
Jay R. Yablon 

 
 

Fractional Dirac Magnetic Monopole Charges without Observable 
Singularities 

 
Jay R. Yablon 

910 Northumberland Drive 
Schenectady, New York 12309-2814 

jyablon@nycap.rr.com 
 

April 25, 2015 
 

Abstract:  It is widely believed that Dirac magnetic monopoles and their related electric charges 
must be quantized, and that any fractional charges one might posit cannot exist without creating 
forbidden observable singularities.  Here, we explicitly present a vector potential for a Dirac 
monopole with fractional magnetic and electric charges whose curl is a Coulomb magnetic field 
and which potential has no observable singularities.  We then demonstrate how these fractional 
charges are projected onto SO(3) from topological covering groups with generators which are 
the generalized mth roots of the 2x2 identity matrix I, situated at various Euler angles on the 
complex plane of the covering group generators, all without observable singularities. 
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1. Introduction 
 
 In 1931 Dirac [1] discovered that if magnetic charges with strength g were to 
hypothetically exist, then this would imply that electric charge strength e must be quantized.  The 
relationship he found, often written as 2eg n=  where n is a positive or negative integer or zero, 
came to be known as the Dirac Quantization Condition (DQC).  In the mid-1970s, to remedy the 
need to resort to the fiction of Dirac’s “nodal lines” which subsequently became known as Dirac 
strings, Wu and Yang [2], [3] developed an approach which does not at all make use of these 
strings.  Its results are completely equivalent to Dirac's, with the only difference being that it is 
cast in the more-modern language of fiber bundles.  In the Wu Yang approach, one uses U(1)em 
gauge theory to obtain the differential equation 2i ie de i egdϕ− Λ Λ =  where Λ  is the gauge (really, 
phase) angle and ϕ  is the geometric azimuth about the z-axis in the three dimensional physical 
space of the rotation group SO(3), which equation is easily seen to be solved for constant electric 
and magnetic charges by ( ) ( )exp exp 2i i egϕΛ = .  It has long been believed that the only solution 

to this latter Wu-Yang equation that is free of observable singularities, is 2eg n= ; and this is in 
fact true if one restricts the azimuth domain on SO(3) to 0 2ϕ π≤ ≤ .  But otherwise, as we show 
here, it becomes possible to widen this solution to include non-singular fractional charges of the 
form 2 /eg n m=  where m is also an integer.   

 
In sections 2 through 4 we explicitly present a vector potential for a Dirac monopole with 

fractional magnetic and electric charges whose curl is a Coulomb magnetic field and which 
potential has no observable singularities using the standard Dirac condition.  Thereafter, we 
show how if one instead moves this domain restriction out of SO(3) and into certain topological 

covering spaces Gɶ  for which the generators are generally the kth roots 1,2,3,4,5...k =  of a triplet 

of 2x2 identity matrices iI , 1,2,3i = , and then surjectively projects these groups 

homomorphically onto SO(3)  via : (3)G SOπ →ɶ , the SO(3) domain is widened to 0 2 kϕ π≤ ≤ .  
Most importantly, we show how with this widened domain, it then becomes possible to project 
Dirac monopoles onto SO(3) which adhere to the fractionalized quantization condition 
2 /eg n m= , with m k=  arising from the expanded SO(3) domain, which fractional charges do 
not give rise to any observable singularities. 
 
2. Local U(1)em Gauge Transformations, In General 
 

We begin by considering a first electron wavefunction ( )xµψ −  which is related to a 

second electron wavefunction ( )xµψ +  by the local U(1) gauge transformation (throughout, we 

shall employ natural units 1c= =ℏ ): 
 

( )exp iψ ψ ψ ψ− + − −′→ = = Λ , (2.1) 

 
where phase angle ( )xµΛ  varies locally as a function of the spacetime coordinates as do the 

wavefunctions.  Because ( )expU i= Λ  is unitary, * 1U U = , the probability density 
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( )† † †*U Uρ ψ ψ ψ ψ ψ ψ+ + − − − −= = =  is naturally invariant under this transformation.  If we write 

the complex wavefunction ( ) ( ) ( )x A x iB xµ µ µψ + + += +  and likewise ( ) ( ) ( )x A x iB xµ µ µψ − − −= + , 

this invariance means that 2 2 2 2( ) ( ) ( ) ( )A x B x A x B xµ µ µ µ
+ + − −+ = + .  And of course, we require 

that 3 1d xρ =∫  to ensure that this ρ  is indeed a probability density, which also serves to 

normalize ρ .  
 

Next, we define a gauge potential ( )A xµ
µ−  to be the electromagnetic vector potential 

corresponding to the wavefunction ψ − , and we then use this to define the gauge-covariant 

derivative D ieAµ µ µ− −≡ ∂ +  where e is the (running) electric charge strength, and where the sign 

of ieA µ−  is positive because we are using a Minkowski metric tensor ( ) ( )diag 1, 1, 1, 1µνη = − − −  

versus the oppositely-signed convention.  Applying this derivative to each side of ( )exp i ψ −Λ  in 

(2.1), we obtain: 
 

( )( ) ( ) ( )( )
( ) ( ) ( )

( )

exp exp

exp exp exp

exp

D i ieA i

i i i ieA i

i ieA i

µ µ µ

µ µ µ

µ µ µ

ψ ψ

ψ ψ ψ

ψ ψ

− − − −

− − − −

− − −

Λ = ∂ + Λ

= ∂ Λ Λ + Λ ∂ + Λ

  = Λ ∂ + + ∂ Λ  

. (2.2) 

 
Next, based on the inner bracketed expression in the bottom line above, we define a 

second gauge potential A µ+  corresponding with the wavefunction ψ +  according to: 

 
eA eAµ µ µ+ −≡ + ∂ Λ . (2.3) 

 
With this, (2.2) may be written more compactly as: 
 

( )( ) ( )( )exp expD i i ieAµ µ µψ ψ− − + −Λ = Λ ∂ + . (2.4) 

 
Then, defining the related covariant derivative D ieAµ µ µ+ +≡ ∂ + , (2.4) further reduces to: 

 

( )( ) ( )exp expD i i Dµ µψ ψ− − + −Λ = Λ . (2.5) 

 
If we now apply D µ−  to all expressions in the wavefunction transformation (2.1), the 

above allows us to write: 
 

( )( ) ( )exp expD D D D i i Dµ µ µ µ µψ ψ ψ ψ ψ− − − + − − − − + −′→ = = Λ = Λ . (2.6) 

 
Multiplying the subset equality ( )expD i Dµ µψ ψ− + + −= Λ  through by ( )1

2exp i− Λ , yields an 

expression which highlight the +/- symmetries:  
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( ) ( )1 1
2 2exp expi D i Dµ µψ ψ− + + −− Λ = Λ , (2.7) 

 
or, directly in terms of the gauge potentials via D ieAµ µ µ− −≡ ∂ +  and D ieAµ µ µ+ +≡ ∂ + : 

 

( )( ) ( ) ( )1 1
2 2exp expi ieA i ieAµ µ µ µψ ψ− + + −− Λ ∂ + = Λ ∂ + . (2.8) 

 
The gauge transformation (2.3) acting on the gauge fields may readily be rewritten using 

the mathematical identity i ii e eµ µ
− Λ Λ∂ Λ = ∂ , as: 

 
/i iA A e e ieµ µ µ

− Λ Λ
+ −= + ∂ . (2.9) 

 
Further, one may generally pack a vector potential into the differential one-form A A dxµ

µ= .  

Therefore these two potentials have the associated one-forms A A dxµ
µ+ +=  and A A dxµ

µ− −= , and 

(2.9) therefore compacts and rearranges into: 
 

/i iA A e de ie− Λ Λ
+ −− = . (2.10) 

 
This tells us that these two gauge fields differ from one another by no more than a U(1)em gauge 
transformation. 
 
3. A Coulomb Magnetic Field which is the Curl of a Vector Potential, 

i.e., a U(1)em Magnetic Monopole 
 

The electromagnetic field strength two-form 1
2F F dx dxµ ν

µν=  is in general related to the 

vector potential by F dA= , and so is a locally-exact two-form.  Extracting the electric / 
magnetic bivector Fµν , the space components of the field strength tensor are ij i j j iF A A= ∂ − ∂ .  

The magnetic field vector k
ij ijkF Bε= −  where ijkε  is the antisymmetric Levi-Civita tensor and 

123 1ε = + , and where ( ), ,k
x y zB B B B= =B  in Cartesian coordinates.  Likewise, using 

( ) ( )diag 1, 1, 1, 1µνη = − − −  to lower indexes in ( ) ( ), , , ,x y zA A A Aµ φ φ= =A , and with 

( ), ,i x y z∂ = ∂ ∂ ∂∇ = , this means that k
ij ijk i j j iF B A Aε= − = ∂ − ∂  , or = ×B A∇ .  So whenever 

we have F dA=  in general for a given potential, the magnetic field B will be the curl of the 
vector potential, × A∇ . 

 
Now, let us define the two four-vector potentials in A−  and A+  of the last section such 

that these are the potentials for a Coulomb magnetic field B which is the curl of these vector 
potentials, = ×B A∇ , that is, let us now define the potentials for a magnetic monopole.  First, 
we posit a (running) magnetic charge strength g for such a monopole.  Second, we write each of 
the potential one-forms A−  and A+  in a polar coordinate basis as: 
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( )
( )
cos 1

cos 1

A g d

A g d

θ ϕ
θ ϕ

+

−

≡ +

≡ −
. (3.1) 

 
Confining our domain to 0 θ π≤ ≤ , we see that A+  is a “southerly” potential defined everywhere 

except at 0θ = , i.e., except due north of the origin, while A−  is “northerly” because it is defined 

everywhere except at θ π= , i.e., except due south of the origin.  We now show that these will 
indeed produce a Coulomb magnetic field for which = ×B A∇  for both of the vector potentials 

+A , −A . 

