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Abstract

In this paper described some new view and properties of the power
function, the main aim of the work is to enter some new ideas. Also
described expansion of power function, based on done research. Expansion
has like Binominal theorem view, but algorithm not same.
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1 Introduction

A method based on derivative of n-rank difference between numbers of such
sequence, in this paper described the conclusion, that difference, which equals
to power of the numbers, is constant. Going from it we should to explain the
power function as series of derivative of some function. In this paper rank of
difference is written as k, also difference rank is maximal rank of differential
equation, which also described, ∆x, which often used, just shows, that start
numbers have linear nature and should be constantly for using such method.
We have the power function of the form:

f (xk) = xn
k
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0 < x ∈ R, n ∈ N

Have a distribution law for x
xk = k∆x

Where
∆x = xi+1 − xi

Annotation 0: Let be next numbers sequence: xk = {1, 2, 3, 4, 5, 6, 7, ..., N} As
we can see the difference xi − xi−1 = 1 → ∆x = 1 and numbers have next law
xk = k. Let introduce next example: xi = {0, 3, 6, 9, 12...N} → xi = 3i. We
have a set of values, done by next form functions:

∆1
i = xn

i+1 − xn
i ,

∆k
i = ∆k−1

i+1 −∆k−1
i ,

Where k is rank of delta function, in case of:

k = n

the set has a distribution of the form(for each i indexes is constant):

∆n
i = n!(∆x)

n

Let enter the follow sequence of numbers:

xk xn
k ∆1

i ∆2
i ∆3

i ......∆n
i

x0 xn
1 xn

1 − xn
0 ∆1

1 −∆1
0 ∆2

1 −∆2
0 .......∆n−1

1 −∆n−1
0

x1 xn
2 xn

2 − xn
1 ∆1

2 −∆1
1 ∆2

2 −∆2
1 .......∆n−1

2 −∆n−1
1

x2 xn
3 xn

3 − xn
2 ∆1

3 −∆1
2 ∆2

3 −∆2
2

x3 xn
4 xn

4 − xn
3 ∆1

4 −∆1
3

x4 xn
5 xn

4 − xn
3

x5 xn
6

if
∆x→ 0

we have next n rank delta view:

dny = n!dxn

Assume that:
f (n) (x) = n!(∆x)

n

Then:

d(f (n−1)(x)) = n!(∆x)
n
dx→ f (n−1)(x) =

∫
n!(∆x)

n
dx = n!(∆x)

n
∫

dx = n!(∆x)
n
x+C1
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After we may deduce f
′
(x):

f
′
(x) = n!(∆x)

n xn−1

(n− 1)!
+∆n−1

0

xn−2

(n− 2)!
+ C2(i)

xn−3

(n− 3)!
) + C3(i)

xn−4

(n− 4)!
+ . . . + Cn−1 (i) ,

where Ck(i) - the constant generating functions given by the equation:

Ci (x) = ∆n−i
0 −

(
∆n−i

0 −
(

∆n−i
1 − f (n−i) (1)

))
i

The general idea of the method is to get f
′
(x), which when used with sum

operator returns correct value of number to power with number of steps f(n),
if we have f (n)(x) so that intermediate values f (k)(x) correspond to the values
of delta f (k)(x) = ∆k

x, k ∈ [1, ...n− 1] . The derivative of some rank k is basic
equation for ∆k

x, f (k)(x) = ∆k
x.

2 Example for x3

Let be next set of numbers:

xi x3
i ∆1

i ∆2
i ∆3

i

0 0 1 6 6
1 1 7 12 6
2 8 19 18 6
3 27 37 24 6
4 64 61 30
5 125 91
6 216

As we can see the last difference for each i is became constant and equals to
3!, described an algorithm, when

∆x = 1

Let white the third rank delta next:

f
′′′

(x) = 3!

Second delta should be accordingly next:

f
′′

(x) = 3!

∫
dx = 3!x + C 1

C 1 = ∆2
0

Then first delta is:

f
′
(x) =

∫
(3!x + C1) dx + C2 = 3!

x2

2
+ ∆2

0x + C2(i)

After we should to make conclusion (description is in Annotation 1) of
C2 (x) :
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C2 (x) = 1− (1− (7− f
′

1(1)))x = 1− (1− (7− 9))x = 1− 3i

So, the the first derivative is:

f
′
(x) = 3x2 + 6x + (1− 3i)

Let enter next equalization: i = x→ f
′

k (x) = 3x2 + 3x + 1
So expansion for x3

i has follow view:

x3
i =

xi−1∑
x=0

f
′

k (x)

2.1 Example for x4

Consider the next numbers:

x x4 ∆1
i ∆2

i ∆3
i ∆4

i

0 0 1 14 36 24
1 1 15 50 60 24
2 16 65 110 84 24
3 81 175 194 108
4 256 369 302
5 625 671
6 1296

Let write fourth delta as f (4) (x) = 4!
Third delta is:

f
′′′

(x) = 4!

