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Abstract
Experiments have repeatedly revealed the existence of a dynamical structured fractal 3-space, with a speed relative to the Earth
of some 500km/s from a southerly direction. Experiments have ranged from optical light speed anisotropy interferometers to
zener diode quantum detectors. This dynamical space has been missing from theories from the beginning of physics. This
dynamical space generates a growing universe, and gravity when included in a generalised Schrödinger equation, and light
bending when included in generalised Maxwell equations. Here we review ongoing attempts to construct a deeper theory of
the dynamical space starting from a stochastic pattern generating model that appears to result in 3-dimensional geometrical
elements, “gebits”, and accompanying quantum behaviour. The essential concept is that reality is a process, and geometrical
models for space and time are inadequate.
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1 Introduction
The phenomena of space and time are much richer and more
complex than captured by the prevailing geometrical mod-
els, which originated with the earliest works by Galileo and
Newton. These geometrical models capture only very lim-
ited macroscopic properties, namely Euclidean geometry in
the case of “space”, and the quantification of “time” in its ge-
ometrical modelling. In the 20th century the amalgamation
of these two geometrical models into the one “space-time”
model has resulted in deeper problems, namely the disagree-
ment with numerous experiments, which, as one example,
reveal the anisotropy of the speed of light, but which is ex-
cluded by the space-time model. To develop a deeper unified
model for space, time and quantum matter, it is essential that
these phenomena are not built into the theory from the very
beginning: rather they should be emergent. One approach is
that of “Process Physics”, (Cahill, 2005a), which bootstraps
a unified treatment of reality from a stochastic self-accessing
and self-limiting stochastic network. In that sense the patterns
posses a semantic information meaning, namely that the dy-
namical system self-recognises and interacts with patterns in
a manner determined by the structure of the patterns, rather
the entities being specified by syntactical rules, as in present
day physics, in which symbols and the rules of manipulation
are specified outside of the theory, i.e. “laws of physics’ are
imposed. In Process Physics the aim is to have self-generated
phenomena that determine their own interaction behaviours.
In doing so we discover that reality has somewhat the appear-
ance of a neural network in which entities exist as sustaining

network patterns, which we characterise as “semantic infor-
mation”, i.e. information that has a meaning internal to the
system. Only at a higher level can we extract and summarise,
in a limited manner, emergent rules of existence and interac-
tion, in the style of conventional physics.

2 Stochastic Pattern Formation: Space
Here we describe a model for a self-referentially limited neural-
type network and then how such a network results in emergent
geometry and quantum behaviour, and which, increasingly,
appears to be a unification of space and quantum phenomena.
Process Physics is a semantic information system and is de-
void of a priori objects and their laws and so it requires a sub-
tle bootstrap mechanism to set it up. We use a stochastic neu-
ral network, Fig.1, having the structure of real-number valued
connections or relational information strengths Bij (consid-
ered as forming a square matrix) between pairs of nodes or
pseudo-objects i and j. In standard neural networks the net-
work information resides in both link and node variables, with
the semantic information residing in attractors of the iterative
network. Such systems are also not pure in that there is an
assumed underlying and manifest a priori structure.

The nodes and their link variables will be revealed to be
themselves sub-networks of informational relations. To avoid
explicit self-connections Bii , 0 which are a part of the sub-
network content of i, we use antisymmetry Bij = �Bji to
conveniently ensure that Bii = 0, see Fig.1b.

At this stage we are using a syntactical system with sym-
bolsBij and, later, rules for the changes in the values of these
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variables. This system is the syntactical seed for the pure se-
mantic system. Then to ensure that the nodes and links are not
remnant a priori objects the system must generate strongly
linked nodes (in the sense that the Bij for these nodes are
much larger than the Bij values for non- or weakly-linked
nodes) forming a fractal network; then self-consistently the
start-up nodes and links may themselves be considered as
mere names for sub-networks of relations. For a successful
suppression the scheme must display self-organised critical-
ity (SOC) which acts as a filter for the start-up syntax. The
designation ‘pure’ refers to the notion that all seeding syntax
has been removed. SOC is the process where the emergent
behaviour displays universal criticality in that the behaviour
is independent of the particular start-up syntax; such a start-
up syntax then has no ontological significance.

To generate a fractal structure we must use a non-linear
iterative system for the Bij values. These iterations amount
to the necessity to introduce a time-like process. Any sys-
tem possessing a priori ‘objects’ can never be fundamental
as the explanation of such objects must be outside the system.
Hence in Process Physics the absence of intrinsic undefined
objects is linked with the phenomena of time, involving as it
does an ordering of ‘states’, the present moment effect, and
the distinction between past and present. Conversely in non-
Process Physics the necessity for a priori objects is related
to the use of the non-process geometrical model of time, with
this modelling and its geometrical-time metarule being an ap-
proximate emergent description from process-time. In this
way Process Physics arrives at a new modelling of time, pro-
cess time, which is much more complex than that introduced
by Galileo, developed by Newton, and reaching its so-called
high point but deeply flawed Einstein spacetime geometrical
model. Unlike these geometrical models process-time does
model the Now effect. Process Physics also shows that time
cannot be modelled by any other structure, other than a time-
like process, here an iterative scheme. There is nothing like
time available for its modelling. The near obsession of theo-
retical physicists with the geometrical modelling of time, and
its accompanying notion of analytical determinism, has done
much to retard the development of physics.

