Seven conjectures on the squares of primes involving the number 4320 respectively deconcatenation

Marius Coman Bucuresti, Romania email: mariuscoman13@gmail.com

Abstract. In this paper I make three conjectures regarding a certain relation between the number 4320 and the squares of primes respectively four conjectures on squares of primes involving deconcatenation.

Conjecture 1:

There exist an infinity of primes of the form $p^2 + 4320$, where p is prime.

Such primes are:

 $4339 = 4320 + 19^{2};$: $4441 = 4320 + 11^{2};$: : $5281 = 4320 + 31^{2};$ $5689 = 4320 + 37^{2};$: $6529 = 4320 + 47^{2};$: $7129 = 4320 + 53^{2};$: $9649 = 4320 + 73^{2};$: $12241 = 4320 + 89^{2};$: $13729 = 4320 + 97^{2};$: $14929 = 4320 + 103^{2};$: $21481 = 4320 + 131^2$. :

Conjecture 2:

There exist an infinity of semiprimes of the form $q1*q2 = p^2 + 4320$, where p is prime, such that q2 - q1 + 1 is prime.

Such semiprimes are:

:	4369 =	4320	+	7^2	=	17*257	(257	-	17	+	1	=	241,
	prime);												
:	4609 =	4320	+	17^2	=	11*419	(419	-	11	+	1	=	409,
	prime);												
:	6001 =	4320	+	41^2	=	17*353	(353	-	17	+	1	=	337,
	prime);												
:	7801 =	4320	+	59^2	=	29*269	(269	-	29	+	1	=	241,
	prime);												

:	$11209 = 4320 + 83^2 = 11*1019 (1019 - 11 + 1 = 1009,$
	prime);
:	$15769 = 4320 + 107^2 = 13*1213 (1213 - 13 + 1 =$
	1201, prime);
:	$16201 = 4320 + 109^2 = 17*953 (953 - 17 + 1 = 937,$
	prime);
:	$23089 = 4320 + 137^2 = 11*2099$ (2099 - 11 + 1 =
	2089, prime);
:	$23641 = 4320 + 139^2 = 47*503 (503 - 47 + 1 = 457,$
	prime);
:	$28969 = 4320 + 157^2 = 59 + 491 (491 - 59 + 1 = 433)$
	prime);
:	$32209 = 4320 + 167^2 = 31*1039 (1039 - 31 + 1 =$
	1009, prime);
:	$34249 = 4320 + 173^2 = 29*1181 (1181 - 29 + 1 =$
	1153, prime).

Conjecture 3:

There exist an infinity of semiprimes of the form $q1*q2 = p^2 + 4320$, where p is prime, such that q2 - q1 + 1 is a power of prime.

Such semiprimes are:

:	4681 =	4320	+	19^2	=	31*151	(151	_	31	+	1	=	121	=
	11^2);													
:	4849 =	4320	+	23^2	=	13*373	(373	-	13	+	1	=	361	=
	19^2);													
:	6169 =	4320	+	43^2	=	31*199	(199	_	31	+	1	=	169	=
	13^2);													
:	8809 =	4320	+	67^2	=	23*383	(383	-	23	+	1	=	361	=
	19^2);													
:	10561 =	4320	+	79^2	=	59*179	(179	-	59	+	1	=	121	=
	11^2);													
:	26521 =	4320	+	149^2	2 =	11*241	1 (24	11	- 1	L1	+	1 :	= 240	01
	$= 7^{4}$.													

Note:

For the squares of the 27 from the first 35 primes p greater than or equal to 7 the number $p^2 + 4320$ is either prime either semiprime q1*q2 such that q2 - q1 + 1 is prime or square of prime. For other two primes p the number $p^2 + 4320 = q1*q2*q3$ such that q1 + q2 + q3 is prime ($8041 = 61^2 + 4320 = 11*17*43$ and 11 + 17 + 43 = 71; $9361 = 71^2 + 4320 = 11*23*37$ and 11 + 23 + 37 = 71) and for other two primes p the number $p^2 + 4320$ is a square ($13^2 + 4320 = 4489 = 67^2$ and $127^2 + 4320 = 20449 = 11^2*13^2$.