 
 First, we hold g constant, 0dg = , that is, we do not let g run over the region of spacetime 
in question.  Now, because differential forms geometry teaches that 0dd =  in general and thus 

0ddϕ =  in this specific setting, this all means that: 
 

cosF dA dA gd dθ ϕ+ −= = = . (3.2) 

 
Therefore, for either potential, the magnetic field − += × = ×B A A∇ ∇ , as desired. 

    
 Of course, 0dF ddA ddA+ −= = =  via the same identity 0dd = , which means that F is 

closed and locally exact.  But it is not globally exact.  Specifically, if we integrate (3.2) over a 
closed two-dimensional surface with g still held constant, and if we also apply Gauss’ / Stokes’ 
theorem, then: 
 

2 2

0 00 0
cos cos cos 4dF F gd d g d d g g

π π π πθ ϕ θ ϕ θ ϕ π= = = = = −∫∫∫ ∫∫ ∫∫ ∫ ∫� � . (3.3) 

 
The fact that we are holding g constant throughout the spacetime region under consideration is 
reflected by our having moved g outside the integral after the third equal sign above.  Now let us 
specifically pinpoint the magnetic field. 
 
 To do so, we consider the circumstance for which the electric fields vanish, that is, for 

which 0 0 0k kF F= − = =E .  In this circumstance, 1 1
2 2

i j
ijF F dx dx F dx dxµ ν

µν= =∫∫ ∫∫ ∫∫� � � .  Then, 

using this in (3.3) also in view of k
ij ijkF Bε= − , we find that: 

 
1 2 2 3 3 11

12 23 312 4F F dx dx F dx dx F dx dx F dx dx gµ ν
µν π= = + + = − ⋅ = −∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ B dS� � � � � � . (3.4) 

 
So from the final equality above, this means that: 
 

4 gπ µ⋅ = ≡∫∫ B dS� , (3.5) 
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where 4 gµ π≡  is defined as the total magnetic flux across the closed surface.  Conversely, the 
magnetic charge strength / 4g µ π= , when held constant 0dg =  in the integral (3.3), also 
represents the steradial density of magnetic flux across the closed surface.  This, of course, is 
Gauss’ law for magnetism in integral form, but with a non-zero magnetic flux µ  across the 
closed surface.  Thus, this is the integral formulation of Gauss’ law for a magnetic monopole, for 
which there are no induced electric fields, which is confirmed because E=0 in (3.4), (3.5).  As a 
result of there being no electric field induction, (3.5) describes this magnetic monopole at rest. 
 
 Now, in general, Coulomb’s law cannot be derived from Gauss’ law alone.  However, if 
the magnetic monopole is stationary – which it is because 0=E  in (3.4) and (3.5) – then the 
magnetic field B in (3.5) will be exactly spherically symmetric.  As a result of this spherical 
symmetry, we may remove B from the integrand in (3.5), thus writing: 
 

24 4r gπ π µ= ⋅ = =∫∫B dS B� . (3.6) 

  
Because of the spherical symmetry, only the radial component rB  of B will be non-zero, that is, 

in spherical coordinates, we will have ( ) ( ), , ,0,0r rB B B Bϕ θ= =B .  Therefore, (3.6) now yields:  

 

2 24r

g
B

r r

µ
π

= = . (3.7) 

 
This is indeed a Coulomb magnetic field which has a magnetic charge strength g, and for which 
the total magnetic closed surface flux 4 gµ π= .  Furthermore, this Coulomb magnetic field is 

the curl of the vector potentials, − += × = ×B A A∇ ∇ . 

 
Now, we turn to examine the full set of conditions under which this Coulomb magnetic 

monopole with = ×B A∇  does not give rise to any observable singularities. 
 
4. Conditions under which the U(1)em Magnetic Monopole has No 

Observable Singularities: The Standard Dirac Quantization Condition 
 
 Returning to (3.1), we first find that the difference: 
 

2A A gdϕ+ −− = . (4.1) 

 
Combining the above with (2.10) then yields the differential equation: 
 

/ 2i ie de ie gdϕ− Λ Λ = . (4.2) 
 
This differential equation clearly is solved for constant e and constant g, i.e., for 0de =  and 

0dg =  by: 
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( ) ( )exp exp 2i i egϕΛ = . (4.3) 

 
 We then return to (2.1) and employ this solution to operate on ψ − , thus writing: 

 

( ) ( )exp exp 2i i egψ ψ ψ ψ ϕ ψ− + − − −′→ = = Λ = . (4.4) 

 
Clearly, for 0ϕ = , we have ψ ψ+ −= .  But as we move ψ + through the Coulomb magnetic field 

of (3.7), we must require that the wavefunction satisfy certain constraints.  If we confine 
ourselves to the domain 0 2ϕ π≤ ≤ , then to make ψ +  single-valued for complete rotations 

through ϕ  and thus avert string singularities, we are required to impose the condition: 
 
2eg n= , (4.5) 
 
where n is a positive or negative integer, or zero.  Using / 4g µ π= , this may alternatively be 
expressed as 
 

2e nµ π= . (4.6) 
 

These are two different but equivalent ways of stating the standard Dirac Quantization 
Condition (DQC).  With this condition imposed, (4.4) becomes: 
 

( ) ( )exp expi inψ ψ ψ ψ ϕ ψ− + − − −′→ = = Λ = . (4.7) 

 
Also, note the implied quantized relationship: 
 

nϕΛ =  (4.8) 
 
between the phase angle Λ  and the azimuth angle ϕ .   
 

Then, as we move ψ +  over an entire, single closed curve from an azimuth 0ϕ =  to an 

azimuth 2ϕ π= , (4.6) above will become, for 2ϕ π= : 
 

( ) ( ) ( )exp exp exp 2i in i nψ ψ ψ ψ ϕ ψ π ψ ψ− + − − − − −′→ = = Λ = = = . (4.9) 

 
Therefore ( )2ψ ϕ π+ =  will have the single value ψ ψ+ −=  for any and all n.  This means that 

there will be no string singularities.  From (4.5), we see that the electric charge strength is 
quantized in units of 1

2 /e n g= , and reciprocally, that the magnetic charge strength is quantized 

in units of 1
2 /g n e= .  Likewise, for 0ϕ =  wound to 2ϕ π= , (4.8) becomes: 

 
2 nπΛ =  (4.10) 
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 With the quantization condition (4.5) we may finally return to (3.1) and write the 
potentials as: 
 

( )
( )

1
2

1
2

cos 1

cos 1

eA n d

eA n d

θ ϕ
θ ϕ

+

−

= +

= −
, (4.11) 

 
which complement the relationship ( )exp inψ ϕ ψ+ −=  in (4.7).  It is sensible that for an electric 

charge strength which is quantized, the associated potentials will likewise be quantized as above. 
 

The question we now raise is whether (4.5) is too restrictive, and in particular, a) what 
sorts of quantization conditions are permitted or required if we expand the azimuth domain to 
allow for 0 2 kϕ π≤ ≤ , where k is any positive integer, b) what it actually means, topologically, 
to expand the azimuth domain in this fashion, c) how one might go about expanding this azimuth 
domain in a well-defined, unambiguous manner, d) whether there are other non-singular 
monopole charge solutions which are being overlooked in (4.5) and which are only revealed with 
this expanded domain, and e) what those overlooked non-singular solutions might be. 
 
5. Extended Domain Non-Singular Conditions: The Fractional Dirac 

Quantization Condition 
 
 The standard DQC of (4.5), 2eg n= , was a required condition for avoiding observable 
string singularities when we restricted our consideration to the azimuth domain 0 2ϕ π≤ ≤ .  
Now we examine the question of what happens when we extend this domain to azimuths for 
which 0 2 kϕ π≤ ≤ .  To prepare for this examination, let us first postulate a replacement of the 
ordinary DQC with a more liberal Fractionalized Dirac Quantization Condition (FDQC): 
 

2
n

eg
m

= =ℚ . (5.1) 

 
Above, m is a positive integer, that is, 1,2,3,4,5...m =  and ℚ  generally denotes any real number 
which can be written as a quotient /n m , i.e., any rational number.  We then denote the set of 
irrational real numbers by ℚ .  Under this liberalized condition the electric and magnetic charge 

strengths would become 1
2 /e n mg=  and 1

2 /g n me= , and so would not only be quantized in 

units of n, but would also be fractionalized by denominators of m.  This also means that the 
vector potentials (3.1) would now become: 
 

( )

( )

1
cos 1

2
1

cos 1
2

n
eA d

m
n

eA d
m

θ ϕ

θ ϕ

+

−

≡ +

≡ −
, (5.2) 
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contrast (4.11).  It is sensible that for fractionalized charges – to the extent that they can exist 
without singularities – the potential would also be cut by a commensurate fraction. 
 

Now, we do not expect that (5.1) will avoid observable singularities without restriction.  
So our goal is to understand the circumstances under which (5.1) can hold without singularities, 
versus those under which it is excluded because of singularities.  To do this we first explore what 
sorts of restrictions must be imposed upon (5.1) to maintain ψ +  in (4.4) as a single-valued 

wavefunction and thus avoid any observable string singularities.  Then, we turn to understanding 
the topological conditions that might support such fractional charges (5.1). 
 