The stochastic neural network so far has been realised
with one particular scheme involving a stochastic non-linear
matrix iteration, see (1). The matrix inversionB�1 then mod-
els self-referencing in that it requires, in principle, all ele-
ments of B to compute any one element of B�1. As well
there is the additive Self-Referential Noise (SRN) wij which
limits the self-referential relational information but, signifi-
cantly, also acts in such a way that the network is innova-
tive in the sense of generating semantic information, that is
relational information which is internally meaningful. The
emergent behaviour is believed to be completely generic in
that it is not suggested that reality is a computation, rather it
appears that reality has the form of a self-referential order-
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Figure 1: (a) Graphical depiction of the neural network with links
Bij 2 R between nodes or pseudo-objects. Arrows indicate sign of
Bij . (b) Self-links are internal to a node, so Bii = 0.
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Figure 2: An N = 8 spanning tree for a random graph (not shown)
with L = 3. The distance distribution Dk is indicated for node i.

disorder information system. It is important to note that Pro-
cess Physics is a non-reductionist modelling of reality; the ba-
sic iterator (1) is premised on the general assumption that re-
ality is sufficiently complex that self-referencing occurs, and
that this has limitations. Eqn.(1) is then a minimal bootstrap-
ping implementation of these notions. At higher emergent
levels this self-referencing manifests itself as interactions be-
tween emergent patterns, but other novel effects may also
arise.

To be a successful contender for the Theory of Everything
(TOE) Process Physics must ultimately prove the uniqueness
conjecture: that the characteristics (but not the contingent de-
tails) of the pure semantic information system are unique.
This would involve demonstrating both the effectiveness of
the SOC filter and the robustness of the emergent phenomenol-
ogy, and the complete agreement of the latter with observa-
tion.

The stochastic neural network is modelled by the iterative
process

Bij ! Bij � a(B +B�1)ij +wij ; i; j = 1; 2; :::; 2N (1)

where wij = �wji are independent random variables for
each ij pair and for each iteration and chosen from some
probability distribution. Here a is a parameter the precise
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value of which should not be critical but which influences the
self-organisational process.

3 Stochastic Networks from QFT
It may be helpful to outline the thoughts that led to (1), aris-
ing as it did from the quantum field theory frontier of quark
physics. A highly effective approximation to Quantum Chro-
modynamics (QCD) was developed that made extensive use
of bilocal fields and the functional integral calculus (FIC), see
(Cahill, 1989,1992, Cahill and Gunner 1998) for reviews of
this Global Colour Model (GCM). In the GCM the bilocal-
field correllators (giving meson and baryon correllators) are
given by the generating functional

Z[J ] =

Z
DB� exp(�S[B] +

Z
d4xd4yB�(x; y)J�(x; y)):

(2)
Here x; y 2 E4, namely a Euclidean-metric space-time, as
the hadronic correlators are required for vacuum-to-vacuum
transitions, and as is well known the use of the Euclidean
metric picks out the vacuum state of the quantum field theory.
The physical Minkowski-metric correlators are then obtained
by analytic continuation x4 ! ix0. Eqn.(2) follows from
(approximately) integrating out the gluon variables, and then
changing variables from the quark Grassmannian functional
integrations to bilocal-field functional integrations. Here the
� index labels generators of flavour, colour and spin. This
form is well suited to extracting hadronic phenomena as the
vacuum state of QCD corresponds to a BCS-type supercon-
ducting state, with the qq Cooper pairs described by those
non-zero mean-field B

�
(x; y) determined by the Euler-

Lagrange equations of the action,

�S[B]

�B�(x; y)
= 0: (3)

That (3) has non-zero solutions is the constituent-quark/BCS-
state effect. This is a non-linear equation for those non-zero
bilocal fields about which the induced effective action for
hadronic fields is to be expanded.

Rather than approximately evaluating as a functional inte-
gral, as done in (Cahill, 1989,1992, Cahill and Gunner 1998),
we may use the Parisi-Wu stochastic ‘quantisation’ procedure
(Parisi and Wu, 1981), which involves the Langevin iterative
equation

B�(x; y)! B�(x; y)� �S[B]

�B�(x; y)
+ w�(x; y); (4)

where w�(x; y) are Gaussian random variables with zero
means. After many iterations a statistical equilibrium is
achieved, and the required hadronic correllators may be ob-
tained by statistical averaging: < B�(x; y)B�(u; v)::: >, but

with again analytic continuation back to Minkowski metric
required. In particular, writing

B�(x; y) = �(
x+ y

2
)�(x� y; x+ y

2
)

then �(x) is a meson field, while �(x;X) is the meson form
factor.

That (4) leads to quantum behaviour is a remarkable re-
sult. The presence of the noise means that the full structure of
S[B] is explored during the iterations, whereas in (2) this is
achieved by integration over all values of the B�(x; y) vari-
ables. The correllators < B�(x; y)B�(u; v)::: > correspond
to complex quantum phenomena involving bound states of
constituent quarks embedded in a BCS superconducting state.
However the Euclidean-metric E4-spacetime plays a com-
pletely classical and passive background role.

