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Abstract: It iswidely believed that Dirac magnetic monopoles and their related electric charges
must be quantized, and that any fractional charges one might posit cannot exist without creating
forbidden observable singularities. Here, we explicitly present a vector potential for a Dirac
monopole with fractional magnetic and electric charges whose curl is a Coulomb magnetic field
and which potential has no observable singularities. We then demonstrate how these fractional
charges are projected onto SO(3) from topological covering groups with generators which are
the generalized m™ roots of the 2x2 identity matrix I, situated at various Euler angles on the
complex plane of the covering group generators, all without observable singularities.
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1. Introduction

In 1931 Dirac [1] discovered that if magnetic des with strengthg were to
hypothetically exist, then this would imply thaeelric charge strengthmust be quantized. The
relationship he found, often written &sg = n wheren is a positive or negative integer or zero,

came to be known as the Dirac Quantization Condii@QC). In the mid-1970s, to remedy the
need to resort to the fiction of Dirac’s “nodaldsi which subsequently became known as Dirac
strings, Wu and Yang [2], [3] developed an approatich does not at all make use of these
strings. Its results are completely equivalenDi@ac's, with the only difference being that it is
cast in the more-modern language of fiber bundlesthe Wu Yang approach, one uses bJ{1)
gauge theory to obtain the differential equat®lide” =i2egdg where A is the gauge (really,
phase) angle ang is the geometric azimuth about the z-axis in tiree¢ dimensional physical
space of the rotation group SO(3), which equatsosaisily seen to be solved for constant electric

and magnetic charges lexp(iA) = exdi 29¢). It has long been believed that the only solution
to this latter Wu-Yang equation that is free of etvable singularities, i2eg =n; and this is in

fact true if one restricts the azimuth domain on&@o 0< ¢ < 277. But otherwise, as we show

here, it becomes possible to widen this solutiomt¢tude non-singular fractional charges of the
form 2eg =n/m wheremis also an integer.

In sections 2 through 4 we explicitly present atgepotential for a Dirac monopole with
fractional magnetic and electric charges whose sud Coulomb magnetic field and which
potential has no observable singularities using dfaedard Dirac condition. Thereafter, we
show how if one instead moves this domain restmctiut of SO(3) and into certain topological

covering space§& for which the generators are generallykfieootsk =1,2,3,4,5.. of a triplet
of 2x2 identity matrices I,, i=1,2,3, and then surjectively projects these groups

homomorphically onto SO(3) via: G — SO(3), the SO(3) domain is widened €< ¢ < 271k .

Most importantly, we show how with this widened dom it then becomes possible to project
Dirac monopoles onto SO(3) which adhere to the tifvaalized quantization condition
2eg =n/m, with m=k arising from the expanded SO(3) domaiiijch fractional charges do

not give rise to any observable singularities.
2. Local U(1)em Gauge Transformations, In General

We begin by considering a first electron wavefumcty_(x*) which is related to a

second electron wavefunctian, (x“) by the local U(1) gauge transformation (throughous
shall employ natural unitd =c =1):

Yo -y, =y =exp(iN)y., (2.1)

where phase angl&(x*) varies locally as a function of the spacetime dowmtes as do the
wavefunctions.  BecauseJ =exp(iA) is unitary, U*U =1, the probability density
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p=y¢. w, =(U*U)y "y =y "y_ is naturally invariant under this transformatioif.we write
the complex wavefunctiog, (x*) = A, (x*) +iB, (x*) and likewisey_(x*) = A (x*) +iB_(x"),
this invariance means thak *(x*) + B,*(x*) = A *(x*)+B_*(x*). And of course, we require
that Ipd"'le to ensure that thiso is indeed a probability density, which also serves
normalizep .

Next, we define a gauge potentidl ,(x“) to be the electromagnetic vector potential
corresponding to the wavefunctigp_, and we then use this to define the gauge-couarian
derivative D_, =0, +ieA , wheree is the (running) electric charge strength, andrettiee sign

of ieA , is positive because we are using a Minkowski meehsordiag(/yw) :(1,— 1- 15 ).

versus the oppositely-signed convention. Applytinig derivative to each side ekp(iA)_ in
(2.1), we obtain:

D_#(exp(i/\)z//_) :(aﬂ +ieA_ﬂ)( exp(i/\)(//_)
=i0 Aexp(iN)y_+ exp(iN)0 g +ieA , exgiN)y_ . (2.2)

=exp(in)[ 9,4 +[ieA, +id A Jy.]

Next, based on the inner bracketed expressionenbtittom line above, we define a
second gauge potentid, , corresponding with the wavefunctigh according to:

eA, , =eA  +0 /. (2.3)
With this, (2.2) may be written more compactly as:

D_,, (exp(in)y_) = exin)(a, +ieA,, )w_. (2.4)
Then, defining the related covariant derivatibg, =0, +ieA, , (2.4) further reduces to:
D_ﬂ(exp(i/\)z/J_) = exdiN) D, .. (2.5)

If we now applyD_, to all expressions in the wavefunction transfororat2.1), the
above allows us to write:

D 4 - D 4. =Dy =D, (exp(iA)y. )= exe(i\)D, 4. (2.6)

Multiplying the subset equalityD_, =exp(iA)D, 4 through by exp(-%iA), yields an
expression which highlight the +/- symmetries:
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exp(-4iA)D_y, = exd$iA)D, i, (2.7)

or, directly in terms of the gauge potentials g, =0, +ieA , andD, , =9, +ieA,:

exp(-4iA)(9, +ieA )y, = ex1iA)(9, +ieA )y (2.8)

The gauge transformation (2.3) acting on the gdiedds may readily be rewritten using
the mathematical identiti A =e™9 ", as:

A=A, +e"d " ie. (2.9)

Further, one may generally pack a vector potemtit the differential one-formA = Audx”.

Therefore these two potentials have the assocatedormsA, = A ﬂdx” andA = A ﬂdx”, and
(2.9) therefore compacts and rearranges into:

A -A =e"de" /ie. (2.10)

This tells us that these two gauge fields diffenirone another by no more than a J{lbauge
transformation.

3. A Coulomb Magnetic Field which is the Curl of a Vector Potential,
i.e., a U(1)em Magnetic Monopole

The electromagnetic field strength two-forim=3 Fwdx”dx" is in general related to the
vector potential byF =dA, and so is a locally-exact two-form. Extractirtge telectric /
magnetic bivectorF, , the space components of the field strength teasoF; =0,A —-9,A .
The magnetic field vectoF; :—eijkB" where g, is the antisymmetric Levi-Civita tensor and

&,;=11, and where Bk:B:(B B B) in Cartesian coordinates.  Likewise, using

x1 "y =z
diag(7,,)=(1-1- 1~} to lower indexes in A“=(gA)=(p A A.A), and with
0,=0 =(ax,ay,az), this means thaf, = -¢, B“=0,A -0,A , or B=0OxA. So whenever

we haveF =dA in general for a given potential, the magneti¢dfiB will be the curl of the
vector potential [1xA..

Now, let us define the two four-vector potentiaisA and A, of the last sectiosuch

that these are the potentials forCaulomb magnetic field B which is the curl of these vector
potentials,B =[xA, that is, let us now define the potentials for agmetic monopole. First,
we posit a (running) magnetic charge strerggtor such a monopole. Second, we write each of
the potential one-form#& and A, in a polar coordinate basis as:

3



Jay R. Yablon

A, =g(cosg+ Jdg

A =g(cosf- )dg G-

Confining our domain td < &< 77, we see tha#, is a “southerly” potential defined everywhere
except atd =0, i.e., except due north of the origin, whife is “northerly” because it is defined

everywhere except & =77, i.e., except due south of the origin. We now slhiost these will
indeed produce a Coulomb magnetic field for whiglr O0x A for both of the vector potentials
A, A_.