 If we utilize the FDQC of (5.1) rather than the DQC of (4.5) and simultaneously consider 
the extended domain 0 2 kϕ π≤ ≤ , then (4.4) becomes:  
 

( ) ( )exp exp 2 exp
n

i i eg i
m

ψ ψ ϕ ψ ϕ ψ+ − − −
 = Λ = =  
 

. (5.3) 

 
Of course, for 0ϕ =  we still have ψ ψ+ −= , which is single valued. 

 
Now, let us now suppose that we again move the electron from 0ϕ =  to 2ϕ π=  over a 

single rotation about the magnetic monopole field (3.7).  With 2ϕ π= , (5.3) yields: 
 

( ) ( ) 1
exp exp 4 exp 2i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.4) 

 
This will be single-valued for all n, if and only if 1m = , which is the standard DQC of (4.5).  In 
other words, when the azimuth domain is restricted to 0 2ϕ π≤ ≤ , we must employ the standard 
DQC 2eg n=  without fractionalization, which is contained within (5.4) for this required m=1.  
No fractional charges may be admitted with a 0 2ϕ π≤ ≤  domain.  And this is where the 
prevailing view and understanding of Dirac monopoles ends. 
 
 But now, rather than performing a single rotation, let us revolve the electron about the 
monopole twice, from 0ϕ =  to 4ϕ π= .  That is, let us now consider the domain 0 4ϕ π≤ ≤  for 
which k=2.  Then, (5.3) yields: 
 

( ) ( ) 1
exp exp 8 exp 4i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.5) 

 
If m=1 this will be single-valued for all n, which of course is trivial, because m=1 used in (5.1) is 
still just the standard DQC.  However, here, we may also employ m=2 without having an 
observable singularity.  If m=2, then (5.5) will become ( )exp 2i nψ π ψ+ −= , and we will also 

retain 2 nπΛ =  from (3.10).  Clearly, ( )exp 2i nψ π ψ+ −=  is still single-valued for any and all n 
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and thus produces no observable singularities.  In sum: for k=2, we can set either 1m =  or 2m =  
in (5.1) and remain free of singularities. 
 
 Next, let us wind the electron about the monopole three times, from 0ϕ =  to 6ϕ π= .  
Now the domain is 0 6ϕ π≤ ≤  with k=3.  For this domain (5.3) yields: 
 

( ) ( ) 1
exp exp 12 exp 6i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.6) 

 
This wavefunction ψ +  will be single-valued and thus non-singular for m=1 and m=3.  However, 

it is not single-valued for m=2, because in this event, ( ) ( )exp 3 expi n i nψ π ψ π ψ ψ+ − − −= = = ∓ , 

which is two-valued, with the coefficient 1± .  For odd 1,3,5...n =  ψ ψ+ −= −  while for even 

0,2,4,6...n =  ψ ψ+ −= + .  Thus, for k=3, the fractions 1,3m =  are non-singular and so are 

permitted, but m=2 would lead to an observable singularity and so is excluded. 
 
 For a k=4 quadruple revolution over the domain 0 8ϕ π≤ ≤ , we have: 
 

( ) ( ) 1
exp exp 16 exp 8i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.7) 

 
This will remain single-valued thus non-singular for 1,2,4m = .  However, m=3 is excluded, and 
it is interesting to see why.   
 

For the excluded fraction m=3, (5.7) becomes: 
 

( ) 8 2 2 2
3 exp exp cos sin

3 3 3 3
m i n i n n i nψ π ψ π ψ π π ψ+ − − −

        = = = = +        
        

. (5.8) 

 
For n=1, m=3 the argument of these periodic functions becomes 2 / 3 120π = ° , which sits in the 
upper-left quadrant of the complex a bi+  plane.  We can use a 30 60 90° − ° − °  triangle to 

ascertain that ( ) 1
2cos 2 / 3π = −  and ( )sin 2 / 3 3 / 2π = .  So for n=1, (5.8) becomes: 

 

( ) 1 3
1, 3

2 2
n m iψ ψ+ −

 
= = = − + 

 
. (5.9) 

 
For n=2, m=3 the argument becomes 4 / 3 240π = ° , which uses the same 30 60 90° − ° − °  triangle 
simply in a different (lower-left) quadrant of the complex plane where the sine and cosine are 
both negative.  Now: 
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( ) 1 3
2, 3

2 2
n m iψ ψ+ −

 
= = = − − 

 
. (5.10) 

 
For n=3, m=3 the argument becomes 2π  and therefore ( )3, 3 1n mψ ψ+ −= = = + ⋅ .  So m=3 is 

excluded from the k=4, 0 8ϕ π≤ ≤  circumstance because ψ +  becomes triple-valued, with the 

coefficients in (5.9) and (5.10) as well as the coefficient +1.  For higher n, these same results 
merely recycle themselves.  Importantly, as we shall shortly develop in depth, on close perusal, 
we realize that these coefficients are identical with the cubed roots of unity. 
 
 The k=4 domain in (5.7) is also the first domain for which k is not a prime number, and 
this is responsible for the fact that the fraction 2, which is a prime factor of 4, is also permitted 
amongst 1,2,4m =  without singularity.  Specifically, when we set m=2 in (5.7), we obtain: 
 

( ) ( ) ( )exp exp 16 exp 4i i eg i nψ ψ π ψ π ψ ψ+ − − − −= Λ = = = , (5.11) 

 
which is clearly single-valued therefore non-singular and permitted. 
   

 In the foregoing, we now see that the Euler relation ( )1 exp exp 2 /m i i n mϑ π= =  for the 

mth roots of unity plays a pivotal role in weeding out singular from non-singular fractionalized 
solutions.  At (5.6), for k=3, we excluded m=2 because it yielded the two-valued wavefunction 
coefficient 1± .  But this coefficient contains no more and no less than the square roots of unity 

( )2 1 exp exp 1i i nϑ π= = = ±  with the Euler angles 180 ,360nϑ π= = ° °  in the complex plane for 

1,2n = .  Then, in (5.9) and (5.10) for k=4, we excluded m=3 because this yielded the three-

valued wavefunction coefficient ( )3 1 exp exp 2 / 3i i nϑ π= =  with 2 / 3 120 ,240 ,360nϑ π= = ° ° °  

associated with the cubed roots of unity for 1,2,3n = .  At the same time, ( ) ( ), 4,2k m =  is 

permitted, because 2 is an evenly-divisible factor of k=4.   Let us now continue to some larger k: 
 
  For five k=5 rotations of the wavefunction about the monopole, 0 10ϕ π≤ ≤  we have: 
 

( ) ( ) 1
exp exp 20 exp 10i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.12) 

 
Here, the only permitted non-singular fractions are 1,5m = .  For the excluded m=2 fraction the 

above would yield the two-valued ( ) ( ) 2exp 5 exp 1i n i nψ π ψ π ψ ψ+ − − −= = = .  The excluded m=3 

fraction ( ) ( )exp 10 / 3 exp 4 / 3i n i nψ π ψ π ψ+ − −= =  has 4 / 3 240 ,480 ,720nϑ π= = ° ° °  for 

1,2,3n =  which replicates the three-valued 3 1ψ ψ+ −=   for the cubed roots of unity.  The 

excluded m=4 fraction yields ( ) ( ) 4exp 10 / 4 exp / 2 1i n i nψ π ψ π ψ ψ+ − − −= = =  which is 

quadruple-valued based on the fourth roots of unity 4 1 1, i= ± ±  with 
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/ 2 90 ,180 ,270 ,360nϑ π= = ° ° ° °  for 1,2,3,4n = . So we see that it is easy to summarize the 

excluded states simply by using the mth roots of unity 1m  as the wavefunction coefficient. 
 
 For six k=6 rotations with domain 0 12ϕ π≤ ≤  we have: 
 

( ) ( ) 1
exp exp 24 exp 12i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.13) 

 
This permits 1,2,3,6m = , because it is single-valued and so non-singular for any of these.  It will 
be readily seen that the excluded 4,5m =  yield the respective four-valued and five-valued results 

( ) 44 1mψ ψ+ −= =  and ( ) 55 1mψ ψ+ −= =  involving the fourth and fifth roots of unity.  Of 

course, 6 =2x3 is not a prime number, and we see that its prime factors are precisely those 
2,3m =  fractions which are also permitted.  For m=2 the above becomes: 

 

( )exp 6i nψ π ψ ψ+ − −= = , (5.14) 

 
and for m=3 (5.13) becomes: 
 

( )exp 4i nψ π ψ ψ+ − −= = . (5.15) 

 
 For k=7 seven revolutions over 0 14ϕ π≤ ≤ , we have: 
 

( ) ( ) 1
exp exp 28 exp 14i i eg i n

m
ψ ψ π ϕ ψ π ψ+ − − −

 = Λ = =  
 

. (5.16) 

 
The only permitted fractions are 1,7m = , and this is because 7 is a prime number.  The excluded 

fractions yield the m-valued ( ) 1mmψ ψ+ −=  for 2,3,4,5,6m = .  

 
 For an octuplet of revolutions, k=8 over 0 16ϕ π≤ ≤ ,  we have: 
 

( ) ( ) 1
exp exp 32 exp 16i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.17) 

 
The permitted fractions are 1,2,4,8m = , which represent the prime factorization of k=8.  The 

wavefunction ( ) 1mmψ ψ+ −=  is multivalued for the excluded fractions / unity roots 3,5,6,7m = . 

