DISCRETE MULTIVARIATE DISTRIBUTIONS

O.Yu. Vorob’ev, L.S. Golovkov*

This article brings in two new discrete distributions: multivariate Binomial distribution and
multivariate Poisson distribution. Those distributions were created in eventology as more correct
generalizations of Binomial and Poisson distributions. Accordingly to eventology new laws take into
account full distribution of events. Also, in article are described its properties and characteristics.

1. Introduction

Distribution of probabilities is one of principal idea in theory of probabilities and mathematical
statistics. Its determination is tantamount to definition of all related stochastic events. But trials’
results extremely rarely are expressed by one number and more frequently by system of numbers,
vector or function. It is said about multivariate distribution if some regularity is described by
several stochastic quantities, which are specified on the same probabilistic space. Thereby, it
is involving for representation of behavior of the random vector, which serves a description of
stochastic events, more or less near to reality. This work came in connection with appeared scientific
necessity of assignment two new multivariate discrete distributions, which are naturally following
from eventological principles.

Polynomial distribution, which is used at present as generalization for Binomial, in fact isn’t
take into account specific notion from probability theory namely independence of events, random
quantities, tests. Probability theory can be considered only as a part of common measure theory,
you know!.

2. Binomial multivariate distribution

Let there are finite sequence of n independent stochastic experiments. In the result of experiment
i can ensue or not events from N-set X of events () € X, Eventological distributions of sets
of events XV i = 1,...,n agree with the same eventological distribution {p(X), X C X} of certain
N-set X of events x € X, which aren’t changing between experiments.

Such scheme of testing is called multivariate (eventological) scheme of Bernoulli testing with
producing set of events X, and each of random quantities

&x(w) = Z 1o(w), 2z e XV z e X
i=1

obey the Binomial distribution with parameters n, p, = P(x), while random vector? £ = (& €
X) obey the Binomial multivariate (N-variate) distribution with parameters (n, {p(X),
g+ X CX}).

*© Vorob’ov O.Yu., Siberian Federal University, e-mail: vorob@akadem.ru, url: http://www.r-events.narod.ru; Golovkov L.S.
Siberian Federal University, e-mail: lavrentiy.golovkov@gmail.com; 2007.

!n this case random values are appearing as measurable functions and its mathematical expectation, variance
and other moments — as abstract Lesbegue integrals and so on.

2In eventology, in general, and at this context, in particular, the notion «vector» is using in extended sense as
disordered finite set or disordered finite collection of some elements.
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Probabilities of Binomial multivariate distribution, which is generated by N-set of events X,
are defined for every integer-valued collection 7 = (n,,r € X) € [0,n]" by the formula

ba(n;p(X), 8 # X CX)=P(E=n)=P(& =n,, 0 €X) = Zmn ), X C X}),

where

are probabilities of 2¥-variate Polynomial distribution of a random vector & = (£(X), X C %)
with parameters (n; {p(X), X C X}), which is generated by 2V-set of terrace-events {ter(X),

X C X}, which has biunique correspondence to the given Binomial multivariate distribution;
summation is made by all 2V-variate sets 7 = (n(X), X C X) € 52" from 2N-vertex simplex S2"

i.e. such as
n = Z n(X),
but which are meet the N equations

Ny = Zn(X),:c € X.
reX
2.1. Binomial one-variate distribution

When N = 1 (i.e. generating set X = {z} is a monoplet of events) Binomial one-variate
distribution of a random quantity &, coincides with the classical Binomial distribution with
parameters (n;p,). In other words, probabilities of the Binomial one-variate distribution have
classical format

b, (5 p2) = P(§e = na) = O ppe (1 — )", 0 <y <1

2.2. Binomial two-variate distribution

When N = 2 (i.e. generating set X = {z,y} is duplet of events) Binomial two-variate
distribution of a random vector £ = (&;,&,) = (&, € X) is defined by four parameters (n; p(z),

p(y), p(zy)), where?

p(x) =Pz Ny°), ply) =Pz Ny), plzy) = P(zNy).

Probabilities of Binomial two-variate distribution are calculating for any integer-valued vector
n = (ng,ny) € [0,n)* by the formula

ba(nip(z), p(y), p(ay)) = P({ =) = P(& = n,, & =n,) =

30bviously, p(@) = 1 —p(z) — p(y) — p(zy). Hereinafter are used next denominations: p, = P(z) = p(z) + p(zy),
Py = P(y) = p(y> +p(36y), Kova = p(xy) — PzDy; U% = paz(l - pw)v 0';2, = py(l _py)-
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min{ng,ny}

= > mg (n;p(2), p(x), p(y), p(ay)),

n(zy)=max{0,ng+ny—n}

where
my (n; p(@), p(x), p(y), pxy)) = P({ =n) =

= P((6(2),£().€(). &) = (n(2),n(2), n(y), n(wy)) ) =

n!