Conjecture 4:

There exist an infinity of primes formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such primes are:

```
409 formed from 49 = 7^{2};
:
     1021 formed from 121 = 11^2;
:
     1069 formed from 169 = 13^{2};
:
     2089 formed from 289 = 17^{2};
:
     3061 \text{ formed from } 361 = 19^{2};
:
     10369 formed from 1369 = 37^2;
:
     20809 formed from 2809 = 53^2;
:
     50329 formed from 5329 = 73^2;
:
     60889 formed from 6889 = 83^2;
:
     70921 formed from 7921 = 89^{2};
:
:
     100609 formed from 10609 = 103^2;
     101449 formed from 11449 = 107^{2};
:
     102769 formed from 12769 = 113^2;
:
     106129 formed from 16129 = 127^2;
:
     108769 formed from 18769 = 137^2;
:
     109321 formed from 19321 = 139^2;
:
     202201 formed from 22201 = 149^{2}.
:
```

Conjecture 5:

There exist an infinity of semiprimes q1*q2 such that q2 - q1 + 1 is prime or square of prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such semiprimes are:

:	$5029 = 47*107$ formed from $529 = 23^2$ (107 - 47 + 1 =
	61, prime);
:	$10681 = 11*971$ formed from $1681 = 41^2$ (971 - 11 + 1
	$= 961 = 31^{2};$
:	$30721 = 31*991$ formed from $3721 = 61^2$ (991 - 31 + 1
	$= 961 = 31^{2};$
:	$40489 = 19 \times 2131$ formed from $4489 = 67^2$ (2131 - 19 +
	1 = 2113, prime);
:	$60241 = 107*563$ formed from $6241 = 79^2$ (563 - 107 +
	1 = 457, prime);
:	90409 = 11*8219 formed from 9409 = 97^2 (8219 - 11 +
	1 = 8209, prime);
:	$100201 = 97*1033$ formed from $9409 = 101^2$ (1033 - 97)
	+ 1 = 937, prime);
:	$107161 = 101*1061$ formed from $17161 = 131^2$ (1061 -
	$101 + 1 = 961 = 31^2$;

```
: 202801 = 139*1459 formed from 22801 = 151^2 (1459 -
139 + 1 = 1321, prime);
: 204649 = 19*10771 formed from 24649 = 157^2 (10771 -
19 + 1 = 10753, prime).
```

Conjecture 6:

There exist an infinity of semiprimes q1*q2 such that q2 - q1 + 1 = q3*q4 where q4 - q3 + 1 is prime or square of prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such semiprimes are:

:	$10849 = 19*571$ formed from $1849 = 43^2$ (571 - 19 + 1
	= 553 = 7*79 and $79 - 7 + 1 = 73$, prime);
:	$20209 = 7 \times 2887$ formed from $2209 = 47^2$ (2887 - 7 + 1)
	$= 2881 = 43*67$ and $67 - 43 + 1 = 25 = 5^2$;
:	$50041 = 163 \times 307$ formed from $5041 = 71^{2} (307 - 163 + 100)$
	$1 = 145 = 5*29$ and $29 - 5 + 1 = 25 = 5^2$.

Conjecture 7:

There exist an infinity of composites q1*q2*q3 such that q1 + q2 + q3 is prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such composites are:

- : 8041 = 11*17*43 formed from 841 = 29^2 (11 + 17 + 43 = 71, prime);
- : 9061 = 13*17*41 formed from 961 = 31^2 (13 + 17 + 41 = 71, prime);
- : 30481 = 11*17*163 formed from 3481 = 59^2 (11 + 17 + 163 = 71, prime);
- : 101881 = 13*17*461 formed from 11881 = 109^2 (13 + 17 + 461 = 491, prime);
- : 206569 = 11*89*211 formed from 26569 = 163^2 (11 + 89 + 211 = 311, prime).

Note:

For all 35 from the first 35 primes greater than or equal to 7 the number formed in the way mentioned satisfies one of the conditions defined in the four conjectures above.