First, we holdy constant,dg =0, that is, we do not legj run over the region of spacetime

in question. Now, because differential forms geometaghes thatld =0 in general and thus
dd¢ =0 in this specific setting, this all means that:

F =dA =dA =gdcosfdg. (3.2)
Therefore, for either potential, the magnetic fiéld= O xA_=[0xA,, as desired.

Of course,dF =ddA, =ddA =0 via the same identityld =0, which means that is

closed and locally exact. But it is not globalkaet. Specifically, if we integrate (3.2) over a
closed two-dimensional surface wighstill held constant, and if we also apply Gausstok8s’
theorem, then:

[[JdF =¢pF =podcosadp = g["d coﬁjoz”dqs =g cod[ ¢["=- Ag. (3.3)

The fact that we are holdingconstant throughout the spacetime region under deration is
reflected by our having movegloutside the integral after the third equal sign abd\vew let us
specifically pinpoint the magnetic field.

To do so, we consider the circumstance for which teetric fields vanish, that is, for
which F, =-F ,=E=0. In this circumstanceﬂs F :<ﬁ>iF dx*dx” :@%Fijdx‘dxj . Then,

2w

using this in (3.3) also in view df; = —fsijkB" , we find that:

fpF =¢p1F, dedx’ = ff R dxdx® + §f F o’ + fp Fooxox = ~pBS=~4ng . (3.4)
So from the final equality above, this means that:

#8@8247795#, (3.5)
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where ¢ =4rg is defined as the total magnetic flux across tbeexl surface. Conversely, the
magnetic charge strength = /4, when held constantg =0 in the integral (3.3), also
represents the steradial density of magnetic fleross the closed surface. This, of course, is
Gauss’ law for magnetism in integral form, but wéhnon-zero magnetic fluy: across the
closed surface. Thus, this is the integral formaraof Gauss’ law for a magnetic monopole, for
which there are no inducetkctric fields, which is confirmed becauge0 in (3.4), (3.5). As a
result of there being no electric field inducti¢®,5) describes this magnetic monopole at rest.

Now, in general, Coulomb’s law cannot be derivexhf Gauss’ law alone. However, if
the magnetic monopole is stationary — which it éeduseE =0 in (3.4) and (3.5) — then the
magnetic fieldB in (3.5) will be exactly spherically symmetric. sAa result of this spherical
symmetry, we may remo\& from the integrand in (3.5), thus writing:

B(ﬁ)dszBmmzzmrg:,u. (3.6)

Because of the spherical symmetry, only the razbatponentB, of B will be non-zero, that is,
in spherical coordinates, we will haB= (Br,B¢,Bg) = (Br ,0,0). Therefore, (3.6) now yields:

B,:r%=47/7’rz. (3.7)

This is indeed a Coulomb magnetic field which hasagnetic charge strenggh and for which
the total magnetic closed surface flux=47rg. Furthermore, this Coulomb magnetic field is

the curl of the vector potentialB,=0xA_=[0xA, .

Now, we turn to examine the full set of conditiamsder which this Coulomb magnetic
monopole withB =[x A does not give rise to any observable singularities

4, Conditions under which the U(1)em Magnetic Monopole has No
Observable Singularities: The Standard Dirac Quantization Condition

Returning to (3.1), we first find that the diffe:
A -A =2gdg. (4.1)
Combining the above with (2.10) then yields théedléntial equation:
e"de" ie=2gdg . (4.2)

This differential equation clearly is solved fornstante and constang, i.e., for de=0 and
dg =0 by:
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exp(in) = exdi 29¢). (4.3)

We then return to (2.1) and employ this solutiooperate ory_, thus writing:

Y. -y =y =exp(in)y_ = exdi 2gg)y._. (4.4)

Clearly, for ¢ =0, we havey, =¢_. But as we movey, through the Coulomb magnetic field

of (3.7), we must require that the wavefunctioniséatcertain constraints. If we confine
ourselves to the domaif< ¢ < 27, then to makey, single-valued for complete rotations

through ¢ and thus avert string singularities, we eeguired to impose the condition:
269 =n, (4.5)

wheren is a positive or negative integer, or zero. Usmg u/ 4, this may alternatively be
expressed as

eu=2m. (4.6)

These are two different but equivalent ways ofisgathe standard Dirac Quantization
Condition (DQC). With this condition imposed, (tBecomes:

Y. -y, =y =exp(iN)y. = ex{ing)y._. (4.7)
Also, note the implied quantized relationship:

N=ng (4.8)
between the phase angle and the azimuth anglg.

Then, as we move@, over an entire, single closed curve from an azimgi= 0 to an
azimuth¢ =277, (4.6) above will become, fap = 277:

W -y, =y =exp(iN)y. = exding)y_ = expi 2n)y_=y_. (4.9)

Thereforel//+(¢:2ﬂ) will have the single valugy, =¢_ for any and alh. This means that

there will be no string singularities. From (4.5), we see that the electric charge gtheins
quantized in units oB=3n/ g, and reciprocally, that the magnetic charge strersgquantized

inunits ofg=4n/e. Likewise, forg =0 wound tog =277, (4.8) becomes:

A =2m (4.10)
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With the quantization condition (4.5) we may figateturn to (3.1) and write the
potentials as:

, (4.11)

which complement the relationshif, :exp(inqﬁ)(//_ in (4.7). It is sensible that for an electric
charge strength which is quantized, the assocjaézhtials will likewise be quantized as above.

The question we now raise is whether (4.5) is too réiseicand in particular, a) what
sorts of quantization conditions are permitted or requifeve expand the azimuth domain to
allow for 0< ¢ < 271k , wherek is any positive integer, b) what it actually meaopologically,

to expand the azimuth domain in this fashion, c) leoe might go about expanding this azimuth
domain in a well-defined, unambiguous manner, d) whethere are other non-singular

monopole charge solutions which are being overlook€d.5) and which are only revealed with

this expanded domain, and e) what those overlookeesimgular solutions might be.

5. Extended Domain Non-Singular Conditions: The Fractional Dirac
Quantization Condition

The standard DQC of (4.52eg =n, was a required condition for avoiding observable
string singularities when we restricted our considenatm the azimuth domai®< ¢ < 27.

Now we examine the question of what happens whemextend this domain to azimuths for
which 0<s ¢ < 27k . To prepare for this examination, let us first poseukareplacement of the

ordinary DQC with a more liberal Fractionalized Diraca@tization Condition (FDQC):

=Q. (5.2)

3>

2eg =

Above,mis a positive integer, that isp=1,2,3,4,5.. and Q generally denotes any real number
which can be written as a quotienf m, i.e., any rational number. We then denote theoke
irrational real numbers b). Under this liberalized condition the electric andgmetic charge

strengths would become=3n/mg and g =5n/me, and so would not only be quantized in

units of n, but would also be fractionalized by denominatorsmof This also means that the
vector potentials (3.1) would now become:

eA, Elﬂ(cost% )dg
im (5.2)
ea ==

5 m(cos@— )dg
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contrast (4.11). It is sensible that for fractitred charges — to the extent that they can exist
without singularities — the potential would alsodut by a commensurate fraction.

Now, we do not expect that (5.1) will avoid obsédaeasingularities without restriction.
So our goal is to understand the circumstancesrumdieh (5.1) can hold without singularities,
versus those under which it is excluded becausengtilarities. To do this we first explore what
sorts of restrictions must be imposed upon (5.1nmntain ¢, in (4.4) as a single-valued

wavefunction and thus avoid any observable stringudarities. Then, we turn to understanding
the topological conditions that might support streletional charges (5.1).

If we utilize the FDQC of (5.1) rather than the DQG405) and simultaneously consider
the extended domai@< ¢ < 271k , then (4.4) becomes:

. =explin)y = exi )y = expi oo 53)

N
m
Of course, forg =0 we still havey, =¢_, which is single valued.