= w1
are probabilities of the Polynomial 4-variate distribution of random vector £ = (£(@),£(z),
&(y), &(wy)) with parameters (n;p(@), p(x), p(y),p(zy)); summation is made by all sets i =
(n(@),n(x),n(y),n(zy)) such as n = n(2) + n(z) + n(y) + n(zy), for which are true 2 equations
as well n, = n(z) + n(z,y), n, = n(y) + n(z,y), and can be turned into summation by the
once parameter n(z,y) within Frechet bounds, since when n, and n, are fixed, then all quantities
n(2),n(x),n(y), n(xy) can be expressed by one parameter, for instance, n(zy):

n(z) = na —n(zy), ny) = ny —n(zy), n(@) =n—ny —ny + n(zy),
which is varying within Frechet bounds:
max{0, n, +n, —n} < n(ry) < min{n,,n,}.
Also, formula can be written in the next manner:

b (n;p(x), p(y), p(zy)) = P(§ = 1) =

min{ng,ny}

= [p(@)]" [r(@)]" [ (y)]™ > CrD (f) [ (z, )",

n(zy)=max{0,nz+ny—n}

where
n!

(n = ne —ny +n(zy)!(ne — n(zy))(n, —n(zy))n(zy)!

is two-variate Binomial coefficient, and

enley) (R) =

n

p(2)p(ry)
p(z)p(y)

T(r) = T(y) =75, T(z,y) =

is first and second degree multicovariations of events x and y.

Vector of mathematical expectations for Binomial two-variate random vector (,,&,) is equal
to (E&,, ES,) = (nps, npy,), and its covariation matrix can be expressed through covariation matrix
of random vector (1,,1,) of indicators of events from the generating set X = {x,y} and is equal

to
(npw(l — D2) nKov,, > . (px(l — D) Kov,, )
nKov,, npy (1 —py,) Kovy, py(1 —py)
Covariation matrix of the centered and normalized Binomial two-variate random vector

(faz — NPy gy - npy)

Oy oy
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is expressed through covariation matrix of the random vector

]-a:_pa: 1y_py
o, 0y

centered and normalized indicators of events from X = {x,y} and is equal to

(n npxy>:n(1 pw)
NPgy N Py 1 )7

is correlation coefficient for random quantities 1, u 1, (i.e. for indicators of

C
where p,, = Uovazy

events from X = {z,y}).

2.3. Characteristics of
Binomial multivariate distribution

Vector of mathematical expectations for multivariate random vector (§,,x € X) is equal to
(E&,,x € X) = (npg,x € X), its covariation matrix is expressed through covariation matrix of
random vector (1,,x € X) of indicators of events from the generating set X and is equal to

2 2
noy ... nKovy, oy ... Kovg,

2 2
nKovy, ... no, Kovg, ... o,

where 02 = p,(1 — p,), Kov,, = —p.p, when z # y.
Covariation matrix of generated by partition centered and normalized Binomial multivariate

random vector
—-n
(fip e x)
o8

is expressed through covariation matrix of random vector

() )

of centered and normalized indicators of events from X and is equal to

2 2

nol ... NPy, 02 L. Puy
l=nl... ... ],
n no? o?
Pry - y Py --- O,
where p,,, = == = — 2224 g correlation coefficient of random quantities 1, and 1, (i.e. indicators
Oy Oy

of events from X).

2.4. Polynomial distribution is a particular case of
Binomial multivariate distribution,
when the latter is expressed by the partition of
elementary events space

When the generating N-set X consist of the events, which arising the partition Q = Y _. =,
then Binomial multivariate distribution of a random vector § = (&, € X) is defined by the N
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parameters! (n; p,, x € X), where p, = P(z), >, ;P = 1, and it is Polynomial distribution with
the given parameters.

Hence, probabilities of the Binomial multivariate distribution, which is generated by the partition
Q, is defined for every integer-valued vector 7 = (n,,z € X) from the simplex SV (because
Y sex Mz = n) by the same formula as probabilities of corresponding Polynomial distribution

b (1 P € X) = P(E = ) = P(E, = g, € X) = [Tip.)"

