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Abstract

Erdős-Szekeres Theorem is proven. The proof is very similar to the original given by
Erdős and Szekeres. However, it explicitly uses properties of binary trees to prove and
visualize the existence of a monotonic subsequence. It is hoped that this presentation
is helpful for pedagogical purposes.

1 Introduction

As in [1], the identity n2 + 1 = ((n−1)2 + 1) + (2n−1) motivates the proof. Assume there is
only one increasing or decreasing subsequence of size n in the first (n− 1)2 + 1 terms. Take
the last term of the subsequence and remove it, leaving (n − 1)2 terms. Each of the other
2n−1 terms then serves as the last term of a size n monotonic subsequence formed with the
(n− 1)2 terms. A binary search tree is built from these 2n terms. Either the tree has a node
with two children, or it has a depth of 2n− 1 and a single leaf. In either case, a monotonic
subsequence of size n + 1 may be found.

2 Proof

Lemma 2.1. Given a binary tree having only one leaf and depth 2n−1, there are nodes that
can be deleted to make a new tree of depth n where either all child nodes are left children or
they are all right children.

Proof. Let l denote the number of nodes which have a left child and let r denote the number
which have a right child. Because the depth is 2n − 1, it must be that l + r = 2n − 1, as
there is only one leaf and each parent can be paired bijectively with the edge connecting it
to its only child. We must have either l ≥ n or r ≥ n, as otherwise l + r ≤ 2n− 2. Without
loss of generality, suppose l ≥ n. We delete every node having a right child by the following
procedure. Starting at the root, determine the type of child each non-leaf node has. If the
node has a left child, do nothing. If the node has a right child, it is deleted and replaced
with its right child. Specifically, the deleted node’s parent (if it has one) takes the deleted
node’s child as its own child, see [2]. In both cases, repeat the procedure on the child node
until the leaf is reached. When the leaf is reached, the only remaining non-leaf nodes must
be those which originally had a left child. The procedure guarantees that each non-leaf node
must have a left child. There must be n or greater such nodes as l ≥ n. Since the leaf wasn’t
deleted, the tree has at least n + 1 nodes. Finally, the tree still has only one leaf as each

1



node had at most one child originally and deletion replaces that child with another. As a
result, we end up with a tree which has all left children and a depth of n. See Figure 1 for
a visual example.

Figure 1: Lemma 1 for a tree with n = 3

Theorem 2.2. Given a sequence of n2 + 1 distinct real numbers, n ≥ 1, there exists a
monotonic subsequence of size n + 1.

Proof. We use induction. For n = 1, the result is clear. Now suppose the theorem holds
for integers 1, 2, . . . , n − 1. Given a sequence of n2 + 1 distinct real numbers, we want to
find an increasing or decreasing subsequence of size n + 1. Let the terms of the sequence be
a1, a2, . . . , an2+1. By the induction hypothesis, there is at least one increasing or decreasing
subsequence of size n in the first (n − 1)2 + 1 terms. List the last terms p1, p2, . . . , ps of
each increasing or decreasing subsequence of size n. If a term is the last term for more
than one such subsequence it is included only once, and it is associated with only one of the
subsequences. Furthermore, the terms have been listed with respect to their order in the
original sequence, that is if 1 ≤ i < j ≤ s, pi = as, and pj = at then s < t.

Now insert nodes corresponding to each term pi into a binary search tree. See [2] for a
description of binary search tree insertion. We just emphasize here that if i < j, then pi
is inserted before pj. If the tree has 2n nodes, we are finished. Otherwise, remove the s
terms from the original sequence. Again consider the first (n− 1)2 + 1 terms and repeat this
procedure until the tree has 2n nodes.

We are guaranteed a binary search tree with 2n nodes by the following reasoning. If
there is only one monotonic subsequence among the first (n−1)2 + 1 terms, only one term is
removed which forms the root of the tree. The remaining (n− 1)2 terms are then considered
along with the first term a(n−1)2+2 of the last 2n−1 terms of the original sequence. Since the
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number of terms considered is (n − 1)2 + 1 and there was only one monotonic subequence
of size n which depended on the removed element, there must be at least one monotonic
subsequence of size n whose last term is a(n−1)2+2. Similarly, when this term is removed
a(n−1)2+3 which follows it becomes the last term of a size n monotonic subsequence. In this
way, each of the last 2n− 1 terms is found to be the final term of a monotonic subsequence
of size n.

If there was more than one monotonc subsequence among the first (n−1)2+1 terms, some
of the 2n−1 terms won’t be needed to build the tree. Assume there were s unique last terms
from the subsequences. As described above, each of these terms is inserted into the tree.
These s terms are removed and replaced with the next s terms not yet considered. If from
this point on only one monotonic subsequence is found on each iteration of the procedure,
the tree will still have 2n nodes as there are 2n − s terms that will be used. Finally, note
that there can be more than one monotonic subsequence on any iteration of the procedure.
Suppose the tree already has r nodes and s > 1 unique last terms are found. A similar
argument shows the tree will have 2n nodes as at least 2n− r − s terms will be used.

Each given node corresponds to the last term of a monotonic subsequence. If a node is a
tail of an increasing subsequence and it has a right child, then we have found an increasing
subsequence of length n + 1, where the right child is last term. Likewise, if the node has
a left child and is the tail of a decreasing subsequence, then we have found a decreasing
subsequence of length n+1. In both cases this completes the proof. If for every node neither
case holds, we must have built a tree that has only one leaf. Therefore, we have constructed
a tree with 2n nodes of depth 2n − 1. By Lemma 2.1, we can delete some of the nodes to
make a tree of depth n with either all left children or all right children. Reading off the values
of each node from the root to the leaf thus gives a decreasing or increasing subsequence of
length n+1. An example of a tree built and trimmed for a size 10 (n = 3) sequence is shown
in Figure 2.

Figure 2: Procedure applied to the sequence 10, 1, 9, 2, 8, 3, 7, 4, 6, 5
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