Now (4) has the form of a stochastic neural network (SNN,
see later), with link variablesB�(x; y), that is, with the nodes
being continuously distributed in E4. An interesting question
arises: if we strip away the passive classical E4 background
and the superscript indices, so that B�(x; y) ! Bij and we
retain only a simple form for S[B], then does this discretised
Langevin equation, in (1), which now even more so resem-
bles a stochastic neural network, continue to display quantum
behaviour? It has been found that indeed the SNN in (1) does
exhibit quantum behaviour, by generating a quantum-foam
dynamics for an emergent space, and with quantum -‘matter’
being topological-defects embedded in that quantum-foam in
a unification of quantum space and matter. Indeed the re-
markable discovery is that (1) generates a quantum gravity.
Note, however, that now the iterations in (1) correspond to
physical time, and we do not wait for equilibrium behaviour.
Indeed the non-equilibrium behaviour manifests as a growing
universe. The iterations correspond to a non-geometric mod-
elling of time with an intrinsic arrow of time, as the iterations
in (1) cannot be reversed. Hence the description of this new
physics as Process Physics.

If (1) does in fact lead to a unification of gravity and quan-
tum theory, then the deep question is how should we inter-
pret (1)? The stochastic noise has in fact been interpreted as
the new intrinsic Self-Referential Noise when the connection
with the work of Gödel and Chaitin became apparent (Cahill,
2005a). Hence beneath quantum field theory there is evi-
dence of a self-referential stochastic neural network, and its
interpretation as a semantic information system. Only by dis-
carding the spacetime background of Quantum Field Theory
(QFT) do we discover the necessity for space and the quan-
tum.

4 Stochastic Neural Networks
We now briefly compare the iteration system in (1) to an At-
tractor Neural Network (ANN) and illustrate its basic mode
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of operation. An ANN has link Jij 2 R and node si = �1
variables (i; j = 1; 2; :::N ), with Jij = Jji and Jii = 0. Here
s = +1 denotes an active node, while s = �1 denotes an
inactive node. The time evolution of the nodes is given by,
for example,

si(t) = sign(
X
j

Jijsj(t� 1)): (5)

To imprint a pattern its si / �i values are imposed on the
nodes and the Hebbian Rule is used to change the link strengths

Jij(t) = Jij(t� 1) + csi(t� 1)sj(t� 1); (6)

and for p successively stored patterns (�1; �2; :::�p) we end up
with

Jij =

pX
�=1

�
�
i �

�
j ; i , j: (7)

The imprinted patterns correspond to local minima of the ‘en-
ergy’ function

E[fsg] = �1

2

X
Jijsisj ; (8)

which has basins of attraction when the ANN is ‘exposed’ to
an external input si(0). As is well known over iterations of
(5) the ANN node variables converge to one of the stored pat-
terns most resembling si(0). Hence the network categorises
the external input.

The iterator (1), however, has no external inputs and its
operation is determined by the detailed interplay between the
order/disorder terms. As well it has no node variables: whether
a node i is active is determined implicitly by jBij j > b, for
some, where b is some minimum value for the link variables.
Because Bij is antisymmetric and real its eigenvalues occur
in pairs: ib;�ib (b real), with a complete set of orthonormal
eigenvectors ��; � = �1;�2; ::;�N; (��� = ���) so that

Bjk =
X

�=�1;�2;::

ib��
�
j �

��
k ; b� = �b�� 2 R; (9)

where the coefficients must occur in conjugate pairs for real
Bij . This corresponds to the form

B =MDM�1; D =

0
BBBBBB@

0 +b1 0 0
�b1 0 0 0

0 0 0 +b2
0 0 �b2 0

:
:

1
CCCCCCA

(10)
where M is a real orthogonal matrix. Both the b� and M
change with each iteration.

Let us consider, in a very unrealistic situation, how pat-
terns can be imprinted unchanged into the SNN. This will

only occur if we drop the B�1 term in (1). Suppose the SRN
is frozen (artificially) at the same form on iteration after iter-
ation. Then iterations of (1) converge to

B =
1

a
w =

X
�

ia�1w��
�
j �

��
k ; (11)

where w� and �� are the eigensystem for w. This is analo-
gous to the Hebbian rule (6), and demonstrates the imprint-
ing of w, which is strong for small a. If that ‘noise’ is now
‘turned-off’ then this imprinted pattern will decay, but do so
slowly if a is small. Hence to maintain an unchanging im-
printed pattern it needs to be continually refreshed via a fixed
w. However the iterator with the B�1 term present has a sig-
nificantly different and richer mode of behaviour as the sys-
tem will now generate novel patterns, rather than simply im-
printing whatever pattern is present in w. Indeed the system
uses special patterns (the gebits) implicit in a random w that
are used as a resource with which much more complex pat-
terns are formed.

The task is to determine the nature of the self-generated
patterns, and to extract some effective descriptive syntax for
that behaviour, remembering that the behaviour is expected to
be quantum-like.