() @)

—_ < 2
)

0

»
o)

2 n

Puc. 1. Polynomial Bernoulli testing scheme defines Polynomial distribution with parameters (n; p,,py,p-), which
is generating by the triplet of events X = {z,y, 2z}

2.5. Binomial N-variate distribution, which is generated by the set X,
defines Polynomial 2"-variate distribution, which is generated by
the set of terrace-events {ter(X), X C X}, but not visa versa

Multivariate (N-variate) Bernoulli testing scheme of n tests with the generating set of events
X, which obey eventological distribution {p(X), X C X}, defines N random quantities

Lw) =) Low), 2 ex? zeX,
=1

each of them has Binomial distribution with parameters (n;p, = P(z)) and all together forms

N-variate random vector é = (&, = € X), which is distributed by the Binomial multivariate
(N-variate) law with 2V parameters (n; {p(X),@ # X C X}), which contains amount of tests n
and 2"V — 1 probabilities from eventological distribution of the generating set of events X (in other
words, all 2V probabilities p(X) without p(2)).

The same Bernoulli multivariate testing scheme of n tests defines 2% random quantities

g(X)(w) = Z lter(X(i))(wL X(Z) - x(1)7 X e %7
i=1

each of them has Binomial distribution with parameters (n; p(X) = P(ter(X))), and all together
forms 2V-variate random vector £ = (5 (X), X C Zf), which is distributed by the Polynomial

4Since Y wecx Pz = 1, there are only N — 1 independent probabilities among N.
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1 2 n

Puc. 2. Three-variate Bernoulli testing scheme, which is generated by the triplet of events X = {x,y,z},

defines 3-variate random vector § = ({;,z € X), which is distributed by the Binomial 3-variate

law with parameters (n; p(z),p(y),p(z),p(a:y),p(xz),p(yz),p(zyz)); and also 8-variate random vector § =

(5(@),{(z),f(y),5(2),f(xy),§(zz),§(yz),§(zyz)), which is distributed by the Polynomial 8-variate law with the
same parameters that has Binomial 3-variate distribution.

multivariate (2N -variate) law, which is generated by the set of terrace-events {ter(X),

X C X} and which is defined by 2% +1 parameters (n; {p(X), X C X}. Those parameters contains
amount of tests n and all 2" probabilities p(X) from eventological distribution of the generating
set X of events.

Probabilities of the given Binomial and Polynomial multivariate distributions are bound for
every N-variate collections of nonnegative numbers 7 = {n,,z € X} € [0,n]Y by the formula
P( = n) = 3, P(€ = /1) where summation is made by the all 2V-variate sets of nonnegative
numbers 11 = (n(X), X C X) € 52" for which n = Yoxcxn(X)andalson, =3 n(X), z € X.

Remark. For any Binomial N-variate, which is generated by the set of events X, there
is unique Polynomial 2V-variate distribution, which is generated by the set of terrace-events
{ter(X), X C X}. The contrary is not true, i.e. for arbitrary Polynomial 2V-variate distribution,
which is generated by the 2V-set of events (those events form partition of €2), there are, generally
speaking, (2V)! Binomial N-variate distributions, which is generated by the N-sets of terrace-
events X (appreciably depends on the way of partition events’ labelling as subsets X C X and
total amount of such ways is equal to (2™)!).

3. Poisson multivariate distribution

Poisson multivariate distribution is a discrete distribution of probabilities of a random vector
¢ = (&, = € X), which have values 7 = (n,, x € X) with the probabilities

P( =) =P(& =n,, 7€ X) =m(MX), @ # X CX) =
: A0
e Azﬁ:gg[ 51())3')! ’

where summation is made by collections of such nonnegative integer-valued numbers n = (n(X ),
@ # X C X), for which there are N equations n, =Y. _ n(X), z € X, and {\(X), @ # X C X}
with parameters: A\(X) is an average number of coming of the terrace-event

ter(X) = ﬂ T ﬂ x°,

rzeX zxzeXc©
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in other words, average number of coming of the all events from X and there are not events from

Xe.
A=) AX)
X+4@
is an average number of coming at least one event from X, in other words, average number of

coming of event U x (union of all events from X).

rzeX
For example, when 1 = (0,...,0) then

when 7 = (0,...,0,n,,0,...,0), 2 € X then

8
=
3
N
&

P(E=(0,...,0,n,,0,...,0)) = P(& = n,, & =0,y # z) :e/\%

If the vector n has one fixed component n, and other items are arbitrary:
=y Nyyryenny), T EX,

then
F Az [)‘x]nz
P(é.:<'7"'7'7n$7'7"'7')):P(§I:n$)26 T
is a formula of Poisson one-variate distribution with parameter A, of the random quantity &,,
where A\, = >~ A(X) is defined for each x € X by the parameter of the Poisson one-variate

distribution.