Now, let us now suppose that we again move thdreledrom ¢ =0 to ¢ =27 over a
single rotation about the magnetic monopole fi8ld). With ¢ =2, (5.3) yields:

W, =exp(inN)y_ = exdi 4meg)y. = exéi% ZnJ(//_. (5.4)

This will be single-valued for ah, if and only if m=1, which is the standard DQC of (4.5). In
other words, when the azimuth domain is restritted < ¢ < 277, we must employ the standard

DQC 2eg =n without fractionalization, which is contained wiih(5.4) for this requirean=1.
No fractional charges may be admitted withOa ¢ < 27 domain. And this is where the
prevailing view and understanding of Dirac monopaads.

But now, rather than performing a single rotatitat,us revolve the electron about the
monopole twice, fromp =0 to ¢ =4s/7. That is, let us now consider the domais ¢ < 477 for

whichk=2. Then, (5.3) yields:
W, =exp(iN)y. = exdi 8rg)y. = exéi% Arnjw_. (5.5)

If m=1 this will be single-valued for afl, which of course is trivial, because1 used in (5.1) is
still just the standard DQC. However, here, we naggso employm=2 without having an

observable singularity. Ifn=2, then (5.5) will becomey, :exp(i Zm)l//_, and we will also
retain A =2/m from (3.10). Clearlyy, :exp(i 27'm)(//_ Is still single-valued for any and al
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and thus produces no observable singularitiesuin: fork=2, we can set eithen=1 or m=2
in (5.1) and remain free of singularities.

Next, let us wind the electron about the monogbtee times, fromy =0 to ¢ =677.
Now the domain i€ < ¢ < 677 with k=3. For this domain (5.3) yields:

w, =exp(iN)y. = exdi 12mg)y_ = exéi% ﬁnjw_. (5.6)

This wavefunctiony, will be single-valued and thus non-singular fierl andm=3. However,
it is not single-valued fom=2, because in this evert, =exp(i 3m)y_ = exdim)y_ =5¢._,
which is two-valued, with the coefficientl. For oddn=1,3,5... ¢, =—¢_ while for even

n=0,2,4,6.. ¢, =+yY_. Thus, fork=3, the fractionsm=1,3 are non-singular and so are
permitted, butm=2 would lead to an observable singularity andssexcluded.

For ak=4 quadruple revolution over the domdg ¢ < 87, we have:

W, =exp(iN)y_ = exdi 16mg)y_ = exéil anl//_. (5.7)
m

This will remain single-valued thus non-singular fn=1,2,4. Howeverm=3 is excluded, and

it is interesting to see why.

For the excluded fractiom=3, (5.7) becomes:

@.(m=3)= exr{igmjw_ = ex;{i%nn}c//_ :{ coE—énnjH SiE\—iﬂnﬂdL. (5.8)

Forn=1, m=3 the argument of these periodic functions becof&ret3= 120, which sits in the
upper-left quadrant of the complex+bi plane. We can use 80°- 60— 90 triangle to

ascertain thatos( 27 /3 =-1 andsin(27/3=+/3/2 So fom=1, (5.8) becomes:

l//+(n:1,m:3):{—%+i—}w_. (5.9)

Forn=2, m=3 the argument becomdsr/ 3= 240, which uses the san®0° - 60 — 90 triangle
simply in a different (lower-left) quadrant of tlkemplex plane where the sine and cosine are
both negative. Now:
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N

z//+(n:2,m:3):{— —ig}//_. (5.10)
For n=3, m=3 the argument becomé&¥7r and thereforew+(n =3,m= 3) =+1y . Som=3 is

excluded from th&=4, 0< ¢ <8 circumstance becaugg, becomes triple-valued, with the

coefficients in (5.9) and (5.10) as well as thefficent +1. For highemn, these same results
merely recycle themselves. Importantly, as welstairtly develop in depth, on close perusal,
we realize thathese coefficients are identical with the cubed roots of unity.

Thek=4 domain in (5.7) is also the first domain for alnk is not a prime number, and
this is responsible for the fact that the fract&grwhich is a prime factor of 4, is also permitted
amongstm=1, 2, 4 without singularity. Specifically, when we set2 in (5.7), we obtain:

W, =exp(iN)y. = exdi 16mg)y_ = expi M)y _=y_, (5.11)
which is clearly single-valued therefore non-sigund permitted.

In the foregoing, we now see that the Euler retafi1 = expid = ex{i 2n M) for the

m™ roots of unity plays a pivotal role in weeding itigular from non-singular fractionalized
solutions. At (5.6), fok=3, we excludedn=2 because it yielded the two-valued wavefunction
coefficient +1. But this coefficient contains no more and ne ldgan the square roots of unity

= expid = ex;(inn) =+ with the Euler angle¢? = 5rm=180",360 in the complex plane for
n=1,2. Then, in (5.9) and (5.10) f&e=4, we excludedn=3 because this yielded the three-
valued wavefunction coefficient’l = expid = ex{i 2m /3 with 9 =2/m/3=120,240 ,360

associated with the cubed roots of unity fo1,2,3. At the same time(k,m)=(4,2) is
permitted, because 2 is an evenly-divisible faofd=4. Let us now continue to some larger

For fivek=5 rotations of the wavefunction about the monop0ke ¢ <107 we have:

W, =exp(iN)y_ = exdi 20meg)y._ = exéi% mnjgl/_. (5.12)

Here, the only permitted non-singular fractions are1,5. For the excludedw2 fraction the
above would yield the two-valuegl, = exp(i 5m)y_ = ex{irm)y_ =%/ @_. The excludedn=3
fraction ¢, =exp(i10m /3y_= expi 4n /By has &=4rm/3= 240,480 ,720 for
n=1,2,3 which replicates the three-valued, :\/_llﬂ_ for the cubed roots of unity. The
excluded m=4 fraction yields @, =exp(i10m /4y_= exgirm /2y =Y @ which is
quadruple-valued based on the fourth roots of unity‘i/i:il,ii with

10
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d=m/2=90,180 ,270 ,36T for n=1,2,3,4. So we see that it is easy to summarize the
excluded states simply by using th8 roots of unity’{ﬁ as the wavefunction coefficient.

For sixk=6 rotations with domai® < ¢ < 1277 we have:

W, =exp(iN)y_ = exdi 24meg)y._ = exéi% 172nj¢/_. (5.13)

This permitsm=1, 2,3, €, because it is single-valued and so non-singolaary of these. It will
be readily seen that the excluded: 4,5 yield the respective four-valued and five-valuesults

@, (m=4)=Yw_ and ¢, (m=5)=¥1_ involving the fourth and fifth roots of unity. Of

course, 6 =2x3 is not a prime number, and we sakith prime factors are precisely those
m= 2,3 fractions which are also permitted. For2 the above becomes:

W, =exp(i6m)y_=y._, (5.14)

and form=3 (5.13) becomes:

W, =exp(i 4m)y_=y._. (5.15)
Fork=7 seven revolutions ovér< ¢ < 1457, we have:

W, =exp(iN)y_ = exdi 28myp)y. = exéi% mjw_. (5.16)

The only permitted fractions ama=1,7, and this is because 7 is a prime number. Thieiésd
fractions yield the m-valueg, (m) =¥1y_ for m=2,3,4,5,.

For an octuplet of revolutionk+8 over0< ¢ <167, we have:
. . o1
W, =exp(iN)y. = exdi 32rg)y. = GXEI— 1ﬁnj¢/_. (5.17)
m

The permitted fractions arem=1,2,4,¢, which represent the prime factorizationksf8. The
wavefunctiong, (m) = ¥1y_ is multivalued for the excluded fractions / uniopts m=3,5,6,7.