5 Emergent Geometry in Stochastic
Networks: Gebits

We start the iterations of (1) at B � 0, representing the ab-
sence of information, that is, of patterns. With the noise
absent the iterator behaves in a deterministic and reversible
manner giving a condensate-like system with a B matrix of
the form in (10) or (12), but with the matrixM iteration inde-
pendent and determined uniquely by the start-up B, and each
b� evolves according to the iterator b� ! b� � a(b� � b�1

� ),
which converges to b� = �1. The corresponding eigenvec-
tors �� do not correspond to any meaningful patterns as they
are determined entirely by the random values from the start-
up B � 0. However in the presence of the noise the itera-
tor process is non-reversible and non-deterministic and, most
importantly, non-trivial in its pattern generation. The itera-
tor is manifestly non-geometric and non-quantum in its struc-
ture, and so does not assume any of the standard features of
syntax based non-Process Physics models. Nevertheless, as
we shall see, it generates geometric and quantum behaviour.
The dominant mode is the formation of an apparently ran-
domised background (in B) but, however, it also manifests a
self-organising process which results in non-trivial patterns
which have the form of a growing three-dimensional frac-
tal process-space displaying quantum-foam behaviour. These
patterns compete with this random background and represent
the formation of a ‘universe’.
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The emergence of order in this system might appear to vi-
olate expectations regarding the 2nd Law of Thermodynam-
ics; however because of the SRN the system behaves as an
open system and the growth of order arises from the self-
referencing term, B�1 in (1), selecting certain implicit order
in the SRN. Hence the SRN acts as a source of negentropy
The term negentropy was introduced by E. Schrödinger in
1944, and since then there has been ongoing discussion of
its meaning. In Process Physics it manifests as the SRN.

This growing three-dimensional fractal process-space is
an example of a Prigogine far-from-equilibrium dissipative
structure driven by the SRN (Nicholis and Prigogine, 1997).
From each iteration the noise term will additively introduce
rare large value wij . These wij , which define sets of strongly
linked nodes, will persist through more iterations than smaller
valued wij and, as well, they become further linked by the
iterator to form a three-dimensional process-space with em-
bedded topological defects. In this way the stochastic neural-
network creates stable strange attractors and as well deter-
mines their interaction properties. This information is all in-
ternal to the system; it is the semantic information within the
network.

We introduce, for convenience only, some terminology:
we think of Bij as indicating the connectivity or relational
strength between two monads i and j. The monads con-
cept was introduced by Leibniz, who espoused the relational
mode of thinking in response to and in contrast with Newton’s
absolute space∗.

Bc =

0
BBBBBB@

0 +1 0 0
�1 0 0 0
0 0 0 +1
0 0 �1 0

:
:

1
CCCCCCA
; (12)

B =

0
BBBBBBB@

g1



g2

g3
c1

c2

1
CCCCCCCA
: (13)

The monad i has a pattern of dominant (larger valuedBij)
connections Bi1; Bi2; :::, where Bij = �Bji avoids self-
connection (Bii = 0), and real number valued. The self-
referential noise wij = �wji are independent random vari-
ables for each ij and for each iteration, and with variance �.
With the noise absent the iterator converges to one of the con-
densate MBcM

�1 where the matrix M depends on the ini-
tial B. This behaviour is similar to the condensate of Cooper

∗However we see later that these two concepts are indeed compatible,
but only by enlarging the meaning of ‘absolute space’.

pairs in QFT, but here the condensate (indicating a non-zero
dominant configuration) does not have any space-like struc-
ture. However in the presence of the noise, after an initial
chaotic behaviour when starting the iterator from B � 0, the
dominant mode is the formation of a randomised condensate
C � �
Bc +Bb, up to an orthogonality transformation, in-
dicating Bc but with the �10s replaced by ��i’s (where the
�i are small and given by a computable iteration-dependent
probability distribution M(�)) and with a noisy background
Bb of very small Bij .

The key discovery is that there is an extremely small self-
organising process buried within this condensate and which
has the form of a three-dimensional fractal process-space,
which we now explain. Consider the connectivity from the
point of view of one monad, call it monad i. Monad i is con-
nected via these large Bij to a number of other monads, and
the whole set of connected monads forms a tree-graph rela-
tionship. This is because the large links are very improba-
ble, and a tree-graph relationship is much more probable than
a similar graph involving the same monads but with addi-
tional links. The set of all large valued Bij then form tree-
graphs disconnected from one-another; see Fig.2. In any one
tree-graph the natural ‘distance’ measure for any two mon-
ads within a graph is the smallest number of links connecting
them. Let D1; D2; :::; DL be the number of nodes of distance
1; 2; ::::; L from monad i (define D0 = 1 for convenience),
where L is the largest distance from i in a particular tree-
graph, and let N be the total number of nodes in the tree.
Then

PL
k=0Dk = N ; see Fig.2 for an example.

Now consider the number N (D;N) of different random
N -node trees, with the same distance distribution fDkg, to
which i can belong. By counting the different linkage pat-
terns, together with permutations of the monads we obtain

N (D;N) =
(M � 1)!DD2

1 DD3

2 :::DDL

L�1

(M �N � 2)!D1!D2!:::DL!
: (14)

Here DDk+1

k is the number of different possible linkage pat-
terns between level k and level k + 1, and (M � 1)!=(M �
N � 2)! is the number of different possible choices for the
monads, with i fixed. The denominator accounts for those
permutations which have already been accounted for by the
D
Dk+1

k factors. We compute the most likely tree-graph struc-
ture by maximising lnN (D;N) + �(

PL
k=0Dk � N) where

� is a Lagrange multiplier for the constraint. Using Stirling’s
approximation for Dk! we obtain

Dk+1 = Dkln
Dk

Dk�1
� �Dk +

1

2
: (15)

We may compute the most likely tree-graph structure by max-
imisingN (D;N) with respect to fDkg. This equation has an
approximate analytic solution (Nagels, 1985)

Dk =
2N

L
sin2(�k=L)
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These results imply that the most likely tree-graph structure
to which a monad can belong has a distance distribution fDkg
which indicates that the tree-graph is embeddable in a 3- di-
mensional hypersphere, S3.