3.1. Eventological interpretation

Let there are countable sequence of n independent stochastic experiments. In the result of
experiment n can ensue or not events from X. Possibilities p, = P(x) of events z € X are small,
i.e. possibilities p(X), @ # X C X of generated by them terrace-events ter(X), @ # X C X are
small too, and when n — oo then np(X) — A(X), @ # X C X. Then random vector

A

SZ(SQH xe:{)zzlm(n), r€eX
n=1

obeys multivariate (N-variate) Poisson distribution with parameters {\(X), @ # X C X}.

Remark. It’s incorrect to imagine that possibilities so tend to zero that only in n-th test
np(X) = AX), X C X.In truth, it’s rather to believe that tending of possibilities to zero like
that this equation is true for all first n tests. Thus, stochastic experiment consists in the sequence
of n-series of independent tests (series of n tests), and this equation is true for all tests from
n-series. Then n-series defines Binomial multivariate (IN-variate) distribution with parameters
(n;p(X),@ #+ X C %), which by n — oo tends to the Poisson multivariate (N-variate) with
parameters (A(X), @ # X C X).
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1 2 n

Puc. 3. Countable Bernoulli testing scheme, which is generated by the triplet of events X = {z, y, 2z}, defines Poisson
three-variate distribution with parameters (A(z), A(y), A(2), A(zy), A(z2), A(yz), A(zyz)).

Q

Puc. 4. Parameters A(z), A(y), A(2), A(zy), AM(22), AM(yz), AM(xyz) of Poisson three-variate distribution, which is

generated by the triplet of events X = {z,y,z}, has a sense of average of appearing terrace-events

ter(z), ter(y), ter(z), ter(xy), ter(xz), ter(yz), ter(zyz). Value A\(@), even if it’s not parameter, by the definition is
supposed equal to the infinity as utmost amount of tests, in which there are no appeared events.

3.2. Characteristics of the Poisson multivariate distribution

Vector of mathematical expectations of the Poisson multivariate distribution is (E,, x € X) =
(Azy @ € X), where A, = > M(X), z € X. Since Cov(&s, §y) = Auy, where Ay =30 1 A(X),
{z,y} C X, so covariance matrix is equal to

In the case of two dimensions, when X = {z,y}, summation is making by the one parameter
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n(zy) = n({z,y}), which is changing in a Frechet bounds:

P({ =) = P(& = na, & = ny) = ma (M), Ay) Aay)) =

min{ng,ny}

— @)@ AW [Aay)]"@)
— Z n(z)  n(y)! n(zy)l

n(zy)=0
where n(z) = n, —n(zy), n(y) = ny, — n(zy), a A = ANx) + A(y) + A(xy).
Vector of mathematical expectations Poisson two-variate distribution (E,, EE,) =
(Az, Ay), where A\, = A(z) + Mzy) 1 Ay = A(y) + A(xy), covariance matrix is equal to

( A A(ff?y))
AMzy) Ay )7
because in the case of two dimensions \,, = A\(zy).

3.3. Poisson multivariate approximation

If amount of independent experiments n is large-scale and possibilities p, = P(z) of events
x € X is small (i.e. possibilities p(X), @ # X C X of generated by them terrace-events ter(X), & #
X C X is small too) then for each collection of integer-valued numbers 7 = (n,, r € X) € [0,n]"
Binomial possibilities is expressed in the rough by terms of the Poisson multivariate distribution:

ba(n:p(X), @ £ X € X) m e Exeer 0 ST %,
X#2 :

where summation is applied to such sets (n(X),& # X C X), for which n > Z n(X) and N
XCx
equations n, = Z n(X), x € X are true.

rzeX
In the case of two dimensions, when X = {z,y}, summation is making by the one parameter

n(zy) = n({z,y}), which is changing in so-called Frechet bounds:

bi (n; p(x), p(y), p(zy)) ~

min{nz,ny}

() T ()W) ()2
~ b W ) 3 [Pn((g! [PTEEJZB! [Py(l(z)y]ﬂ

n(zy)=0
e n(x) = ny — n(zy),n(y) = ny — n(zy).
Poisson theorem (multivariate case). Let p, — 0, z € X when n — oo, and np(X) —
A(X) for all nonempty subsets @ # X C X as that. Then for any collection of integer-valued
numbers 7 = (n,,z € X) € [0,n]"Y (when n — o0)

bi(n;p(X), @ # X CX) - m(MX), 2 # X C X),

where
— e T OS] A X))
T (A(X), 8 # X C X) = e 2xz2 20 — Lm0
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is Poisson multivariate possibility, and summation is applied to such sets n, for which n, =