For nine revolutionk=9 over0< ¢ <187, we have:
: : .1
W, =exp(iN)y_ = exdi 36reg)y. = eXEIE lﬂnjl//_. (5.18)

11
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This admits the non-singulan=1, 3,9, which again are the prime factors, this timé&=e9. All
other excluded fractions1 = 2,4,5,6, 7,¢ yield multivaluedy, (m) = Qﬁz//_ :

Finally, for ten revolutions oved < ¢ < 2077 we have:
: . 1
W, =exp(iN)y_ = exdi 40mg)y. = exél P 2ﬂnj(//_. (5.19)

This allows the fractionsn=1, 2,5,1( which the prime factors &10, and the excluded states
m=3,4,6,7,8,¢ continue to be multi-valued witly, (m) =y .

So we see that as a general rule, if we move atretefrom ¢ =0 to ¢ =277k wherek
is an integer denoting the number of revolutionsuttihe monopole, the fractioms in (5.1)
which are permitted without singularity will bem=1 and m=k if k is a prime number, and
additionally, all integers in the prime factorizatiofk if k is not prime. The fractions which are
excludes are those with multivaluedl’ roots of unity operating on the wavefunction adaay

to ¢, (m)=Y1_.

Seeing that the root of unity relationship:
Y1 = expid = exp{i ZTEJ = co% ﬂﬂjﬂ s(n ﬁﬂj: cosm@) +i  $imQ) (5.20)
m m m

plays a fundamental mathematical role in charagtegiand understanding when the fractional
charge condition of (5.1) will and will not creaddservable singularities, it becomes apparent
that it will generally be desirable to evaluate amd cos functions in which the Euler angle
J=2mQ is a rational multiple of2/7. For simple angles such agmr/3=120 and

471/ 3= 240 with Q =1/3 andQ =2/3 as in (5.9) and (5.10), one can draw suitablegtes
and obtain these sines and cosines in terms of miahtegers. But as the fractiomalbecome
larger integers, it becomes difficult, and in maages impossible, to draw a regular polygon and
then start manipulating subset triangles. Theeprefl approach, which can be used doy
fraction m, is to instead write these roots &85 =1 i.e., as the polynomial equatiaii—-1=0,

and then to find each of the values ofx which are roots of this polynomial. Of courseeaf
thesem roots is always 1 itself, s&—1=0 can always be factored out. It is then readignse
with this factorization that this polynomial may Wwetten as:

X" —1:(xm‘1+xm‘2+xm‘3...+ X3+ X%+ x+])(x— ) =(x- ])Zi":;lxi = (. (5.21)

So themr1 m™ roots of unity aside from 1 itself are generatiyrid by solving the polynomial:
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>rox =0. (5.22)

i=0

Of course, for largen, this is not a trivial polynomial to solve. But principle, this makes it
possible to find any and all roots that may be réesi So, for example, for the cubed roots of

unity used in (5.9) and (5.10), the polynomial ¢yequadratic) isx®> + x+1= 0, which is readily
solved asx:(—li V1= 4) /2:(— ]ii\/_G) / z and which indeed corresponds to (5.9) and (5.10).

The third of these three roots is the trivial r@,ﬁt= 1.

From (5.3), the phase is now related to the azirbyt
N=—¢. (5.23)

So for ¢ =27k in general, this phase is given by:

A=Kom. (5.24)
m

Whenevem=k, the phase result (5.24) becomi&s 27m, which is no different at all from the
result (4.10) for the standard DQC.

Now let us see how to make topological sense @damon-singular, fractional charge
solutions2eg =n/m=Q of (5.1) which do admit fractions wit= 2, but which still maintain

a single-valued wavefunction and so avert any ofakée singularities, when the domain
0< ¢ < 27k runs to a higher upper limit therr.

6.  Using kth Root-of-Unity Covering Groups with 2t Domain
Limitations to Project a 2wk Domain onto SO(3) and thereby Permit m=k
Fractional Dirac Charges without Observable Singularities

We begin with (5.5) in which an electron is motktbugh two azimuth rotations about
the monopole, fromp =0 to ¢ =47. When we take an integral such as (3.3) ovedtmeains
of 0<f<m and0< ¢ <4, it is clear that we are double-covering the fotagroup SO(3) in
the physical space of spacetime. This covering beajopologically described by a two-to-one
mapping of the elements of SU(2) onto those of $Q(8., by a surjective homomorphism
described by the projectiorr: SU (2) » SO(3). Suppose that we now wish to limit the domain
to 0< ¢ < 277 and still double-cover SO(3) ovér< ¢ < 477 so as to permit a fractional charge
with m=2 and have no observable singularity. How do wehis? If we impose this domain
limitation on SU(2) rather than on SO(3), the@ra rotation in SU(2) will projectively map onto
a 4rr rotation for SO(3) and so we can double cover $O¥@r the larger domaif< ¢ < 47
and so admit a non-singulan=2 fractional charge, while at the same time rastrg SU(2) to
remain within the0<¢ < 27 domain. Simply put, and as is well-known, witk=1,2,3
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corresponding to the three physical space dimeasamy rotation over some angk in SU(2)
maps onto a rotation throudt® in SO(3).

This is also responsible for so-called orientagoanglement whereby a spinor will
reverse sign under 2/7 rotation in SO(3) which is &7 rotation in SU(2), and only have its sign
restored under &7 rotation in the same SO(3) which i2& rotation in SU(2). Specifically,

using the rotation operatoR=exp(iJ[#) defined on SO(3) and the unitary operator
U :exp(iaw /2) defined on the universal cover SU(2), when wedase one of the angles in

=6 by 2, this sign changdoes appear in SU(2) wheredy - —U , but it does not appear
in SO(3) wherebyR -~ R.  This means that there is something capturedsby{2) that is
missing from SO(3). This in turn means that SG¢3)nly an approximate symmetry, whereas
the true, exact, operative symmetry which recongisgign change is seen only when we employ

the universal cove6s, = SJ(2) and project this viar: SU (2) — SO(3) onto SO(3).

So now we return to (5.5) for@=0 to ¢ =47 double rotation / double cover of SO(3),
with the domain0< ¢ < 477. As already seen, this does admit both of thesiogular fractional
valuesm=1 and m=2 from the Fractional DQQ@eg =n/m of (5.1) by maintaining a single-

valued wavefunction for ati in either case. Of course, the non-singualad is just the standard
DQC; our present interest is m=2 because this represents a half-unit charge anduse this
too has no observable singularities.

The vector potential for such a half-unit fractibeharge is represented by (5.2) with
m=2, and it certainly makes sense that a monopolk half the charge strength will have a
potential which is likewise cut by a factor of twénd via (5.5), see also (5.24), we see that the
m=2 phase solution is stil\ =27m, just as for the standard DQC, see (4.10). Seeifwish to
restrict our domain t®d < ¢ < 277 yet capture all of the operative symmetries aildagtmit this

half-unit charge without singularity, we can gooir8U(2), limit the domain t@<¢ < 277 in
SU(2), and ensure that when projected onto SO(@)wfil yield a 0< ¢ < 47 domain. The
spinor sign change will be seen under the exacpBEmmetry but will be missing from and
not seen in the approximate symmetry of SO(3). tMomportantly, by virtue of
7T: U (2) » SO(3) projecting the domai® < ¢ < 477 into SO(3) even though the SU(2) domain
is 0< ¢ < 277, them=2 fractional charge will be permitted to existhatt singularity as seen in

(5.5) because the wavefunction remains single-val&o this tells us how, in principle, we may
use SU(2) to admit a quantized fractional cha?gg = n/ mwith m=2, without singularity. But

what about the higher fractions with>37? Let’s start withm=3, then generalize.