 
 For nine revolutions, k=9 over 0 18ϕ π≤ ≤ , we have:  
 

( ) ( ) 1
exp exp 36 exp 18i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.18) 
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This admits the non-singular 1,3,9m = , which again are the prime factors, this time of k=9.  All 

other excluded fractions 2,4,5,6,7,8m =  yield multivalued ( ) 1mmψ ψ+ −= . 

 
 Finally, for ten revolutions over 0 20ϕ π≤ ≤  we have: 
 

( ) ( ) 1
exp exp 40 exp 20i i eg i n

m
ψ ψ π ψ π ψ+ − − −

 = Λ = =  
 

. (5.19) 

 
This allows the fractions 1,2,5,10m =  which the prime factors of k=10, and the excluded states 

3,4,6,7,8,9m =  continue to be multi-valued with  ( ) 1mmψ ψ+ −= . 

 
So we see that as a general rule, if we move an electron from 0ϕ =  to 2 kϕ π=  where k 

is an integer denoting the number of revolutions about the monopole, the fractions m in (5.1) 
which are permitted without singularity will be 1m =  and m k=  if k is a prime number, and 
additionally, all integers in the prime factorization of k if k is not prime.  The fractions which are 
excludes are those with multivalued mth roots of unity operating on the wavefunction according 

to  ( ) 1mmψ ψ+ −= . 

 
Seeing that the root of unity relationship:     
 

( ) ( )1 exp exp 2 cos 2 sin 2 cos 2 sin 2m n n n
i i i i

m m m
ϑ π π π π π     = = = + = +     

     
ℚ ℚ  (5.20) 

 
plays a fundamental mathematical role in characterizing and understanding when the fractional 
charge condition of (5.1) will and will not create observable singularities, it becomes apparent 
that it will generally be desirable to evaluate sin and cos functions in which the Euler angle 

2ϑ π= ℚ  is a rational multiple of 2π .  For simple angles such as 2 / 3 120π = °  and 
4 / 3 240π = °  with 1/ 3=ℚ  and 2 / 3=ℚ  as in (5.9) and (5.10), one can draw suitable triangles 
and obtain these sines and cosines in terms of roots of integers.  But as the fractional m become 
larger integers, it becomes difficult, and in many cases impossible, to draw a regular polygon and 
then start manipulating subset triangles.  The preferred approach, which can be used for any 
fraction m, is to instead write these roots as 1mx =  i.e., as the polynomial equation 1 0mx − = , 
and then to find each of the m values of x which are roots of this polynomial.  Of course, one of 
these m roots is always 1 itself, so 1 0x − =  can always be factored out.  It is then readily seen 
with this factorization that this polynomial may be written as: 
 

( )( ) ( ) 11 2 3 3 2

0
1 ... 1 1 1 0

mm m m m i

i
x x x x x x x x x x

−− − −
=

− = + + + + + + − = − =∑ . (5.21) 

 
So the m-1 mth roots of unity aside from 1 itself are generally found by solving the polynomial: 
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1

0
0

m i

i
x

−

=
=∑ . (5.22) 

 
Of course, for large m, this is not a trivial polynomial to solve.  But in principle, this makes it 
possible to find any and all roots that may be desired.  So, for example, for the cubed roots of 
unity used in (5.9) and (5.10), the polynomial (here, quadratic) is 2 1 0x x+ + = , which is readily 

solved as ( ) ( )1 1 4 / 2 1 3 / 2x i= − ± − = − ±  and which indeed corresponds to (5.9) and (5.10).  

The third of these three roots is the trivial root 3 1 1= .  
 
 From (5.3), the phase is now related to the azimuth by: 
 

n

m
ϕΛ = . (5.23) 

 
So for 2 kϕ π=  in general, this phase is given by: 
 

2
k

n
m

πΛ = . (5.24) 

 
Whenever m=k, the phase result (5.24) becomes 2 nπΛ = , which is no different at all from the 
result (4.10) for the standard DQC. 
  
 Now let us see how to make topological sense of these non-singular, fractional charge 
solutions 2 /eg n m= =ℚ  of (5.1) which do admit fractions with 2m ≥ , but which still maintain 
a single-valued wavefunction and so avert any observable singularities, when the domain 
0 2 kϕ π≤ ≤  runs to a higher upper limit than 2π .  
 
6. Using kth Root-of-Unity Covering Groups with 2π Domain 

Limitations to Project a 2πk Domain onto SO(3) and thereby Permit m=k  

Fractional Dirac Charges without Observable Singularities 
 
 We begin with (5.5) in which an electron is moved through two azimuth rotations about 
the monopole, from 0ϕ =  to 4ϕ π= .  When we take an integral such as (3.3) over the domains 
of 0 θ π≤ ≤  and 0 4ϕ π≤ ≤ , it is clear that we are double-covering the rotation group SO(3) in 
the physical space of spacetime.  This covering may be topologically described by a two-to-one 
mapping of the elements of SU(2) onto those of SO(3), i.e., by a surjective homomorphism 
described by the projection : (2) (3)SU SOπ → .  Suppose that we now wish to limit the domain 
to 0 2ϕ π≤ ≤  and still double-cover SO(3) over 0 4ϕ π≤ ≤  so as to permit a fractional charge 
with m=2 and have no observable singularity.  How do we do this?  If we impose this domain 
limitation on SU(2) rather than on SO(3), then a 2π  rotation in SU(2) will projectively map onto 
a 4π  rotation for SO(3) and so we can double cover SO(3) over the larger domain 0 4ϕ π≤ ≤  
and so admit a non-singular m=2 fractional charge, while at the same time restraining SU(2) to 
remain within the 0 2ϕ π≤ ≤  domain.  Simply put, and as is well-known, with 1,2,3i =  
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corresponding to the three physical space dimensions, any rotation over some angle iθ  in SU(2) 

maps onto a rotation through 2 iθ  in SO(3).   

 
This is also responsible for so-called orientation-entanglement whereby a spinor will 

reverse sign under a 2π  rotation in SO(3) which is a 1π  rotation in SU(2), and only have its sign 
restored under a 4π  rotation in the same SO(3) which is a 2π  rotation in SU(2).  Specifically, 
using the rotation operator ( )expR i= ⋅J θ  defined on SO(3) and the unitary operator 

( )exp / 2U i= ⋅σ θ  defined on the universal cover SU(2), when we increase one of the angles in 
iθ=θ  by 2π , this sign change does appear in SU(2) whereby U U→ − , but it does not appear 

in SO(3) whereby R R→ .   This means that there is something captured by SU(2) that is 
missing from SO(3).  This in turn means that SO(3) is only an approximate symmetry, whereas 
the true, exact, operative symmetry which records this sign change is seen only when we employ 

the universal cover (2)UG SU=ɶ  and project this via : (2) (3)SU SOπ →  onto SO(3). 

 
So now we return to (5.5) for a 0ϕ =  to 4ϕ π=  double rotation / double cover of SO(3), 

with the domain 0 4ϕ π≤ ≤ .  As already seen, this does admit both of the non-singular fractional 
values 1m =  and 2m =  from the Fractional DQC 2 /eg n m=  of (5.1) by maintaining a single-
valued wavefunction for all n in either case.  Of course, the non-singular m=1 is just the standard 
DQC; our present interest is in m=2 because this represents a half-unit charge and because this 
too has no observable singularities. 

 
The vector potential for such a half-unit fractional charge is represented by (5.2) with 

m=2, and it certainly makes sense that a monopole with half the charge strength will have a 
potential which is likewise cut by a factor of two.  And via (5.5), see also (5.24), we see that the 
m=2 phase solution is still 2 nπΛ = , just as for the standard DQC, see (4.10).  So if we wish to 
restrict our domain to 0 2ϕ π≤ ≤  yet capture all of the operative symmetries and still admit this 
half-unit charge without singularity, we can go into SU(2), limit the domain to 0 2ϕ π≤ ≤  in 
SU(2), and ensure that when projected onto SO(3) this will yield a 0 4ϕ π≤ ≤  domain.  The 
spinor sign change will be seen under the exact SU(2) symmetry but will be missing from and 
not seen in the approximate symmetry of SO(3).  Most importantly, by virtue of 

: (2) (3)SU SOπ →  projecting the domain 0 4ϕ π≤ ≤  into SO(3) even though the SU(2) domain 
is 0 2ϕ π≤ ≤ , the m=2 fractional charge will be permitted to exist without singularity as seen in 
(5.5) because the wavefunction remains single-valued.  So this tells us how, in principle, we may 
use SU(2) to admit a quantized fractional charge 2 /eg n m= with m=2, without singularity.  But 
what about the higher fractions with 3m ≥ ?  Let’s start with 3m = , then generalize. 

 
 In (5.6) we see that a non-singular m=3 fraction is permitted, but only for a triple cover 
from 0ϕ =  to 6ϕ π= .  As before, we would like to start with a domain restricted to 0 2ϕ π≤ ≤ , 

and so we need to find some covering group Gɶ  of SO(3) whereby : (3)G SOπ →ɶ  projects a 

0 2ϕ π≤ ≤  domain in Gɶ  onto a 0 6ϕ π≤ ≤  domain in SO(3).  In short, we need a group Gɶ  
which provides a triple cover of SO(3).  So, how do we go about finding such a group, as well as 
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other groups Gɶ  which can quadruple, quintuple, pentuple, sextuple, etc., cover SO(3) to lay the 
groundwork for even larger fractional denominators? 
 