∫
dx = 4!x + C 1

Constant 1 is next:
C1 = ∆3

0

By integrating of third derivative we obtain second delta function:

f
′′

(x) =

∫
(4!x + C 1)dx = 4!

x2

2
+ ∆3

0x + C2(i)

Next we should to obtain Constant 2 function:

C2(i) = 14− (14− (50− f
′′
(x)))i = 14− 12i

f
′
(x) =

∫ (
4!
x2

2
+ C 1x + C2 (i)

)
dx =4!

x3

3
+ ∆3

0

x2

2
+ C2 (i)x + C3 (i)

C3 (i) = 1− (1− (15− f
′
(1)))i = 1− 10i
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After integration we obtain the first derivative:

f
′
(x) = 4x3 + 18x2 + 14x− 12ix + 1− 10i

If we equal i = x derivative is changed follow way: f
′

c (x) = 4x3 + 18x2 + 4x−
12x2 + 1

As described upper, we may to obtain next expression:

x4
i =

xi−1∑
x=0

f
′

c(x)

2.2 Example for x5

Let be next distribution:

x x5 ∆1
i ∆2

i ∆3
i ∆4

i ∆5
i

0 0 1 30 150 240 120
1 1 31 180 390 360 120
2 32 211 570 750 480
3 243 781 1320 1230
4 1024 2101 2550
5 3125 4651
6 7776

As we can see : f (5)(x) = 5!, d(f (4)(x)) = 5!dx → f (4)(x) = 5!
∫
dx + C1

Next let put C1 = ∆4
0 :

f (3)(x) =

∫
(5!x + ∆4

0)dx = 5!
x2

2
+ C1x + C2(i)

C2(i) = 150− 60i

f
′′
(x) =

∫
(5!

x2

2
+ C1x + C2(i))dx + C3(i)

C3(i) = 30− 80x, f
′
(x) =

∫
dx(

∫
(5!

x2

2
+ C1x + C2(i))dx + C3(i)) =

= 5x4 + 40x3 + 75x2 − 20x3 + 30x− 80x2 + C4(x) |i=x

where C4(x) = 1−
∑n−1

x=1 30x2 + 20

3 Operating with float numbers

The first derivative, which we use to expanse power function, has such type:
f
′
(x) = a0x

n+a1x
n−1+a2x

n−2+a3x
n−3+ . . .+an where a1...an ∈ N and used

with f(x) = xn, x, n ∈ N . So, if we want to make expansion for float number
with i number of symbols after point we should to revision our function next way:
f
′

r (x) = b0x
n +b1x

n−1 +b2x
n−2 +b3x

n−3 + . . .+bn where bk = ak/10in we have
only to change coefficients, of the function according the power n and number of
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symbols after point i . Number of iteration is placed in range (1, (10−inn− 1))
And expression seen follow:

xn =

(10−in)n−1∑
k,i=0

f
′

r(k, i), xi ∈ R and float

4 Examples of sequences

In this annex will be displayed the sequences accordingly start distribution of the
type: xi = k∆x . For example let be next set for f(xi) = x4

i , xi = 2i, ∆x = 2.

f(xi) = x4, xi = 2i :

xi x4
i ∆1

i ∆2
i ∆3

i ∆4
i

0 0 16 224 576 384
2 16 240 800 960 384
4 256 1040 1760 1344 384
6 1296 2800 3104 1728 384
8 4096 5904 4832 2112 384
10 10000 10736 6944 2496
12 20736 17680 9440
14 38416 27120
16 65536

→ ∆4
i = 4! · 24 =

24 · 16. Next let show the example for float numbers:

f(xi) = x3, xi = 1/10i,∆x = 0, 1 :

xi x3
i ∆1

i ∆2
i ∆3

i

0, 1 0, 001 0, 007 0, 012 0, 006
0, 3 0, 008 0, 019 0, 018 0, 006
0, 4 0, 027 0, 037 0, 024 0, 006
0, 5 0, 064 0, 061 0, 030 0, 006
0, 6 0, 125 0, 127 0, 036 0, 006
0, 7 0, 216 0, 169 0, 042 0, 006
0, 8 0, 343 0, 217 0, 048
0, 9 0, 512 0, 271
1 1

→ ∆3
i = 3! ·∆x = 3! · 0, 13

5 Expressions in use

x3
i =

xi−1∑
x=0

3x2 + 3x + 1} and : 33 =

2∑
x=0

3x2 + 3x + 1 = 1 + (3 + 3 + 1) + (12 + 6 + 1) = 27

x4
i =

xi−1∑
x=0

4x3 + 18x2 + 4x− 12x2 + 1 and : 24 =

1∑
x=0

4x3 + 18x2 + 4x− 12x2 + 1 = 1 + 15 = 16
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6 Conclusion

In this paper extended a topic about expanse of basic type power function with
linear distribution of start numbers. Method is need to be revised, explained
only the basic idea, future researches in this side will improve it. Theoretically,
if we have some random numbers sequence we could to present it as xk =
k∆x,∆x = f(k), in that case f(k) = ln(k), or f(k) = exp(k) or some other
function. It could give us a new interpolation methods.

Dedicated− to− V alerie−Oprya

with love
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