In (5.6) we see that a non-singuiar3 fraction is permitted, but only for a triple @v
from ¢ =0 to ¢ =677. As before, we would like to start with a domeastricted to0< ¢ < 277,

and so we need to find some covering grdsipof SO(3) wherebyr:G - SO(3) projects a

0< ¢ < 2;r domain inG onto a0< ¢ <6 domain in SO(3). In short, we need a graap
which provides a triple cover of SO(3). So, howa®go about finding such a group, as well as
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other groupsG which can quadruple, quintuple, pentuple, sextugie, cover SO(3) to lay the
groundwork for even larger fractional denominators?

In a very basic sense, we can regard SU(2) aSsthere root” of SO(3). So now, we
must find a “cubed root” of SO(3), and even highaats for larger fractions. So, what does it
really mean to take such roots, and how do we fbzmahis? For SU(2) which is the “square
root” and a universal cover of SO(3), working fr¢&n5), we may write:

W, =exp(iN)y_ = exdi 8rg)y. = exéi Zr%j e>{d 72%}//_. (6.1)

As already seenn=2 for a half-unit charge is permitted, because laefunction remains
single-valued. Withm=2, each of the factorexp(i 2m /m) in the above becomesxp(izm)

which for n=1 corresponds to the Euler angle= 7=180. And the potential (5.2) will be cut
down to one-half of its whole-integer value whietates to our also observing a charge that is

cut down by half. But the double multiplication tiese factorsexp(inn) together still
maintains a single-valued wavefunction by arriviag a total angled =27=360C in the
expressionexp(i Zm) operating ony._, such thaty, =exp(i 2m)y_ =y._ for any and alh and

thereby averts observable singularities. At theeséime, the exact symmetry group SU(2) will
“see” a spinor sign reversal that is not “seen’tliy approximate symmetry group SO(3), which

sign reversal represents the square roots of uﬁrﬁty =1 which are more generally represented
by this sameexp(izm) =+ 1for all n.

So for a covering grougé which is a “cubed root” of SO(3) as designatedsy left
subscript “3” that we have now introduced, let ogvrwrite (5.6) as:

W, =exp(iN)y_ = exdi 12mg)y._ = exéi 2%) e{p 72%) eEp n‘ﬁmjw_. (6.2)

For them=3 solution of interest, each of these factors beemexp(i 2m /3 which for n=1

corresponds to the Euler angle=277/3=120. But here, the triple multiplication will again
maintain a non-singular single-valued wavefunctiamg the potential (5.2) will be cut down to
one-third of its whole-integer value. Indeed, wivem take this triple product, the three Euler
angles ofl20° apiece now add up t§ =2/7=36C. There is a277 in each factor to maintain a

0< ¢ < 2ir domain in3G , but when we multiply everything together we agrat an overalbr
factor which yields a0< ¢ < 677 domain on SO(3). And, just as SU(2) “sees” a @psign

reversal based oR/l=+1= exp(i 2m /2) which SO(3) does not segé will “see” some
coefficients based on the cubed roots of ur’ﬁﬁ/: exp(i Zm /3 that SO(3) does not see,
namely, the roots(;—lii\/?%) /2 of (5.9) and (5.10) that we also obtained fron2 5.
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Now, contrasting (6.1) and (6.2), and extrapotatime same calculation to fourth roots in
(5.7) and fifth roots in (5.12) and so on, we d&# tn all cases, the relationships of sectiondl an
any higher-fraction relationships for the domaig ¢ < 277k on SO(3) can all be written as:

W, =exp(iN)y. = exdi 4keg)y. = exéi% Zka_ = e>ﬁj 72%} W . (6.3)

1
But we now also recognize, very importantly, tRét=(1)m = exds = exgi 2m M) appearing

in the final expression above is the very same domehtal mathematical relationship (5.20) of
Euler, which is used to write tmg" roots of unity. Therefore, we may rewrite the \abas:

w, =exp(in)y. = exi 4mg) w_ = exéi 2%j Y= exfp 721)% W =( )%41/_, (6.4)

where in the third term we have usét:lflﬂkeg):(i4neg)k to movek into the exponent.
Embedded in the above, we may also now consoltiatphase relationship down to:

exp(in) = ( ])% . (6.5)

So as we see, a domain @£ ¢ < 277 in the group, G associated with the factaxp(i 2m /m)

in (6.3) will project a domain oD< ¢ < 277k onto SO(3) viar: ké - S0O(3), thus permitting
the fractional chargémeg =eu = 2rm /m with m=k, as well as other integensin the prime
factorization ofk, without observable singularity.

Referring now to (6.4), we see that whier IP is a prime number, the wavefunction will
be single-valued and so there will be no observabigularitiesif and only if one of two
conditions is satisfied: First, wham=1 which of course is trivial and corresponds to rio@a-
fractionalized charges of the ordinary DQC. Segomhen m=Kk in which case there are
fractional charges yet the wavefunction still rensasingle-valued. Wheh is not a prime
number, k#P, then there will be other charges besides=k which via

(1)”m =1=exy(i Zm)k/m will maintain a single-valued coefficient in altismtions. We saw this

in the last section, buw+:(1)k/m¢/_ in (6.4) enables us to summarize this much more
compactly: For the smallest non-pritke=4 we may havem=1,2,4 which represents the
prime factorization of 4. For non-prime=6 we may have all om=1, 2,3, € which represents
the prime factorization of 6. For non-prinke8 the non-singular fractions anm=1,2,4,¢

which are the prime factorizations of 8. And k19 which is the first odd number that is not
prime, we may haven=1, 3,9which are the prime factorizations of 9. Finafly; k=10 we may

havem=1,2,5,1(, once again, the prime factorization. This carferwardad infinitum.
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We also see from this that the quantization coonlitf5.1) must be restricted in all
circumstances to rational number&eg = Q andmust of necessity exclude all irrational numbers

Q. Why? To maintain a single-valued wavefuncti@3) teaches that it is necessary that there
exist some integek such thatexp(i 2m /m)k = exqi Zz@)k = , because the unitarity of this

result is what yields the single valued wavefunttg, =¢_ following a ¢ =27k azimuth
rotation and thus avoids observable singulariti€o long asQ =n/m is indeed a rational

number, this can be achieved by at least one clobikenamely k=m, and for non-primé, by m
being equal to one of the integers in the priméofazation ofk.

So as a proof by contradiction, let us suppose Wwtwere to employ a condition
2eg =Q using a numbef) posited to bérrational. Then the requirement to avoid observable

singularities would becomexp(i Zz@)k = exdi sz@) = .. This would mean that there must
be some value & for which kQ =Z is an integerZ , so that we could havexp(i 27Z) = 1. In

other words,Q =Z/k would have to be the rational numb&r k. But this contradicts our
positing Q to be an irrational number, and so proves thaDiinec condition must be restricted
in all circumstances t@eg =Q with Q =n/m rational, if singularities are to be avoided.

One can also think about this geometrically usingné circle: to maintain a single-
valued wavefunction, we must be able to take somlerEangle and multiply this angle by
some integek such thatks =27m rotates to an angle which is a whole-integer mpldtiof
2r=36C. Therefore, to “fit” this onto the unit circlehd original angle must be

9=2m/k=2mQ, and so an irrational) in J=27Q could never work to provide the correct

fit to the unit circle. So we see that the Diaantization Condition, really generalizes to a
Dirac Rationality Condition.

From there, our task is to find these root oftyigroups which map onto SO(3) via
T ké - S0O(3), for which the domain oté runs from0< ¢ < 277 and the domain projected
onto SO(3) then runs froM< ¢ < 277k and therefore admits fractional charges witl= k and
m equal to integers in the prime factorizatiorkpfbecause these are the conditions under which
w, =exp(i 2m /m)kz//_ = exgi Zm)k/m(//_ =( )l(/m(//_ =(_ remains single-valued and thus has
no observable singularities. More simply put: gitkat k = m, the non-singular solutions must
all have(l)k/m =1, ak.a.k/m=Z whereZ is an integer.