 In a very basic sense, we can regard SU(2) as the “square root” of SO(3).  So now, we 
must find a “cubed root” of SO(3), and even higher roots for larger fractions.  So, what does it 
really mean to take such roots, and how do we formalize this?  For SU(2) which is the “square 
root” and a universal cover of SO(3), working from (5.5), we may write: 
 

( ) ( )exp exp 8 exp 2 exp 2
n n

i i eg i i
m m

ψ ψ π ψ π π ψ+ − − −
   = Λ = =    
   

. (6.1) 

 
As already seen, m=2 for a half-unit charge is permitted, because the wavefunction remains 
single-valued.  With m=2, each of the factors ( )exp 2 /i n mπ  in the above becomes ( )exp i nπ  

which for n=1 corresponds to the Euler angle 180ϑ π= = ° .  And the potential (5.2) will be cut 
down to one-half of its whole-integer value which relates to our also observing a charge that is 
cut down by half.  But the double multiplication of these factors ( )exp i nπ  together still 

maintains a single-valued wavefunction by arriving at a total angle 2 360ϑ π= = °  in the 
expression ( )exp 2i nπ  operating on ψ − , such that ( )exp 2i nψ π ψ ψ+ − −= =  for any and all n and 

thereby averts observable singularities.  At the same time, the exact symmetry group SU(2) will 
“see” a spinor sign reversal that is not “seen” by the approximate symmetry group SO(3), which 

sign reversal represents the square roots of unity 2 1 1= ±  which are more generally represented 
by this same ( )exp 1i nπ = ±  for all n. 

 

So for a covering group 3Gɶ  which is a “cubed root” of SO(3) as designated by the left 

subscript “3” that we have now introduced, let us now write (5.6) as: 
 

( ) ( )exp exp 12 exp 2 exp 2 exp 2
n n n

i i eg i i i
m m m

ψ ψ π ψ π π π ψ+ − − −
     = Λ = =      
     

. (6.2) 

 
For the m=3 solution of interest, each of these factors becomes ( )exp 2 / 3i nπ  which for n=1 

corresponds to the Euler angle 2 / 3 120ϑ π= = ° .  But here, the triple multiplication will again 
maintain a non-singular single-valued wavefunction, and the potential (5.2) will be cut down to 
one-third of its whole-integer value.  Indeed, when we take this triple product, the three Euler 
angles of 120°  apiece now add up to 2 360ϑ π= = ° .  There is a 2π  in each factor to maintain a 

0 2ϕ π≤ ≤  domain in 3Gɶ , but when we multiply everything together we arrive at an overall 6π  

factor which yields a 0 6ϕ π≤ ≤  domain on SO(3).  And, just as SU(2) “sees” a spinor sign 

reversal based on ( )2 1 1 exp 2 / 2i nπ= ± =  which SO(3) does not see, 3Gɶ  will “see” some 

coefficients based on the cubed roots of unity ( )3 1 exp 2 / 3i nπ=  that SO(3) does not see, 

namely, the roots ( )1 3 / 2i− ±  of (5.9) and (5.10) that we also obtained from (5.21).  
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 Now, contrasting (6.1) and (6.2), and extrapolating the same calculation to fourth roots in 
(5.7) and fifth roots in (5.12) and so on, we see that in all cases, the relationships of section 4 and 
any higher-fraction relationships for the domain 0 2 kϕ π≤ ≤  on SO(3) can all be written as: 
 

( ) ( )exp exp 4 exp 2 exp 2
k

n n
i i keg i k i

m m
ψ ψ π ψ π ψ π ψ+ − − − −

   = Λ = = =   
   

. (6.3) 

 

But we now also recognize, very importantly, that ( ) ( )
1

1 1 exp exp 2 /m m i i n mϑ π= = =  appearing 

in the final expression above is the very same fundamental mathematical relationship (5.20) of 
Euler, which is used to write the mth roots of unity.  Therefore, we may rewrite the above as: 
  

( ) ( ) ( ) ( )exp exp 4 exp 2 exp 2 1
k k k

k
m m

n
i i eg i i n

m
ψ ψ π ψ π ψ π ψ ψ+ − − − − −

 = Λ = = = = 
 

, (6.4) 

 

where in the third term we have used ( ) ( )4 4
k

i keg i egπ π=  to move k into the exponent.  

Embedded in the above, we may also now consolidate the phase relationship down to: 
 

( ) ( )exp 1
k

miΛ = . (6.5) 

 

So as we see, a domain of 0 2ϕ π≤ ≤  in the group k Gɶ  associated with the factor ( )exp 2 /i n mπ  

in (6.3) will project a domain of 0 2 kϕ π≤ ≤  onto SO(3) via : (3)k G SOπ →ɶ , thus permitting 

the fractional charge 4 2 /eg e n mπ µ π= =  with m k= , as well as other integers m in the prime 
factorization of k,  without observable singularity.  

 
Referring now to (6.4), we see that when k = P  is a prime number, the wavefunction will 

be single-valued and so there will be no observable singularities if and only if one of two 
conditions is satisfied:  First, when 1m =  which of course is trivial and corresponds to the non-
fractionalized charges of the ordinary DQC.   Second, when m k=  in which case there are 
fractional charges yet the wavefunction still remains single-valued.  When k is not a prime 
number, k ≠ P , then there will be other charges besides m k=  which via 

( ) ( )/ /
1 1 exp 2

k m k m
i nπ= =  will maintain a single-valued coefficient in all situations.  We saw this 

in the last section, but ( ) /
1

k mψ ψ+ −=  in (6.4) enables us to summarize this much more 

compactly:  For the smallest non-prime 4k =  we may have 1,2,4m =  which represents the 
prime factorization of 4.  For non-prime 6k =  we may have all of 1,2,3,6m =  which represents 
the prime factorization of 6.  For non-prime k=8 the non-singular fractions are 1,2,4,8m =  
which are the prime factorizations of 8.  And for k=9 which is the first odd number that is not 
prime, we may have 1,3,9m = which are the prime factorizations of 9.  Finally, for k=10 we may 
have 1,2,5,10m = , once again, the prime factorization.  This carries forward ad infinitum. 
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We also see from this that the quantization condition (5.1) must be restricted in all 
circumstances to rational numbers 2eg =ℚ  and must of necessity exclude all irrational numbers 

ℚ .  Why?  To maintain a single-valued wavefunction, (6.3) teaches that it is necessary that there 

exist some integer k such that ( ) ( )exp 2 / exp 2 1
k k

i n m iπ π= =ℚ , because the unitarity of this 

result is what yields the single valued wavefunction ψ ψ+ −=  following a 2 kϕ π=  azimuth 

rotation and thus avoids observable singularities.  So long as /n m=ℚ  is indeed a rational 
number, this can be achieved by at least one choice of k, namely, k=m, and for non-prime k, by m 
being equal to one of the integers in the prime factorization of k.   

 
So as a proof by contradiction, let us suppose that we were to employ a condition 

2eg =ℚ  using a number ℚ  posited to be irrational.  Then the requirement to avoid observable 

singularities would become ( ) ( )exp 2 exp 2 1
k

i i kπ π= =ℚ ℚ .  This would mean that there must 

be some value of k for which  k =ℚ ℤ  is an integer ℤ , so that we could have ( )exp 2 1i π =ℤ .  In 

other words, / k=ℚ ℤ  would have to be the rational number / kℤ .  But this contradicts our 

positing ℚ  to be an irrational number, and so proves that the Dirac condition must be restricted 
in all circumstances to 2eg =ℚ  with /n m=ℚ  rational, if singularities are to be avoided.   

 
One can also think about this geometrically using a unit circle: to maintain a single-

valued wavefunction, we must be able to take some Euler angle ϑ  and multiply this angle by 
some integer k such that 2k nϑ π=  rotates to an angle which is a whole-integer multiple of 
2 360π = ° .  Therefore, to “fit” this onto the unit circle, the original angle must be 

2 / 2n kϑ π π= = ℚ , and so an irrational ℚ  in 2ϑ π= ℚ  could never work to provide the correct 
fit to the unit circle.  So we see that the Dirac Quantization Condition, really generalizes to a 
Dirac Rationality Condition. 
 

  From there, our task is to find these root of unity groups which map onto SO(3) via 

: (3)k G SOπ →ɶ , for which the domain of k Gɶ  runs from 0 2ϕ π≤ ≤  and the domain projected 

onto SO(3) then runs from 0 2 kϕ π≤ ≤  and therefore admits fractional charges with m k=  and 
m equal to integers in the prime factorization of k,  because these are the conditions under which 

( ) ( ) ( )/ /
exp 2 / exp 2 1

k k m k m
i n m i nψ π ψ π ψ ψ ψ+ − − − −= = = =  remains single-valued and thus has 

no observable singularities.  More simply put: given that k m≥ , the non-singular solutions must 

all have ( ) /
1 1

k m = , a.k.a. /k m = ℤ  where ℤ  is an integer. 