We call these tree-graph B-sets gebits (geometrical bits).
However S3 embeddability of these gebits is a weaker result
than demonstrating the necessary emergence of S3-spaces,
since extra cross-linking connections would be required for
this to produce a strong embeddability.

The monads for which the Bij are, from the SRN term,
large thus form disconnected gebits, and in (13) we relabel
the monads to bring these new gebits g1; g2; g3; :: to block
diagonal form, with the remainder indicating the small and
growing thermalised condensate, C = c1 � c2 � c3 � ::: In
(13) the gi indicate unconnected gebits, while the icon
 rep-
resents older and connected gebits, and suggests a compact
3-space. The remaining very small Bmn, not shown in (13),
are background noise only.

A key dynamical feature is that most gebit matrices g
have det(g) = 0, since most tree-graph connectivity matri-
ces are degenerate. For example in the tree in Fig.2 the B
matrix has a nullspace, spanned by eigenvectors with eigen-
value zero, of dimension two irrespective of the actual val-
ues of the non-zero Bij ; for instance the right hand pair end-
ing at the level D2 = 4 are identically connected and this
causes two rows (and columns) to be identical up to a mul-
tiplicative factor. So the degeneracy of the gebit matrix is
entirely structural. For this graph there is also a second set
of three monads whose connectivities are linearly dependent.
These det(g) = 0 gebits form a reactive gebits subclass, i.e.
in the presence of background noise (g1 � g2 � g3 � ::)�1

is well-defined and has some large elements. These reactive
gebits are the building blocks of the dissipative structure. The
self-assembly process is as follows: before the formation of
the thermalised condensate B�1 generates new connections
(largeBij) almost exclusively between gebits and the remain-
ing non-gebit sub-block (having det � 0 but because here all
the involved Bij � 0), resulting in the decay, without gebit
interconnection, of each gebit. However once the condensate
has formed (essentially once the system has ‘cooled’ suffi-
ciently) the condensate C = c1 � c2 � c3 � ::: acts as a
quasi-stable (i.e. det(C) =

Q
i det(ci) , 0) sub-block of

(13) and the sub-block of gebits may be inverted separately.
The gebits are then interconnected (with many gebits present
cross-links are more probable than self-links) via new links
formed by B�1, resulting in the larger structure indicated by
the 
 in (13). Essentially, in the presence of the condensate,
the gebits are sticky.

Now (14) is strictly valid in the limit of vanishingly small
probabilities. For a more general analysis of the connectivity
of such gebits assume for simplicity that the large wij arise
with fixed but very small probability p, then the emergent ge-
ometry of the gebits is revealed by studying the probability

distribution for the structure of the random graph units or
gebits minimal spanning trees with Dk nodes at k links from
node i (D0 � 1), this is given more generally in the next
section.

6 Gebit Connectivity
The probability that a connected random graph with N ver-
tices has a depth structureD0; D1; :::; DL is given in (22) and
leads to the concept of emergent geometry via the gebit con-
cept. Eqn.(22) was first derived by Nagels, 1985.

Consider a set of M nodes with pairwise links arising with
probability p � 1. The probability of nonlinking is then
q = 1 � p. We shall term linked nodes as being ‘adjacent’,
though the use of this geometric language is to be justified
and its limitations determined. The set M will be partitioned
into finite subsets of mutually disconnected components, each
havingNi nodes which are at least simply connected - that is,
each Ni may be described by a non-directed graph.

Consider one of these components, with N = Ni �
1, and choose one vertex to be the ‘origin’. We will deter-
mine the probable distribution of vertices in this component
as measured by the depth structure of a minimal spanning
tree. See Fig.2 for the definition of depth structure. Let Dk

be the number of vertices at a distance k from the origin then
D0 = 1 is the origin, D1 is the number of adjacent vertices
or nearest neighbours to the origin, and D2 is the number of
next nearest neighbours and so on. Then, since N is finite,
there is a maximum distance L on the graph and DL is the
number of vertices at this maximum distance from the origin.
There is then the constraint

LX
k=0

Dk = N; (16)

and also 8<
:

D0 = 1;
Dk > 0; 0 � k � L;
Dk = 0; k > L.

(17)

To calculate the probability for the distribution

fDk : 0 � k � N;

N�1X
k=0

Dk = Ng

we require:

1. the probability for the number D1 of nearest neigh-
bours (i.e. those vertices at unit distance from the ori-
gin) is pD1 , which may be written as (1 � q)D1 =
(1� qD0

0 )D1 , since D0 = 1;

2. the probability for the next nearest neighbours, D2, is
obtained by considering that any vertex at this level is
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(a) adjacent to at least one point at unit distance from
the origin;

(b) not adjacent to the origin itself.

Condition (b) is easily obtained since it occurs with
probability q = 1 � p so there is a factor of qD2 for
this.