This in turn teaches us that tkernel of this mapping must be equal to tm¥ roots of

unity, that is, we must havieer77=1. Therefore, extracting the key items of informaatfrom
(6.4) by factoring out the wavefunctions and theirtg thek™ root of every term in (6.4) which
containsk in an exponent, we may write this required kemedeveral interrelated formulations,
also usingg = i/ 4t from (3.5), as:
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kern:Q/_lz(])% = expd = exéi Zr%j: exp 721)% = eXp g)= efipy), (6.6)

Now we shall develop these root-of-unity covergrgups in detail. The most important
aid that we have to perform this development, ésgifoup SU(2) which is the universal cover of
SO(3). For, as we shall see, the developmentesietihoot groups, fundamentally, boils down to
spotting SU(2) at the Euler anglg= 7, spotting SO(3) at? =277, and then developing the
other ké by rotating the SU(2) generators through the dindle in the complex plane to other
angles 4 =2/m/m=21Q which are rational multiple277Q of 2. Henceforth, we shall

denote these root-of-unity covering groupsn']‘ﬁ to represent the key parameterandm in the

Euler angled =2/m/m associated with each such group. And becausgeherators of these
groups these will be 2x2 matrices formed from thee¢ Pauli matricess;, we shall further

denote these a,ﬁG(Z) to represent that these groups also use 2x2 reatas their generators.

We omit the “special” prefix “S,” however, becauae we shall see, these generators will not
necessarily be traceless.

7.  Generators for the Root-of-Unity Covering Groups which Project
the Fractional Dirac Charges onto SO(3) via the Universal Cover SU(2);
and Euler Angles in the Complex Generator Plane

We stated prior to (6.1) that in a very basic sei®J(2) is the “square root” of SO(3).
Let is now formalize that sense more precisely.tidmatically, it first became apparent back at
(5.9) and (5.10) that roots of unity are esserfbalcharacterizing situations under which the
fractional charge2eg =n/m yield single-valued or multivalued wavefunctioas\d thus, the

circumstances under which Dirac string singulagitare observable thus forbidden, or not
observable thus permitted. Then, in the last seatie laid out how these roots of unity are in

fact fundamental to developing the covering grotiyweugh which7z: n’}G(Z) - SO(3) lays the
topological groundwork to support these fractiottarges. Specifically, we established at (6.6)
that kerrz=U1 must itself be am™ root of unity for any given’G(2). What now changes

from here, mathematically, is really very simpléNhereas we have heretofore concerned
ourselves with roots of the scalar number 1, wdl sttav concern ourselves with roots of the

2x2 identity matrixdiag(1) =(1,3.

Let's start with the square root of the 2x2hat is,21 . If we restrict our consideration
to traceless Hermitian matrices, we know immedjatieht aside froni itself for which 1> =1,
there are three other matrices which fit this bilgmely, the Pauli matrices; for which
o’=0=0/=1, g'=0;,and Tr(g)=0. These are the traceless, Hermitian square roots
o :E/I of a triplet I, of 2x2 identity matrices. If we want to formalidge mathematics a bit

more, we can write these square root relationsgusia anti-commutator relatio[mi ,aj} =29 .
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Of course, these matrices also have the non-zemmmator[ai ,Jj] =2ig,0,. And itis also
very well-known that we obtaiw,o; =9, +ig, 0, by combining these relationships, and that

this expression and the related expressipn, =g,, —io,, obtained from combining the Dirac

matrix relations{y,.y,} = 2g,, and[y,.y, | =-2ig,, are central to the Gordon decomposition
by which the electron spin and magnetic momengjp@eated from orbital angular momentum.

So when we say that SU(2) is the “square rootSOX3), this is highlighted at several
levels. First, of course, is the fact that theegators o, =\2/r are indeed square roots of the
identity matrix triplet. But thez: U (2) - SO(3) mapping is made evident rather simply when
we form o x from the space coordinatex :(x, y,z) and then square this to obtain

g,0,xXx = (5”. + iei].kak)x‘xi =x*+y?+z°=r?, wherein the Pythagorean lengtls the defining
invariant of the rotation group SO(3). Withouettsquare root” Pauli generators, the way to
take a square root is to write= +,/x* + y* + z* , and the two-valuedness of taking square
roots shows up in the: sign, which more deeply, is realBxpis = exdi 2m ) for m=2 and

n=12, i.e., for4=180,360. With the Pauli generators, this two-valuednesseiad shows
up in the fact that the eigenvalues=+1 are obtained from the characteristic equation
|0’i —/1| =0 for all threeo;. There are other ways to illustrate how SU(Zhes square root of

SO(3), including by using the spinorsdnx' = -é&" which we shall examine a bit later. But for
the moment, the foregoing provides us with a singat of departure to now more generally
consider them™ roots of the identity matrix /1 . By doing so, we are able to obtain the
generators for thesd" root of unity covering group§G(2).

We start with the Pauli matrices; themselves, posit three associated andlesn
physical space, and form the unitary matrites=exp(ig.d ), thusU'U =1 given g," = g; , for
SO(3) rotations through respective angtes 6,,6,,6, about each of the x, y, z axes. It is well-
known how to use the seriesxp(ix) = 1+ix-4x*-iix*+1x*.. together with the fact that

2n+1

o’ =1, andg*™* =g, to flesh out these unitary matrices into the vkelbwn:

cosg, i sing,
Ulzexp(iaﬂl):( : 1S 1]

ising, cog
cosd, sirg,
-sing, cosﬁzj
cos, +i sing, 0
0 cosl, —i sirﬁj

U, =exp(io,b,) =( (7.1)

U, =exp(io,b,) =(
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Now, it happens that with a judicious choice oéglé angle®) we can cause each of
theseU, to be identical to the correspondimg up to an overall constant factor. Specificalfy, i
we choose each of these angles such@havr/ 2, we readily see that:

U1(7T/2):exp(iogfj{cos(”/3 iSidn/ajzi(i (1)j=i0l

2) \isin(rr/2) codm /2

Uz(n/2):exp(iazgjz(_c;i((];//% ;;E’;//?)J:(_Ol é}zi(io _(;j:iaz (7.2)
Us(n/2):exp(iasgj=(cos(ﬂ/3+i si{ 13 0 )j:i(l sziag

0 coy7r /d-i sifm 2 0 -

Consolidating, we see thet (77/2) = exp(io, 7 / 2 =io; in general, which we rewrite as:

_ LT
o = |exp(|ai 2). (7.3)

So now we can square this expression, and becadsel,, we can write the identity
matrix triplet |, as:

I, =(-i)" exp(io;m). (7.4)

We deliberately dmot turn (—i)2 - —1 because when we later take square roots of tieisyant

to recover + alone, and not extraneously introduce a two-valwéd +/-1. Of course, the
identity matrix taken to any integer poweris still the identity matrixl.," =1, so the most
general expression for this triplet of identity nas is:

I =1"=(=i)"exp(ig;rm) = (<) [ cofo,/m) +i sifo,mm)]. (7.5)

Now that we have the identity matrices represkmtethis form, it is an easy matter to
obtain their generalizea™ roots,@’f. There are simply:

or Edr:(—i)ir: exp(iain%j=(—i)i:[co{ainﬂj+i sirEainﬂﬂ. (7.6)

m m

In the above, we have definelt; Edf for each of these roots, which we now explainrstfi
each of these{)/r is a tripleti =1, 2,3 of 2x2 matrices, just like the Pawi themselves. These
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Q}/r are parameterized by the two integermsndm which enter (7.6) in the ratiQ =n/m of a
rational number. Analogously to how are the generators of SU(2), theg/da_i are the

generators of the root covering gromﬁ:(Z) for them" root of |, raised to the™ power. Thus,

for example,%/r2 =(Ii)2/3 with n=2 andm=3 is the 2/3 root ofl,, which explains why we
denoten?G(Z) with a left superscriph and left subscripim. Thus, analogizing t@;, used to
represent\z/f, we user; to generally represent the root-of-unity genesatior these groups

n’}G(Z). And because it is important to know th@ndm integers associated with any of these
r;, we write these agz, so as to provide a simple shorthand for knowing gtance thaf,r,

are the generators for the m™ root-of-unity group,"G(2).

