The notion of s-primes and a generic formula of 2-Poulet numbers

Marius Coman email: mariuscoman13@gmail.com

Abstract. In Addenda to my previous paper "On the special relation between the numbers of the form 505+1008k and the squares of primes" I defined the notions of c/mintegers and g/s-integers and showed some of their applications. In a previous paper I conjectured that, beside few definable exceptions, the Fermat pseudoprimes to base 2 with two prime factors are c/m-primes, but I haven't defined the "definable exceptions". However, in this paper I confirm one of my constant beliefs, namely that the relations between the two prime factors of a 2-Poulet number are definable without exceptions and I make a conjecture about a generic formula of these numbers, namely that the most of them are s-primes and the exceptions must satisfy a given Diophantine equation.

Definition of a s-prime:

We name s-primes the semiprimes of the form p^*q , p < q, with the property that q can be written as $k^*p - k + 1$, where k is positive integer.

Preliminary conjecture:

All 2-Poulet numbers but a set of few definable exceptions are s-primes.

Note:

For a list of 2-Poulet numbers see the sequence A214305 submitted by me on OEIS.

Verifying the conjecture (for the first thirty 2-Poulet numbers):

For 341 = 11*31 we have: : 11*3 - 2 = 31. The number 341 is a s-prime. For 1387 = 19*73 we have: : 19*4 - 3 = 73. The number 1387 is a s-prime. For 2701 = 37*73 we have: : 37*2 - 1 = 73. The number 2701 is a s-prime.

For $3277 = 29 \times 113$ we have: 29*4 - 3 = 113. The number 3277 is a s-prime. • For $4033 = 37 \times 109$ we have: 37*3 - 2 = 109. The number 4033 is a s-prime. For $4369 = 17 \times 257$ we have: 17*16 - 15 = 257. The number 4369 is a s-prime. : For $4681 = 31 \times 151$ we have: 31*3 - 2 = 151. The number 4681 is a s-prime. • For $5461 = 43 \times 127$ we have: 43*3 - 2 = 127. The number 5461 is a s-prime. The number 7957 = 73*109 is an exception (we will try to define it when more exceptions will occur) For $8321 = 53 \times 157$ we have: 53*3 - 2 = 157. The number 4681 is a s-prime. : For $10261 = 31 \times 331$ we have: 31*11 - 10 = 331. The number 10261 is a s-prime. For $13747 = 59 \times 233$ we have: 59*4 - 3 = 233. The number 13747 is a s-prime. : For $14491 = 43 \times 337$ we have: 43*8 - 7. The number 14491 is a s-prime. • For 15709 = 23*683 we have: 23*31 - 30 = 683. The number 15709 is a s-prime. For $18721 = 97 \times 193$ we have: 97*2 - 1 = 193. The number 18721 is a s-prime. : For $19951 = 71 \times 281$ we have: 71*3 - 2 = 281. The number 19951 is a s-prime. The number 23377 = 97*241 is an exception (we will try to define it when more exceptions will occur) For $31417 = 89 \times 353$ we have: 89*4 - 3 = 353. The number 31417 is a s-prime. : For $31609 = 73 \times 433$ we have: 73*6 - 5 = 433. The number 31609 is a s-prime. : For $31621 = 103 \times 307$ we have: 103*3 - 2 = 307. The number 31621 is a s-prime.

The number 35333 = 89*397 is an exception (we will try to define it when more exceptions will occur) The number 42799 = 127*337 is an exception (we will try to define it when more exceptions will occur) For $49141 = 157 \times 313$ we have: 157*2 - 1 = 313. The number 49141 is a s-prime. : The number $49981 = 151 \times 331$ is an exception (we will try to define it when more exceptions will occur) For $60701 = 101 \times 601$ we have: 101*6 - 5 = 601. The number 60701 is a s-prime. • The number 60787 = 89*683 is an exception (we will try to define it when more exceptions will occur) For 65281 = 97*673 we have: 97*7 - 6 = 673. The number 65281 is a s-prime. : For $80581 = 61 \times 1321$ we have: 61*22 - 21 = 1321. The number 80581 is a s-prime. : For $83333 = 167 \times 499$ we have: 167*3 - 2 = 499. The number 83333 is a s-prime. :

Conclusion:

I studied the exceptions and I found one thing common to them: they satisfy the equation a*q = b*p + c, where p and q are the two prime factors, p < q, a and b positive integers and c integer that satisfy the condition a = b + c:

- : 7957 = 73*109: satisfies for (a,b,c) = (3, 2, 1) Indeed, 3*73 = 2*109 + 1 and 3 = 2 + 1;
- : 23377 = 97*241: satisfies for (a,b,c) = (5, 2, 3) Indeed, 5*97 = 2*241 + 3 and 5 = 2 + 3;
- : 35333 = 89*397: satisfies for (a,b,c) = (8, 36, -28) Indeed, 8*397 = 36*89 - 28 and 8 = 36 - 28;
- : 42799 = 127*337: satisfies for (a,b,c) = (8, 3, 5) Indeed, 8*127 = 3*337 + 5 and 8 = 3 + 5;
- : 49981 = 151*331: satisfies for (a,b,c) = (5, 11, -6) Indeed, 5*331 = 11*151 - 6 and 5 = 11 - 6.

Conjecture on a generic formula of 2-Poulet numbers:

All 2-Poulet numbers $p^{*}q$, p < q (or equal in the two cases known, the squares of the Wieferich primes) satisfy at least one of the following two conditions:

- (i) q can be written as k*p k + 1, where k is positive integer;
- (ii) they satisfy the equation a*q = b*p + c, where a and b are positive integers and c integer that satisfy the condition a = b + c.