “hidden” information about it. In practice, this results in
creating multiple variations of the game, one for each pos-
sible configuration, and treating them separately. After they
are individually analyzed, solutions and equilibria are com-
bined together within a probabilistic framework, introducing
the more generalized concept of Bayesian Nash equilibria
(Montet & Serra, 2003).

In real-world conflict situations it is not uncommon that
one or some of the players have a different knowledge or
“view” of the game structure, its payoffs and the other play-
ers’ preferences. This means that each player acts upon its
own payoff matrix, possibly very different in structure and
values than the one used by the other players. Of course, all
players are involved in the same, single game and the pay-
offs on each outcome is effectively a single one, despite each
player’s unique view of the game. This is extremely impor-
tant if some of the players have a more complete view of the
game, i.e., when they address the game as one of (almost)
complete information, while some opponents address it as
one of incomplete information. These special types of con-
flict are often referred to as hypergames (Vane, 2006; Bennett
& Dando, 1979). Introduced by Bennett and Dando in late
’70s and later revised in the ’00s by Vane and others, hyper-
games is a very efficient way to describe games of asymmet-
ric information between players by employing different vari-
ations of the game matrix or tree-graph, according to each
player’s view. In practice, hypergames are treated the same
way as simple games, with each player deciding its strategic
choices according to its own view and, subsequently, com-
bining the (partial) outcomes together.

Game Theory is a vast scientific and research area,
based almost entirely on Mathematics and some experi-
mental methods, with applications that vary from simple
board games and auctions to Evolutionary Psychology and
Sociology-Biology in group behavior of humans and ani-
mals. Although real-world situations reveal that sometimes
its predictive value is limited, the robust theoretical frame-
work and solution concepts provide an extremely valuable
set of tools that clarifies the inner workings and dynamics of
conflict situations.
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Summary:
• In accordance to Nash’s bargaining theorem, coop-
eration can emerge spontaneously, even in competitive
games, when a specific set of pre-requisites are satisfied.
• Evolutionary stable strategies (ESS) are patterns of be-
havior in games of pure competition and/or possible co-
operation that survive as optimal strategies in iterative
games.
• In two-level games, a player may be involved in a game
with another player, while at the same time its strategic
choices are relevant to a second game, with some other
player.
• Metagames are multi-step game setups where the cor-
responding game matrix includes combinations of “what
if” composite states, regarding the future strategic choices
of the opponent(s).
• The Harsanyi transformation is used in games of in-
complete information, e.g. when the game structure and
payoffs depend on some random event, to transform it to
an equivalent game of complete but imperfect informa-
tion.
• Hypergames is a very efficient way to describe games
of asymmetric information between players by employ-
ing different variations of the game matrix or tree-graph,
according to each player’s view.
• In general, Game Theory is a vast scientific and re-
search area with robust theoretical foundation that can be
used as a predictive tool, as well as (mostly) an extremely
valuable approach to analyze conflict situations.

.
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