Condition (a) may be obtained by first considering the
counter argument ie that the vertex is not adjacent to
any of theD1. This has probability qD1 . Thus the prob-
ability that it is adjacent to at least one of the D1 is just
1 � qD1 . So there is an overall factor of (1 � qD1)D2

for this condition.

Hence, the probability of obtaining D2 is the product
of these two factors ie

prob (D2) =
�
1� qD1

�D2

qD2 ; (18)

3. the probability for D3, those vertices at distance k = 3
from the origin, is similarly defined by the require-
ments that a vertex in D3 is

(a) adjacent to least one vertex in D2;

(b) not adjacent to any vertex in D1;

(c) not adjacent to the origin.

Condition (a) is argued precisely as the corresponding
condition in item 2 above, ie it provides a factor (1 �
qD2)D3 .

Condition (b) is expressed as qD1 , thus providing the
factor (qD1)D3 .

Conditioned (c) is satisfied simply by the factor qD3 ,
which may be written as (qD0)D3 sinceD0 � 1. Hence
the probability of obtaining D3 is

�
1� qD2

�D3
�
qD1
�D3

�
qD0
�D3

=�
qD0+D1

�D3
�
1� qD2

�D3 (19)

4. for vertices at a distance i+1 from the origin, induction
on the previous results gives

prob (Di+1) =

�
q

P
i�1

j=0
Dj

�Di+1 �
1� qDi

�Di+1
:

(20)

So the probability P for the depth distribution is the
probability of obtaining a particular set (D1; � � � ; DL)
which is

P = pD1

L�1Y
i=1

�
q

P
i�1

j=0
Dj

�Di+1 �
1� qDi

�Di+1
:

(21)

Note that vertices may be permuted between the sets of
vertices at different distances. That is, the same magnitudes
for each Dk could be obtained by many other possible con-
figurations which result from a relabelling of the graph. First,
there are (N � 1)! ways of relabelling the graph once the
choice of origin has been fixed so there are (N � 1)! ways
of obtaining the same P , where the depth structure given by
(D1; D2; � � � ; DL) is identical. Second, the number of in-
stances of a particular shape irrespective of labelling (beyond
the choice of origin) is given by the productD1!D2! � � � DL!.

Hence there are (N�1)!
D1!D2! ��� DL!

ways of obtaining a graph
(from a fixed origin) with a particular depth structure and
therefore, the probability for a specified shape with N given
and the origin arbitrarily chosen, that is, the probability dis-
tribution, is

P =
(N � 1)!

D1!D2! � � � DL!
pD1

L�1Y
i=1

�
q

P
i�1

j=0
Dj

�Di+1

� �1� qDi
�Di+1 (22)

where q = 1� p, N is the total number of nodes in the gebit
and L is the maximum depth from node i. In the limit p! 0
(22) reduces to (14), proportionally. To find the most likely
connection pattern we numerically maximise P[D;L;N ] for
fixed N with respect to L and the Dk. The resulting L and
fD1; D2; :::; DLg fit very closely to the form

Dk / sind�1(�k=L);

see Fig.3a, for N = 5000 and Log10p = �6. The resultant d
values for a range of Log10p and with N = 5000 are shown
in Fig.3b.

This shows, for p below a critical value, that d = 3, in-
dicating that the connected nodes have a natural embedding
in a 3D hypersphere S3; call this a base gebit. Above that
value of p, the increasing value of d indicates the presence of
extra links that, while some conform with the embeddability,
others are in the main defects with respect to the geometry of
the S3. These extra links act as topological defects. By them-
selves these extra links will have the connectivity and embed-
ding geometry of numbers of gebits, but these gebits have a
‘fuzzy’ embedding in the base gebit. This is an indication of
fuzzy homotopies (a homotopy is, put simply, an embedding
of one space into another). Here we see the emergence of
geometry, not only of space but also of the internal flavour
symmetry spaces of quantum fields. The nature of the result-
ing 3D process-space is suggestively indicated in Fig.3c, and
behaves essentially as a quantum foam.
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Figure 3: Top: Points show the Dk set and L = 40 value found
by numerically maximising P[D;L;N ] for Log

10
p = �6 for fixed

N = 5000. Curve shows Dk / sind�1(�k
L
) with best fit d = 3:16

and L = 40, showing excellent agreement, and indicating embed-
dability in an S3 with some topological defects. Middle: Dimen-
sionality d of the gebits as a function of the probability p. Bottom:
Graphical depiction of the ‘process space’ at one stage of the iter-
ative process-time showing a quantum-foam structure formed from
embeddings and links. The linkage connections have the distribu-
tion of a 3D space, but the individual gebit components are closed
compact spaces and cannot be embedded in a 3D background space.
So the drawing is only suggestive. Nevertheless this figure indicates
that Process Physics generates a cellular information system, where
the behaviour is determined at all levels by internal information.

Over ongoing iterations the existing gebits become cross-
linked and eventually lose their ability to undergo further link-
ing; they lose their ‘stickiness’ and decay. The value of the
parameter a in (1) must be small enough that the ‘sticki-
ness’ persists over many iterations, that is, it is not quenched
too quickly, otherwise the emergent network will not grow.
Hence the emergent space is 3D but is continually undergo-
ing replacement of its component gebits; it is an informational
process-space, in sharp distinction to the non-process contin-
uum geometrical spaces that have played a dominant role in
modelling physical space. If the noise is ‘turned off’ then this
emergent dissipative space will decay and cease to exist. We
thus see that the nature of space is deeply related to, as im-
plemented here, a self-referentially limited neural network.