Y oex X)), e X
Proof. Because when n is large while n > » 5 n(X) is true for any fixed n(X), X C X, then

summation in formulas of Binomial

bi(n;p(X), @ #X CX) = Zmn X),X C x})

and Poisson ( )
(X))
() C — - 7&13
ma(AX), 2 # X € X) = e O S T [[ SN0
n X#J
possibilities is applied to the same sets 7, for which n, = >, n(X), = € X.
Now we show Poisson approximation for Polynomial possibilities

my (n; {p(X), X C X}) = H [p(X)]"). (1)

H n(X)! xcx

XCx

It should be pointed out, that for any fixed n(X), X C X and sufficiently large n there are follow
equations:

Mn(@)n(z).(nx).z2xcxp (i {p(X), X € X})  p(2)(n(2) +1)
M(n(2)+1.0(2)-1{n(x), 22Xy (13 {P(X), X € X}) n(Z2)p(@)
rae Z C X. By multiplying and dividing numerator and denominator by n and in consideration
of % ~ 1 and p(@) ~ 1, where = signify approximate equality with precision up to n!, we
obtain

p(Z)(n@)+)n _np(Z) n@)+1 1 np(Z)
n(Z)p(@)  n n(2) no p@)  n(Z)
By the data of the theorem np(Z) — A(Z), therefore

M(n(@)n(2),(n(x),z2xcx) (1; {p(X), X C X})
M(n(@)+1,0(2)-1,{n(x),z2xcxp) (N {p(X), X € X})  n(Z2)

When n(X) =0, # X C X, then

Mn(2)0...0) (1 {P(X )ng}):[p(z)]":<1—2¥> :(1_i)n7

n
XCcx

where A = ) - A(X). After finding the logarithm of both parts of the equation and factorizing
into ypaBnenns u packiaaibiBag B Maclaurin series® we have

In[muo)0,..0)(n; {p(X )Xg%})}:n-ln<l—é)——)\—)\—2—...

n 2n

When n is large we conclude that

Mn(2)0,..0) (1 {p(X), X € X}) me. 3)
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By the sequentially applying equation 2 to approximation 3 we come to

B X)) MX)
M) nx),xcxp (1 {p(X), X € X}) me? H .9)

‘ )
PAXCE n( )

i.e. Poisson approximation of the Polynomial possibility 1, from where the assertion of the theorem
follows directly.
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JluckpeTHble MHOTOMEPHBIE pacIipe/ie/IeHus

O.}O. Bopo6és, JI.C. I'osioBKOB

Hcnoab3yemoe B HaCTOsiIee BpeMsl MOJMHOMHUAJILHOE paciipejie/ienne, Kak 00o00IieHne 6u-
HOMUAJIBHOI'O HE YYUTBIBAET, CbaKTI/ILIeCKI/I, OCHOBHOTO CHeHI/I(bI/IquKOFO HOHATHUA TEOPUU BEPOAT-
HOCTEl, & UMEHHO He3a8UCUMOCTU COObITHIl, CIydallHBIX BeJMYuH, ucnbitanuii. Takoe 06001Ie-
HUEe MOYKHO UCIOJIH30BATDh JIUIIb B YaCTHOM CJIydae, a UMEHHO, KOTJa COOBITHS He MepeceKaloTcs.
DBEHTOJIOTHUS Ke paboTaeT ¢ PA3TUIHBIMU CTPYKTYPAMHU 3aBUCUMOCTHU COOBITHIA, IO9TOMY BIIOJIHE
€CTEeCTBEHHO BO3HHUK BOIPOC O 0OJiee rapMOHUYHOM 0000IIeHNN OMHOMUAIBLHOTO PACIIPE/Ie/IeHIS
Ha CJIydail npoudeoavbHoli CTPYKTYPbhl 3aBHCUMOCTEH COOBITHIA.

Kpowme Toro, npuojutcsi TeopeMa 0 MPUOJIMKEHUN OMHOMHUAJIHLHOTO MHOIOMEPHOTO paciipe-
JIeJIeHNs ¢ TIOMOTIIBIO JIDYTOr0 HOBOTO PACIpeIeeHus — MHOTOMEPHOTO aHAJIOTa PaclpeeTeHus
[Iyaccona. B craTbe BBOIATCS Onpeie/ieHns STUX HOBBIX O0BEKTOB, & TAKZKEe 0003HAYEHBI UX OCHOB-
Hble XapaKTePUCTUKU U CBOHCTBA.