So as a test, to confirm that (7.6) is correcttf@ square root of unity (namely SU(2)),
we may setn=2 in (7.6) to obtain:

o1, =(=i)" exp(ig;m 1 2). (7.7)

Referring to (7.5) we see thdt, =1, for n=0,2,4,6.., which recovers the identity matrices.
And referring to (7.3), we see thdt, =g, for n=1, while (7.6) shows that for successive
n=3,5,7.. the sign flip in(-i)" will be precisely offset by a sign flip iaxp(ig;7m /2), so that
’r, =0, for n=1,3,5,7.. generally. But this exercise also alerts us, evhjit, = ;7,7 and
Tr(zlri):o in the special casér, =g, that in general ther, are neither Hermitian nor
traceless. Thelr, =1, generators, for example, certainly are not traseléut rather have
Tr(jri) =2. And by definition they will commute with any @h2x2 matrices and are their
own inverses. Further, from (7.6), taking the Hé&an conjugate, we find:

L : Ny _ /2 ny . . n
nr'=(i)m exp —ioc.m— |=(i)m | cos o;m— |~i sipoT—||. (7.8)
m m m
So as a general rulgz, # "7,", that is, these are not Hermitian. However, théseare unitary,
T
(wr:) (mr) =10
It is also useful to use the Euler formulatiein=exp(i 37 /9 to write:

2n

(-i)m = exp(i 377%} (7.9)

and then use this in (7.6) to write:
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o :exp(i QTEJ exp{iqnﬂJ = exéiﬂﬂ(ai + 3)) (7.10)
m m m
The resultant; +3I, does have a trace, which is another view of hogzysimleral,Tr(n?ri ) z0.

Now, while these, 7, were developed in order to accommodate fractidia@c charges,
the existence of thes@r, as then/m™ roots of the identity tripletl; is independent of our

wanting to lay the topological groundwork for théssctional charges. If one had set out to find
generators which are the generalized roots of #2212, one could have done so as shown here

without any reference to or thought about Dirac opwies or the DQC or fractional charges.
The point of contact to formally accommodate fraiwéil charges is now found in the kernel
expression (6.6), and specifically, in its embedagdtionships:

19:277%=4neg:e,u. (7.11)
So if we now use (7.11) divided through by 2 irnl(j, we may obtain:

o ( 3:9) F( 5)_ ’E nj X{ nj
mli =EXpli— |expio, — |= expi F— | expo,mr—
2 2 m m

= exp(i &7eg) exffio; 2rg) = exéigeﬂJ G%O—i%ﬂ)

(7.12)

The universal cover SU(2) has the generatgrs ,7; as already discussed. If we want

an easy way to think out this, we can simply ns& andm=2 in (7.11) to find that?=7. So
surely enough, as laid out at the end of sectiomebspot the SU(2) generatorsat 77 in the
complex plane, and immediately know that when weasg| these generators, we will double the
angle, and thereby end up with SO(3) spotteé? at277. Then, when thinking about the other
root generators, it is easiest to simply think abthe angle at which those generators are
disposed. The non-trivial cubed-root generatars.ekample, will be ai? =120, 240, so that

when cubed they will yield either of?=360°,720. For the fourth root the non-trivial
generators will be spotted &=90°,180 ,270 and when raised to the fourth power will yield
J=360",720 ,1080. The pentuple generators will be &t=72°,144 ,216 ,28% and when
raised to the fifth power will again recover areiger multiple of360°. And so on.

Further, as we saw in the various relationships=exp(i Zm /m)k(//_ throughout
section 4, see (6.3), it is this angle o86(°, and its integer multiples, via
W, =exp(i 277n)k/m(//_ =( l)k/m(//_, see (6.4), which keeps the wavefunctions singleed and so
avoids observable singularities even with fractiactearges. Consequently, the Euler angle in
(7.11) provides a very powerful vehicle to cut thgh all the algebra of these root covering
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groups, and think about these groups and theiratipas very simply in terms of orientations
and rotations of the Euler angd® on the unit circle in the complex plane in whible generators
T, are spotted.

From this view, the simplest portion of (7.12)hsitt which contains thesg:
7, (9) = exp(i %) exp{iai %) : (7.13)

In this form, we do not even need to explicitlypdés/ then andm parameters inz, =7,(J),
because via (7.11) these are incorporated intoatigde Z=2/m/m=2mQ. In this form,
o, =r1,(m andl, =r,(2). From this view, the SU(2) group of is a universal cover because
any other set of generators including the unityrioes |, can be obtained merely by rotating the

angle of these generators froh=77 to the pertinent rational multiple 086C, i.e., to
F=2m/im=2n1Q.

8. How Fractional Dirac Charges are Topologically Mapped from the
Root-of-Unity Covering Groups onto SO(3)

Having developed these generataysin (7.13) for the root-of-unity covering groups
groups,"G(2) which in view of § = 27/m/m= 27Q we now designate &(2,9), it remains to
explore the surjective homomorphic mapping: G(2,9) — SO(3) which projects these
fractional charges onto SO(3) from the root sp&¢@,). To do this, it is helpful to develop
the commutator$z;,7, | for any givenz, ().

First, working from (7.13) we construct:

[ri , rj] = exp(i 39){ ex;fiai gj ,ex%io*j %ﬂ . (8.1)

To evaluate this, it helps to also construct thmrmmltators[ui,uj] of the unitary matrices
(7.1). This exercise is straightforward and yields
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[U,U,]=[exp(iog,) .exdio £,)] =~ 2 sib, siﬂ{(l) _OJ =- i2 sifi, sthg.

[U,.U,] =] exp(iog,) .exdio ;)| =~ 2 si, siﬂ{cl) ;J:— i2 sifl, sthg .. (8.2)
[U..U,] =[ exp(icb,) .exdio g,) | = - 2 si, siﬂ‘(? ;ij:— 2 sifl, sfo,

In the circumstance whe®@= g, = 8, = 6, this consolidates to:

[U,U]=|exp(io6) ,exi{io;6) | = - 2 sifée,a,. (8.3)

1

Thus, if we set? =&/ 2 and also apply the half angén® (/2) =(1- ca) / 2, (8.3) becomes:
{exp(io*i gj ,exp{io*j %ﬂ =-2 siﬁgqjkak =~i(1-cos?) &0, . (8.4)

Combining this with (8.1) and also applyilﬁgi 0, ] =2ig, 0, then finally yields:

ij

75

[ 7.7, | =i exp(i ¥)(1- cos9) g0, =% ep(i39)( & ©s9) 0, 0, |. (8.5)

Isolating o, with some simple re-indexing and revertigin’ (/2) =(1- cos), this may be
written as:

o, =4iexp(-i ) cst(d/2) g, [ 7,7, . (8.6)

To confirm for SU(2), we know that the are spotted a# = 77. At this orientation, we
obtain o, = iexp(~i 37)csé (77 /¢, [ 1, 1, |=-%ig, |7, 7, |. Becausq o,,0;|=2ig,0, is
readily rewritten asg, = -;ig, [O'j ,ak], we confirm thatr, =g, at $=7m. We also know that
csG (& /2) = at $=27k. But this singular behavior of (8.6) makes perfeense when
viewed via (8.5). Becausk-cos?= C at 9 =27k, likewise [7,,7,]=0, i.e., thed =27k
generators do commute for @l=27k. This reconfirms that, =1,, the identity matrix triplet,

for all $=27k. It is for these very same angles, that the wawetfons become single-valued
and so the fractional monopolies avoid observaibigutarities.