7 Gebits as Skyrmions
We need to extract convenient but approximate syntactical de-
scriptions of the semantic information in the network, and
these will have the form of a sequence of mathematical con-
structions, the first being the Quantum Homotopic Field The-
ory. Importantly they must all retain explicit manifestations
of the SRN. To this end first consider the special case of the
iterator when the SRN is frozen at a particular w, that is we
consider iterations with an artificially fixed SRN term. Then
it may be shown that the iterator is equivalent to the minimi-
sation of an ‘energy’ expression (remember that B and w are
antisymmetric)

E[B;w] = �a
2

Tr[B2]� aTrLn[B] + Tr[wB]: (23)

Note that for disconnected gebits g1 and g2 this energy is ad-
ditive, E[g1 � g2] = E[g1] + E[g2]. Now suppose the fixed
w has the form of a gebit approximating an S3 network with
one embedded topological defect which is itself an S3 net-
work, for simplicity. So we are dissecting the gebit into base
gebit, defect gebit and linkings or embeddings between the
two. We also ignore the rest of the network, which is permis-
sible if our gebit is disconnected from it. Now if det(w) is
not small, then this gebit is non-sticky, and for small a, the
iterator converges to B � 1

a
w, namely an enhancement only

of the gebit. However because the gebits are rare constructs
they tend to be composed of larger wij forming tree struc-
tures, linked by smaller valued wij . The tree components
make det(w) smaller, and then the inverse B�1 is activated
and generates new links. Hence, in particular, the topolog-
ical defect relaxes, according to the ‘energy’ measure, with
respect to the base gebit. This relaxation is an example of a
‘non-linear elastic’ process (Ogden, 1984). The above gebit
has the form of a mapping � : S ! � from a base space to
a target space. Manton (Manton and Ruback, 1985 and Man-
ton, 1987) has constructed the continuum form for the ‘elastic
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energy’ of such an embedding and for � : S3 ! S3 it is the
Skyrme energy

E[U ] =

Z �
�1

2
Tr(@iUU�1@iUU

�1)�
1

16
Tr[@iUU�1; @iUU

�1]2
�
; (24)

where U(x) is an element of SU(2). Via the parametrisation
U(x) = �(x) + i~�(x):~� , where the �i are Pauli matrices,
we have �(x)2 + ~�(x)2=1, which parametrises an S3 as a
unit hypersphere embedded in E4 (which has no ontologi-
cal significance, of course). Non-trivial minima of E[U ] are
known as Skyrmions (a form of topological soliton), and have
Z = �1;�2; :::, where Z is the winding number of the map,

Z =
1

24�2

Z X
�ijkTr(@iUU�1@jUU

�1@kUU
�1): (25)

The first key to extracting emergent phenomena from the
stochastic neural network is the validity of this continuum
analogue, namely that E[B;w] and E[U ] are describing es-
sentially the same ‘energy’ reduction process. This requires
detailed analysis.

8 Absence of a Cosmic Code
This ‘frozen’ SRN analysis of course does not match the time-
evolution of the full iterator (1), for this displays a much
richer collection of processes. With ongoing new noise in
each iteration and the saturation of the linkage possibilities of
the gebits emerging from this noise, there arises a process of
ongoing birth, linking and then decay of most patterns. The
task is then to identify those particular patterns that survive
this flux, even though all components of these patterns even-
tually disappear, and to attempt a description of their modes
of behaviour. This brings out the very biological nature of the
information processing in the SNN, and which appears to be
characteristic of a ‘pure’ semantic information system. Kitto
2002 has further investigated the analogies between Process
Physics and living systems. The emergent ‘laws of physics’
are the habitual habits of this system, and it appears that they
may be identified. However there is no encoding mechanism
for these ‘laws’, they are continually manifested; there is no
cosmic code. In contrast living or biological systems could be
defined as those emergent patterns which discovered how to
encode their ‘laws’ in a syntactical genetic code. Neverthe-
less such biological systems make extensive use of semantic
information at all levels as their genetic code is expressed in
the phenotype.

9 Entrapped Topological Defects
In general each gebit, as it emerges from the SRN, has active
nodes and embedded topological defects, again with active
nodes. Further there will be defects embedded in the defects
and so on, and so gebits begin to have the appearance of a
fractal defect structure, and with all the defects having various
classifications and associated winding numbers. The energy
analogy above suggests that defects with opposite winding
numbers at the same fractal depth may annihilate by drift-
ing together and merging. Furthermore the embedding of the
defects is unlikely to be ‘classical’, in the sense of being de-
scribed by a mapping �(x), but rather would be fuzzy, i.e
described by some functional, F [�], which would correspond
to a classical embedding only if F has a very sharp supremum
at one particular � = �cl. As well these gebits are undergo-
ing linking because their active nodes (see Cahill and Klinger
2000 for more discussion) activate theB�1 new-links process
between them, and so by analogy the gebits themselves form
larger structures with embedded fuzzy topological defects.
This emergent behaviour is suggestive of a quantum space
foam, but one containing topological defects which will be
preserved by the system, unless annihilation events occur. If
these topological defects are sufficiently rich in fractal struc-
ture so as to be preserved, then their initial formation would
have occurred as the process-space relaxed out of its initial
essentially random form. This phase would correspond to the
early stages of the Big-Bang. Once the topological defects
are trapped in the process-space they are doomed to meander
through that space by essentially self-replicating, i.e. contin-
ually having their components die away and be replaced by
similar components. These residual topological defects are
what we call matter. The behaviour of both the process-space
and its defects is clearly determined by the same network pro-
cesses; we have an essential unification of space and mat-
ter phenomena. This emergent quantum foam-like behaviour
suggests that the full generic description of the network be-
haviour is via the Quantum Homotopic Field Theory (QHFT).
We also see that cellular structures are a general feature of se-
mantic information systems, with the information necessarily
distributed.