 
This in turn teaches us that the kernel of this mapping must be equal to the mth roots of 

unity, that is, we must have ker 1mπ = .  Therefore, extracting the key items of information from 
(6.4) by factoring out the wavefunctions and then taking the kth root of every term in (6.4) which 
contains k in an exponent, we may write this required kernel in several interrelated formulations, 
also using / 4g µ π=  from (3.5), as: 
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( ) ( ) ( ) ( )
1 1

ker 1 1 exp exp 2 exp 2 exp 4 expm m m
n

i i i n i eg ie
m

π ϑ π π π µ = = = = = = = 
 

, (6.6) 

 
 Now we shall develop these root-of-unity covering groups in detail.  The most important 
aid that we have to perform this development, is the group SU(2) which is the universal cover of 
SO(3).  For, as we shall see, the development of these root groups, fundamentally, boils down to 
spotting SU(2) at the Euler angle ϑ π= , spotting SO(3) at 2ϑ π= , and then developing the 

other k Gɶ  by rotating the SU(2) generators through the unit circle in the complex plane to other 

angles 2 / 2n mϑ π π= = ℚ  which are rational multiples 2πℚ  of 2π .  Henceforth, we shall 

denote these root-of-unity covering groups as n
m Gɶ  to represent the key parameters n and m in the 

Euler angle 2 /n mϑ π=  associated with each such group.  And because the generators of these 
groups these will be 2x2 matrices formed from the three Pauli matrices iσ , we shall further 

denote these as (2)n
mGɶ  to represent that these groups also use 2x2 matrices as their generators.  

We omit the “special” prefix “S,” however, because as we shall see, these generators will not 
necessarily be traceless. 
 
7.  Generators for the Root-of-Unity Covering Groups which Project 

the Fractional Dirac Charges onto SO(3) via the Universal Cover SU(2); 

and Euler Angles in the Complex Generator Plane 
 
 We stated prior to (6.1) that in a very basic sense, SU(2) is the “square root” of SO(3).  
Let is now formalize that sense more precisely.  Mathematically, it first became apparent back at 
(5.9) and (5.10) that roots of unity are essential for characterizing situations under which the 
fractional charges 2 /eg n m=  yield single-valued or multivalued wavefunctions, and thus, the 
circumstances under which Dirac string singularities are observable thus forbidden, or not 
observable thus permitted.  Then, in the last section we laid out how these roots of unity are in 

fact fundamental to developing the covering groups through which : (2) (3)n
mG SOπ →ɶ  lays the 

topological groundwork to support these fractional charges.  Specifically, we established at (6.6) 

that ker 1mπ =  must itself be an mth root of unity for any given (2)n
mGɶ .  What now changes 

from here, mathematically, is really very simple:  Whereas we have heretofore concerned 
ourselves with roots of the scalar number 1, we shall now concern ourselves with roots of the 
2x2 identity matrix ( ) ( )diag 1,1I = . 

 

 Let’s start with the square root of the 2x2 I, that is, 2 I  .  If we restrict our consideration 
to traceless Hermitian matrices, we know immediately that aside from I itself for which 2I I= , 
there are three other matrices which fit this bill, namely, the Pauli matrices iσ  for which 

2 2 2
1 2 3 Iσ σ σ= = = , †

i iσ σ= , and ( )Tr 0iσ = .  These are the traceless, Hermitian square roots 

2
i iIσ =  of a triplet iI  of 2x2 identity matrices.  If we want to formalize the mathematics a bit 

more, we can write these square root relations using the anti-commutator relation { }, 2i j ijσ σ δ= .  
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Of course, these matrices also have the non-zero commutator , 2i j ijk kiσ σ ε σ  =  .  And it is also 

very well-known that we obtain i j ij ijk kiσ σ δ ε σ= +  by combining these relationships, and that 

this expression and the related expression g iµ ν µν µνγ γ σ= −  obtained from combining the Dirac 

matrix relations { }, 2gµ ν µνγ γ =  and , 2iµ ν µνγ γ σ  = −   are central to the Gordon decomposition 

by which the electron spin and magnetic moment is separated from orbital angular momentum. 
 
 So when we say that SU(2) is the “square root” of SO(3), this is highlighted at several 

levels.  First, of course, is the fact that the generators 2
i iIσ =  are indeed square roots of the 

identity matrix triplet.  But the : (2) (3)SU SOπ →  mapping is made evident rather simply when 

we form i
i xσ  from the space coordinates ( ), ,ix x y z=  and then square this to obtain 

( ) 2 2 2 2i j i j
i j ij ijk kx x i x x x y z rσ σ δ ε σ= + = + + = , wherein the Pythagorean length r is the defining 

invariant of the rotation group SO(3).   Without the “square root” Pauli generators, the way to 

take a square root is to write 2 2 2r x y z= ± + + , and the two-valuedness of taking square m=2 

roots shows up in the ±  sign, which more deeply, is really ( )exp exp 2 /i i n mϑ π=  for m=2 and 

1,2n = , i.e., for 180 ,360ϑ = ° ° .  With the Pauli generators, this two-valuedness instead shows 
up in the fact that the eigenvalues 1λ = ±  are obtained from the characteristic equation 

0iσ λ− =  for all three iσ .  There are other ways to illustrate how SU(2) is the square root of 

SO(3), including by using the spinors in †i
i xσ ξξ= −  which we shall examine a bit later.  But for 

the moment, the foregoing provides us with a simple point of departure to now more generally 

consider the mth roots of the identity matrix, m I .  By doing so, we are able to obtain the 

generators for these mth root of unity covering groups (2)n
mGɶ . 

 
 We start with the Pauli matrices iσ  themselves, posit three associated angles iθ  in 

physical space, and form the unitary matrices ( )expi i iU iσ θ= , thus † 1U U =  given †
i iσ σ= , for 

SO(3) rotations through respective angles , ,i x y zθ θ θ θ=  about each of the x, y, z axes.  It is well-

known how to use the series ( ) 2 3 41 1 1
2! 3! 4!exp 1 ...ix ix x i x x= + − − +   together with the fact that 

2n
i iIσ =  and 2 1n

i iσ σ+ =  to flesh out these unitary matrices into the well-known: 

 

( )

( )

( )

1 1
1 1 1

1 1

2 2
2 2 2

2 2

3 3
3 3 3

3 3

cos sin
exp

sin cos

cos sin
exp

sin cos

cos sin 0
exp

0 cos sin

i
U i

i

U i

i
U i

i

θ θ
σ θ

θ θ
θ θ

σ θ
θ θ

θ θ
σ θ

θ θ

 
= =  

 

 
= =  − 

+ 
= =  − 

. (7.1) 
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 Now, it happens that with a judicious choice of these angles iθ  we can cause each of 

these iU  to be identical to the corresponding iσ  up to an overall constant factor.  Specifically, if 

we choose each of these angles such that / 2iθ π= , we readily see that: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

1 1 1

2 2 2

3 3

cos / 2 sin / 2 0 1
/ 2 exp

sin / 2 cos / 2 1 02

cos / 2 sin / 2 0 1 0
/ 2 exp

sin / 2 cos / 2 1 0 02

cos / 2 sin / 2 0
/ 2 exp

0 cos / 2 sin /2

i
U i i i

i

i
U i i i

i

i
U i

i

π πππ σ σ
π π

π πππ σ σ
π π

π πππ σ
π π

    = = = =    
    

  −    = = = = =       − −      

+ = =  −  ( ) 3

1 0

2 0 1
i iσ

   
= =   −  

.(7.2) 

 
Consolidating, we see that ( ) ( )/ 2 exp / 2i i iU i iπ σ π σ= =  in general, which we rewrite as: 

 

exp
2i ii i
πσ σ = −  

 
. (7.3) 

 
So now we can square this expression, and because 2

i iIσ = , we can write the identity 

matrix triplet iI  as: 

 

( ) ( )2
expi iI i iσ π= − . (7.4) 

 

We deliberately do not turn ( )2
1i− → −  because when we later take square roots of this, we want 

to recover –i alone, and not extraneously introduce a two-valued 1i± = − .  Of course, the 
identity matrix taken to any integer power n is still the identity matrix n

i iI I= , so the most 

general expression for this triplet of identity matrices is:  
 

( ) ( ) ( ) ( ) ( )2 2
exp cos sin

n nn
i i i i iI I i i n i n i nσ π σ π σ π = = − = − +  . (7.5) 

  
  Now that we have the identity matrices represented in this form, it is an easy matter to 

obtain their generalized mth roots, m iI .  There are simply: 

 

( ) ( )
2 2

exp cos sin
n n

n m m m
m i i i i i

n n n
I i i i i

m m m
τ σ π σ π σ π      ≡ = − = − +      

      
. (7.6) 

 

In the above, we have defined n m
m i iIτ ≡  for each of these roots, which we now explain:  First, 

each of these m
iI  is a triplet 1,2,3i =  of 2x2 matrices, just like the Pauli iσ  themselves.  These 
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m
iI  are parameterized by the two integers n and m which enter (7.6) in the ratio /n m=ℚ  of a 

rational number.  Analogously to how iσ  are the generators of SU(2), these m
iI  are the 

generators of the root covering group (2)n
mGɶ  for the mth root of iI  raised to the nth power.  Thus, 

for example, ( )2 2/3
3

i iI I=  with n=2 and m=3 is the 2/3 root of iI , which explains why we 

denote (2)n
mGɶ  with a left superscript n and left subscript m.  Thus, analogizing to iσ  used to 

represent 2 iI , we use iτ  to generally represent the root-of-unity generators for these groups 

(2)n
mGɶ .  And because it is important to know the n and m integers associated with any of these 

iτ , we write these as nm iτ  so as to provide a simple shorthand for knowing at a glance that nm iτ  

are the generators for the /n m th root-of-unity group (2)n
mGɶ . 

 
 So as a test, to confirm that (7.6) is correct for the square root of unity (namely SU(2)), 
we may set m=2 in (7.6) to obtain: 
 

( ) ( )2 exp / 2
nn

i ii i nτ σ π= − . (7.7) 

 
Referring to (7.5) we see that 2

n
i iIτ =  for 0,2,4,6...n = , which recovers the identity matrices.  