Now we are in a position to explicitly display theapping 77: G(2,9) - SO(3) for all
G(2,9). First, we nominally re-index (8.5) into the farm
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Ex| 75,7 | = —2 exp(i38) (1~ cosd) g (8.7)

Now, using the space coordinatés=(x, y,z) and formingo,x we can use (8.7) to write:

e[ ¢ = -2 el 9)a-coss)rx =~ 2ep(i) (- co9) % V] e

Then, restructuring to isolate thex' matrix and also making use of the spinor relatiqpes
x=1(&2-&2), y=%(&2+&7): z2=44, (8.9)
as well as the cross product:

gijk[rj,rk]xi =2[rx1]x, (8.10)

we may now write:

- z X=iy _[ &4, _512 _ & _z\_ _zzt
oix=0x _(x+iy —zj_{ff -flfj_[fzj(fz b=«

=Liexp(-i¥)csc (8 19 g, [ 1, 1, [X =i exf—i 8) o (I /Y rx1]X

(8.11)

Of course, the determinano X|=x*+y®+z*=r? is the Pythagorean invariant of
rotation under SO(3) transformations, which areieent to SU(2) transformations on the
transposed complex spinor doublgt :(El,fz)T. So taking the determinant of all the main
expressions in (8.11) we obtain:

Liexp(~i38) c&®(12) &, [ 1, ,rk]xi‘, (8.12)

r2 :x2+y2+22=‘0ix“:‘—&”‘=

with T, (19) given in (7.13) andd given in (7.12). This explicitly illustrates theovering
projection 77: G(2,8) — SO(3), showing all ofr? = x?+y2+z? from SO(3), the SU(2) spinor
relationships‘ai x“ :‘—&‘T‘, and theG(2,9) root group generators also operating on the space
coordinatex.

Having made these connections through the Eulgleah, we can now use (7.11) to re-
express the above in terms of the rational parasiéfe=n/m, and most importantly, the

electric and magnetic charge strengths. Usig27m /m the above becomes:
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r2 :x2+y2+22:‘qxi‘=‘—££T‘=

: N n i
1 exp(—l GHEJ csé(ﬂr—nj Ei [rj ,rk] X

We again emphasize that as we did prior to (7.3t the relationships above amstirely
independent of anything having to do with Dirac monopole cles@r whether these can exist in
fractional states without singularity. These siyngpecify relationships among various fractional
generatory, , the Pauli matricew; , and rotationally-invariant lengtlmsn SO(3).

. (8.13)

It is via the final set of connection$= 4/reg = ey that the electric and magnetic charges
explicitly enter, whereby (8.12) now becomes, imm® ofg:

r2=x+y?+2z? =‘o—ixi‘ :‘-ng‘ = tiexp(-il2mey) o ( 2meg) &, [rj ,rk}xi‘, (8.14)
and in terms ofu :
r2=x%+y? + 22 =‘Uixi‘ :‘—55*‘ =|2iexp(~i 3w)csc? (e 1 [ 1, ,rk}x“ . (8.15)

It is worth noting that thesa" root geometries of their very nature, give riséraational
denominatorsn which need not be equal to 1, and which geneealynot equal to 1. So this
raises an interesting point about the symmetrieshese fractional charges. If, hypothetically,
fractional charges were not permitted, the Diragdiion would of course b@rm = 4rreg = ey
as is presently believed to be the case. Buwtbidd not remove then denominator from (7.11)
because that denominator arises from root gensraod generally from the Euler relation

Y1= exp(i Zm /m) which is mathematically true no matter what therect state of affairs
might be for Dirac monopole charges. This meamas Were the Dirac monopole to be truly
restricted to2/m = 4/reg = ey as is presently believed, then (7.11) would haved modified,

not by setting m=1, but rather, by dividing the third and fourthpeassions through by. That
is, (7.11) would have to become:

g = 27'[ﬂ = 477§ = . (7.11a)
m m m

This in turn would mean upon substitution into @3,1hat in lieu of (8.15) we would have:

r2=x2+y?+ 22 =|o x| =|-&E = |t exp(—i 3%)03:2 (%)qjk EEMESE (8.15a)

So if fractional Dirac charges did not exist, aspresently the prevailing view, then
(8.15a) rather than (8.15) would describe the ptija 77:G(2,8) — SO(3) of these root of

unity groups onto SO(3). Contrasting, we see ({B4d5) expresses the invariant rotational length
r entirely in terms of the produgu without any explicit appearance of the qguantum numbers n
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or m. So the form of (8.15) iswvariant with respect to the rational numb&=n/m. On the

other hand, (8.15a) does not have this same symnaatd is in fact weaker. Rather, (8.15a)
contains an explicit appearancenoin the termeu/m=euQ/n. So the form of (8.15a) %ot

invariant with respect tan andm, but quite explicitly requires that one or the estlof these
integers appear explicitly in the: G(2,8) — SO(3) mapping. This means that the Fractional
DQC actually has a higher degree of symmetry tharstandard DQC.

9. Summary and Conclusion

To summarize, when we take a domain o0e&rg < 277k in SO(3), there is nothing to
distinguish the 0<¢ <27 domain from the 27r<¢<4mr doman . . . from the

2r(k-2)< ¢ < 21(k—1) domain from the2rr(k-1)< ¢ < 2k domain. But when we take a

domain0< ¢ < 277 in the root groups(2,39) = n’}é (2) with generators7; , there are a total of
distinctm™ roots spotted along the unit circle witk n< m each of which has the distinct kernel
(1)”"”. This is simply an extension, to higher rootshotv SU(2) “sees” the: sign in a spinor
which SO(3) does not. Then, all of tH&7-domain covers associated with eathn the
generatorg1,)"" then get patched together onto a unfor)” ™ U(1,)*" U...(1,) """ U(1,)™"

on SO(3), and as a result the domain of SO(3)rwillover0< ¢ < 277k . Importantly, however,
each 271 subset of this enlarged domain will have been redfpm a different one of the

rI}G(Z) associated Witr(li)”/m with 1<n<m and thus will have a distinguishing symmetry

feature — namely the distinct root of unity whicloyides its kernel and associated distinct
generators — which SO(3) alone does not have alisisndtomain mapping. It is this enlarged

domain on SU(3) with uniqugz, =(1,)"" for each of thekx 277 domains in0< ¢ < 27k which

then provides the freedom for fractional Dirac ¢fes to arise unambiguously and without
observable singularities.

The scope of this paper, as summarized, has beetedi to the question of whether
fractional U(1), magnetic monopole charges wiffeg =n/m can exist without observable
singularities. Given the showing here that frawtiocharges with2eg =n/m can indeed be
projected onto SO(3) without observable singukesitiand given how (8.15) which includes
these fractional charges has a much stronger symrttedn (8.15a) which excludes them, it
appears that the prevailing view that fractionaradi charges are unable to exist free of
observable singularities will have to be changed.

Once it is understood that these fractional chaayesnot excluded on the ground of
giving rise to observed singularities, and thatytlpmssess a stronger symmetry than the
guantized-only charges of the standard DQC, andthiey are related closely to mathematical
roots of unity, one will then need to take with oBh seriousness the possibility that these
fractional Dirac charges do exist in the naturalrldio Especially, as one starts to sort out
primitive from non-primitive roots of unity and more dirgctudy orientation / entanglement
which we have not done here, this will then opensferious study, the question whether these
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fractional Dirac charges are in fact what is besbgerved in the Fractional Quantum Hall Effect
(FQHE) [4] observed at ultra-low-temperatures r@ay in which case the FQHE would be the
first experimental evidence of magnetic monopolEsrther, if the FQHE can be understood in
this way, and because the FQHE occurs only at ksehltemperatures, this will also open for
serious study whether the existence of fractiomarges emanating from U¢k)gauge theory
which appear only at low temperatures points towardundamental unification between
electrodynamics and thermodynamics.
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