And referring to (7.3), we see that 1
2 i iτ σ=  for 1n = , while (7.6) shows that for successive 

3,5,7...n =  the sign flip in ( )n
i−  will be precisely offset by a sign flip in ( )exp / 2ii nσ π , so that 

2
n

i iτ σ=  for 1,3,5,7...n =  generally.  But this exercise also alerts us, while 1 1 †
2 2i iτ τ=  and 

( )1
2Tr 0iτ =  in the special case 12 i iτ σ= , that in general the nm iτ  are neither Hermitian nor 

traceless.  The 22 i iIτ =  generators, for example, certainly are not traceless, but rather have 

( )2
2Tr 2iτ = .  And by definition they will commute with any other 2x2 matrices and are their 

own inverses.  Further, from (7.6), taking the Hermitian conjugate, we find: 
 

( ) ( )
2 2

† exp cos sin
n n

n m m
m i i i i

n n n
i i i i

m m m
τ σ π σ π σ π      = − = −      

      
. (7.8) 

 
So as a general rule, †n n

m i m iτ τ≠ , that is, these are not Hermitian.  However, these n
m iτ  are unitary, 

( ) ( )†n n
m i m i iIτ τ = . 

 
 It is also useful to use the Euler formulation ( )exp 3 / 2i i π− =  to write: 

 

( )
2

exp 3
n

m
n

i i
m

π − =  
 

, (7.9) 

  
and then use this in (7.6) to write: 
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( )exp 3 exp exp 3n
m i i i i

n n n
i i i I

m m m
τ π σ π π σ     = = +     

     
. (7.10) 

 
The resultant 3i iIσ +  does have a trace, which is another view of how in general, ( )Tr 0n

m iτ ≠ . 

 
 Now, while these nm iτ  were developed in order to accommodate fractional Dirac charges, 

the existence of these n
m iτ  as the /n m th roots of the identity triplet iI  is independent of our 

wanting to lay the topological groundwork for these fractional charges.  If one had set out to find 
generators which are the generalized roots of the 2x2 iI , one could have done so as shown here 

without any reference to or thought about Dirac monopoles or the DQC or fractional charges.  
The point of contact to formally accommodate fractional charges is now found in the kernel 
expression (6.6), and specifically, in its embedded relationships: 
 

2 4
n

eg e
m

ϑ π π µ= = = . (7.11) 

 
So if we now use (7.11) divided through by 2 in (7.10), we may obtain:  
 

( ) ( )

3
exp exp exp 3 exp

2 2

3
exp 6 exp 2 exp exp

2 2

n
m i i i

i i

n n
i i i i

m m

e
i eg i eg i e i

ϑ ϑτ σ π σ π

µπ σ π µ σ

       = =       
       

   = =    
   

. (7.12) 

 
The universal cover SU(2) has the generators 1

2i iσ τ=  as already discussed.  If we want 

an easy way to think out this, we can simply use n=1 and m=2 in (7.11) to find that ϑ π= .  So 
surely enough, as laid out at the end of section 5, we spot the SU(2) generators at ϑ π=  in the 
complex plane, and immediately know that when we square these generators, we will double the 
angle, and thereby end up with SO(3) spotted at 2ϑ π= .  Then, when thinking about the other 
root generators, it is easiest to simply think about the angle at which those generators are 
disposed.  The non-trivial cubed-root generators, for example, will be at 120 ,240ϑ = ° ° , so that 
when cubed they will yield either of 360 ,720ϑ = ° ° .  For the fourth root the non-trivial 
generators will be spotted at 90 ,180 ,270ϑ = ° ° °  and when raised to the fourth power will yield 

360 ,720 ,1080ϑ = ° ° ° .  The pentuple generators will be at 72 ,144 ,216 ,288ϑ = ° ° ° °  and when 
raised to the fifth power will again recover an integer multiple of 360° .  And so on.   

 

Further, as we saw in the various relationships ( )exp 2 /
k

i n mψ π ψ+ −=  throughout 

section 4, see (6.3), it is this angle of 360° , and its integer multiples, via 

( ) ( )/ /
exp 2 1

k m k m
i nψ π ψ ψ+ − −= = , see (6.4), which keeps the wavefunctions single-valued and so 

avoids observable singularities even with fractional charges.  Consequently, the Euler angle in 
(7.11) provides a very powerful vehicle to cut through all the algebra of these root covering 
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groups, and think about these groups and their operations very simply in terms of orientations 
and rotations of the Euler angle ϑ  on the unit circle in the complex plane in which the generators 

n
m iτ  are spotted.   

 
From this view, the simplest portion of (7.12) is that which contains these ϑ :  
 

( ) 3
exp exp

2 2i ii i
ϑ ϑτ ϑ σ   =    

   
. (7.13) 

 
In this form, we do not even need to explicitly display the n and m parameters in ( )n

m i iτ τ ϑ= , 

because via (7.11) these are incorporated into the angle 2 / 2n mϑ π π= = ℚ .  In this form, 

( )i iσ τ π=  and (2 )i iI τ π= .   From this view, the SU(2) group of iσ  is a universal cover because 

any other set of generators including the unity matrices iI  can be obtained merely by rotating the 

angle of these generators from ϑ π=  to the pertinent rational multiple of 360° , i.e., to 
2 / 2n mϑ π π= = ℚ .  

 
8. How Fractional Dirac Charges are Topologically Mapped from the 

Root-of-Unity Covering Groups onto SO(3) 
 
 Having developed these generators iτ  in (7.13) for the root-of-unity covering groups 

groups (2)n
mGɶ  which in view of 2 / 2n mϑ π π= = ℚ  we now designate as (2, )G ϑɶ , it remains to 

explore the surjective homomorphic mapping : (2, ) (3)G SOπ ϑ →ɶ  which projects these 

fractional charges onto SO(3) from the root space (2, )G ϑɶ .  To do this, it is helpful to develop 

the commutators ,i jτ τ    for any given ( )iτ ϑ . 

 
 First, working from (7.13) we construct: 
 

( ), exp 3 exp ,exp
2 2i j i ji i i
ϑ ϑτ τ ϑ σ σ      =           

. (8.1) 

 
To evaluate this, it helps to also construct the commutators ,i jU U    of the unitary matrices 

(7.1).  This exercise is straightforward and yields: 
 



Jay R. Yablon 

24 
 

[ ] ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( )

1 2 1 1 2 2 1 2 1 2 3

2 3 2 2 3 3 2 3 2 3 1

3 1 3 3 1 1 3 1 2

1 0
, exp ,exp 2 sin sin 2 sin sin

0 1

0 1
, exp ,exp 2 sin sin 2 sin sin

1 0

0
, exp ,exp 2 sin sin 2 sin sin

0

U U i i i i

U U i i i i

i
U U i i i i

i

σ θ σ θ θ θ θ θ σ

σ θ σ θ θ θ θ θ σ

σ θ σ θ θ θ θ θ

 
 = = − = −   − 

 
 = = − = −  

 

− 
 = = − = −  

 
3 2σ

. (8.2) 

 
In the circumstance where 1 2 3θ θ θ θ≡ = =  this consolidates to: 

 

( ) ( ) 2, exp ,exp 2 sini j i j ijk kU U i i iσ θ σ θ θε σ   = = −    . (8.3) 

 
Thus, if we set / 2θ ϑ=  and also apply the half angle ( ) ( )2sin 1 co/ 2 s / 2ϑ ϑ= − , (8.3) becomes: 

 

( )2exp ,exp 2 sin
2 2

1 cos
2i j ijk k ijk ki i i i

ϑ ϑ ϑσ σ ε εϑσ σ     = − = −    
    

− . (8.4) 

 
Combining this with (8.1) and also applying , 2i j ijk kiσ σ ε σ  =   then finally yields: 

 

( )( ) ( )( )1
2, exp 3 e1 cos 1 cx osp 3 ,i j ijk k i ji i iτ τ ϑ ε σ σϑ ϑ σϑ   = − = −  − −  . (8.5) 

 
Isolating iσ  with some simple re-indexing and reverting ( ) ( )2 / 22sin 1 cosϑ ϑ= − , this may be 

written as: 
 

( ) ( )21
4 exp 3 csc / 2 ,i ijk j ki iσ ϑ ϑ ε τ τ = −   . (8.6) 

 
 To confirm for SU(2), we know that the iσ  are spotted at ϑ π= .  At this orientation, we 

obtain ( ) ( )1 1
4 4

2exp 3 / 2 , ,csci ijk j k ijk j ki i iσ π π ε τ τ ε τ τ   = − = −    .  Because , 2i j ijk kiσ σ ε σ  =   is 

readily rewritten as 1
1 4 ,ijk j kiσ ε σ σ = −   , we confirm that i iτ σ=  at ϑ π= .  We also know that 

( )2 2csc /ϑ = ∞  at 2 kϑ π= .  But this singular behavior of (8.6) makes perfect sense when 

viewed via (8.5).   Because 1 cos 0ϑ− =  at 2 kϑ π= , likewise , 0i jτ τ  =  , i.e., the 2 kϑ π=  

generators do commute for all 2 kϑ π= .  This reconfirms that i iIτ = , the identity matrix triplet, 

for all 2 kϑ π= .  It is for these very same angles, that the wavefunctions become single-valued 
and so the fractional monopolies avoid observable singularities. 
 

 Now we are in a position to explicitly display the mapping : (2, ) (3)G SOπ ϑ →ɶ  for all 

(2, )G ϑɶ .  First, we nominally re-index (8.5) into the form: 
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( )( ), 2 1 coe p sx 3ijk j k ii iε τ σϑτ ϑ −  = −  . (8.7) 

 
Now, using the space coordinates ( ), ,ix x y z=  and forming i

i xσ  we can use (8.7) to write: 

 

( )( ) ( )( ), 2 exp 3 21 c eos 1 cosxp 3i i
ijk j k i

z x iy
x i i x i i

x iy z
ε τ τ ϑ σ ϑϑ ϑ

− 
  = − = −    + −

−


− . (8.8) 

 
Then, restructuring to isolate the i

i xσ  matrix and also making use of the spinor relationships: 

 

( ) ( )2 2 2 21 1
2 1 1 2 1 22 2; ;ix y zξ ξ ξ ξ ξ ξ= − = + =   (8.9) 

 
as well as the cross product: 
 

[ ], 2i
ijk j k xε τ τ  = × ⋅  xτ τ , (8.10) 

 
we may now write: 
 

( )

( ) ( ) ( ) ( )[ ]

2
1 †1 2 1

2 12
22 1 2

1 1
4 2

2 2csc cexp 3 / 2 , exp 3 / 2sc

i
i

i
ijk j k

z x iy
x

x iy z

i i x i i

ξξ ξ ξσ ξ ξ ξξ
ξξ ξ ξ

ϑ ϑ ε τ τ ϑ ϑ

 − −   
⋅ = = = = − = −    + − −    

 = − = − × ⋅ 

x

x

σ

τ τ
. (8.11) 

 
Of course, the determinant 2 2 2 2x y z r⋅ = + + =xσ  is the Pythagorean invariant of 

rotation under SO(3) transformations, which are equivalent to SU(2) transformations on the 

transposed complex spinor doublet ( )1 2,
TTξ ξ ξ= .  So taking the determinant of all the main 

expressions in (8.11) we obtain: 
 

( ) ( )2 1 22 2 2 †
4 exp cs3 / 2c ,i i

i ijk j kr x y z x i i xσ ξξ ϑ ϑ ε τ τ = + + = = − = −   , (8.12) 

 
with ( )iτ ϑ  given in (7.13) and ϑ  given in (7.12).  This explicitly illustrates the covering 

projection : (2, ) (3)G SOπ ϑ →ɶ , showing all of 2 2 2 2r x y z= + +  from SO(3), the SU(2) spinor 

relationships †i
i xσ ξξ= − , and the (2, )G ϑɶ  root group generators also operating on the space 

coordinates x. 
 
 Having made these connections through the Euler angle ϑ , we can now use (7.11) to re-
express the above in terms of the rational parameters /n m=ℚ , and most importantly, the 
electric and magnetic charge strengths.  Using 2 /n mϑ π=  the above becomes:  
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2 2 2 2 † 1
4

2exp csc6 ,i i
i ijk j k

n n
r x y z x i i x

m m
σ ξξ π π ε τ τ     = + + = = − = −        

. (8.13) 

 
We again emphasize that as we did prior to (7.11), that the relationships above are entirely 
independent of anything having to do with Dirac monopole charges or whether these can exist in 
fractional states without singularity.  These simply specify relationships among various fractional 
generators iτ , the Pauli matrices iσ , and rotationally-invariant lengths r in SO(3).   

 
It is via the final set of connections 4 eg eϑ π µ= =  that the electric and magnetic charges 

explicitly enter, whereby (8.12) now becomes, in terms of g: 
 

( ) ( )2 2 † 22 2 1
4 ex cp 12 2 ,sci i

i ijk j kr x y z x i i eg eg xσ ξξ π π ε τ τ = + + = = − = −   , (8.14) 

 
and in terms of µ :  
 

( ) ( )2 2 22 2 † 1
4 exp 3 / 2c c ,si i

i ijk j kr x y z x i i e e xσ ξξ µ µ ε τ τ = + + = = − = −   . (8.15) 

 
 It is worth noting that these mth root geometries of their very nature, give rise to fractional 
denominators m which need not be equal to 1, and which generally are not equal to 1.  So this 
raises an interesting point about the symmetries of these fractional charges.  If, hypothetically, 
fractional charges were not permitted, the Dirac condition would of course be 2 4n eg eπ π µ= =  
as is presently believed to be the case.  But this would not remove the m denominator from (7.11) 
because that denominator arises from root generators and generally from the Euler relation 

( )1 exp 2 /m i n mπ=  which is mathematically true no matter what the correct state of affairs 

might be for Dirac monopole charges.  This means that were the Dirac monopole to be truly 
restricted to 2 4n eg eπ π µ= =  as is presently believed, then (7.11) would have to be modified, 
not by setting m=1, but rather, by dividing the third and fourth expressions through by m.  That 
is, (7.11) would have to become: 
 

2 4
n eg e

m m m

µϑ π π= = = . (7.11a) 

  
This in turn would mean upon substitution into (8.12), that in lieu of (8.15) we would have: 
 

2 2 2 2 † 1
4

2exp 3 ,cs
2

ci i
i ijk j k

e e
r x y z x i i x

m m

µ µσ ξξ ε τ τ     = + + = = − = −        
. (8.15a) 

 
 So if fractional Dirac charges did not exist, as is presently the prevailing view, then 

(8.15a) rather than (8.15) would describe the projection : (2, ) (3)G SOπ ϑ →ɶ  of these root of 
unity groups onto SO(3).  Contrasting, we see that (8.15) expresses the invariant rotational length 
r entirely in terms of the product eµ  without any explicit appearance of the quantum numbers n 



Jay R. Yablon 

27 
 

or m.  So the form of (8.15) is invariant with respect to the rational number /n m=ℚ .  On the 
other hand, (8.15a) does not have this same symmetry, and is in fact weaker.  Rather, (8.15a) 
contains an explicit appearance of m in the term / /e m e nµ µ= ℚ .  So the form of (8.15a) is not 
invariant with respect to n and m, but quite explicitly requires that one or the other of these 

integers appear explicitly in the : (2, ) (3)G SOπ ϑ →ɶ  mapping.  This means that the Fractional 
DQC actually has a higher degree of symmetry than the standard DQC. 
 
9. Summary and Conclusion 
 

To summarize, when we take a domain over 0 2 kϕ π≤ ≤  in SO(3), there is nothing to 
distinguish the 0 2ϕ π≤ ≤  domain from the 2 4π ϕ π≤ ≤  domain . . . from the 

( ) ( )2 2 2 1k kπ ϕ π− ≤ ≤ −  domain from the ( )2 1 2k kπ ϕ π− ≤ ≤  domain.  But when we take a 

domain 0 2ϕ π≤ ≤  in the root group (2, ) (2)n
mG Gϑ =ɶ ɶ  with generators nm iτ , there are a total of m 

distinct mth roots spotted along the unit circle with 1 n m≤ ≤  each of which has the distinct kernel 

( ) /
1

n m
.  This is simply an extension, to higher roots, of how SU(2) “sees” the ±  sign in a spinor 

which SO(3) does not.  Then, all of the 2π -domain covers associated with each n in the 

generators ( ) /n m

iI  then get patched together onto a union ( ) ( ) ( ) ( )1/ 2/ ( 1)/ /
...

m m m m m m

i i i iI I I I
−

∪ ∪ ∪  

on SO(3), and as a result the domain of SO(3) will run over 0 2 kϕ π≤ ≤ .  Importantly, however, 
each 2π  subset of this enlarged domain will have been mapped from a different one of the 

(2)n
mGɶ  associated with ( ) /n m

iI  with 1 n m≤ ≤  and thus will have a distinguishing symmetry 

feature – namely the distinct root of unity which provides its kernel and associated distinct 
generators – which SO(3) alone does not have absent this domain mapping.  It is this enlarged 

domain on SU(3) with unique ( ) /n mn
m i iIτ =  for each of the 2k π×  domains in 0 2 kϕ π≤ ≤  which 

then provides the freedom for fractional Dirac charges to arise unambiguously and without 
observable singularities. 

 
The scope of this paper, as summarized, has been limited to the question of whether 

fractional U(1)em magnetic monopole charges with 2 /eg n m=  can exist without observable 
singularities.  Given the showing here that fractional charges with 2 /eg n m=  can indeed be 
projected onto SO(3) without observable singularities, and given how (8.15) which includes 
these fractional charges has a much stronger symmetry than (8.15a) which excludes them, it 
appears that the prevailing view that fractional Dirac charges are unable to exist free of 
observable singularities will have to be changed. 
 

Once it is understood that these fractional charges are not excluded on the ground of 
giving rise to observed singularities, and that they possess a stronger symmetry than the 
quantized-only charges of the standard DQC, and that they are related closely to mathematical 
roots of unity, one will then need to take with utmost seriousness the possibility that these 
fractional Dirac charges do exist in the natural world.  Especially, as one starts to sort out 
primitive from non-primitive roots of unity and more directly study orientation / entanglement 
which we have not done here, this will then open for serious study, the question whether these 
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fractional Dirac charges are in fact what is being observed in the Fractional Quantum Hall Effect 
(FQHE) [4] observed at ultra-low-temperatures near 0K, in which case the FQHE would be the 
first experimental evidence of magnetic monopoles.  Further, if the FQHE can be understood in 
this way, and because the FQHE occurs only at such low temperatures, this will also open for 
serious study whether the existence of fractional charges emanating from U(1)em gauge theory 
which appear only at low temperatures points toward a fundamental unification between 
electrodynamics and thermodynamics. 
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