10 Functional Schrödinger Equation
Because of the iterator the resource is the large valued Bij

from the SRN because they form the ‘sticky’ gebits which are
self-assembled into the non-flat compact 3D process-space.
The accompanying topological defects within these gebits and
also the topological defects within the process space require a
more subtle description. The key behavioural mode for those
defects which are sufficiently large (with respect to the num-
ber of component gebits) is that their existence, as identified
by their topological properties, will survive the ongoing pro-
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cess of mutation, decay and regeneration; they are topologi-
cally self-replicating. Consider the analogy of a closed loop
of string containing a knot - if, as the string ages, we replace
small sections of the string by new pieces then eventually all
of the string will be replaced, however the relational informa-
tion represented by the knot will remain unaffected as only
the topology of the knot is preserved. In the process-space
there will be gebits embedded in gebits, and so forth, in topo-
logically non-trivial ways; the topology of these embeddings
is all that will be self-replicated in the processing of the dis-
sipative structure.

To analyse and model the ‘life’ of these topological de-
fects we need to characterise their general behaviour: if suf-
ficiently large (i) they will self-replicate if topological non-
trivial, (ii) we may apply continuum homotopy theory to tells
us which embeddings are topologically non-trivial, (iii) de-
fects will only dissipate if embeddings of ‘opposite winding
number’ (these classify the topology of the embedding) en-
gage one another, (iv) the embeddings will be in general frac-
tal, and (iv) the embeddings need not be ‘classical’, ie the
embeddings will be fuzzy. To track the coarse-grained be-
haviour of such a system led to the development of a new
form of quantum field theory: Quantum Homotopic Field
Theory (QHFT). This models both the process-space and the
topological defects.

Figure 4: An representation of the functional 	[f�g; t] showing
dominant homotopies. The ‘magnifying glass’ indicates that these
mappings can be nested. Graphic by C. Klinger.

To construct this QHFT we introduce an appropriate con-
figuration space, namely all the possible homotopic mappings
��� : S� ! S�, where the S1; S2; ::, describing ‘clean’
or topological-defect free gebits, are compact spaces of var-
ious types. Then QHFT has the form of an iterative func-
tional Schrödinger equation for the discrete time-evolution of
a wave-functional 	[::::; ��� ; ::::; t]

	[::::; ��� ; ::::; t+�t] = 	[::::; ��� ; ::::; t]�
iH	[::::; ��� ; ::::; t]�t+ QSD terms: (26)

This form arises as it is models the preservation of seman-
tic information, by means of a unitary time evolution; even

in the presence of the noise in the Quantum State Diffusion
(QSD, Percival, 1998) terms. Because of the QSD noise (26)
is an irreversible quantum system. The time step �t in (26)
is relative to the scale of the fractal processes being explicitly
described, as we are using a configuration space of mappings
between prescribed gebits. At smaller scales we would need a
smaller value for �t. Clearly this invokes a (finite) renormal-
isation scheme. We now discuss the form of the hamiltonian
and the QSD terms.

First (26), without the QSD term, has a form analogous
to a ‘third quantised’ system, in conventional terminology
(Coleman et al. 2000). These systems were considered as
perhaps capable of generating a quantum theory of gravity.
The argument here is that this is the emergent behaviour of
the SNN, and it does indeed lead to quantum gravity, but with
quantum matter as well. More importantly we understand the
origin of (26), and it will lead to quantum and then classical
gravity, rather than arise from classical gravity via some ad
hoc or heuristic quantisation procedure.

Depending on the ‘peaks’ of 	 and the connectivity of the
resultant dominant mappings such mappings are to be inter-
preted as either embeddings or links; Fig.4 then suggests the
dominant process-space form within 	 showing both links
and embeddings. The emergent process-space then has the
characteristics of a quantum foam. Note that, as indicated in
Fig.4, the original start-up links and nodes are now absent.
Contrary to the suggestion in Fig.4, this process space cannot
be embedded in a finite dimensional geometric space with the
emergent metric preserved, as it is composed of nested finite-
dimensional closed spaces.

11 Homotopy Hamiltonian
We now consider the form of the hamiltonian H. In the previ-
ous sections it was suggested that Manton’s non-linear elas-
ticity interpretation of the Skyrme energy is appropriate to the
SNN. This then suggests that H is the functional operator

H =
X
�,�

h[
�

����
; ��� ]; (27)

where h[ �
��
; �] is the (quantum) Skyrme Hamiltonian func-

tional operator for the system based on making fuzzy the
mappings � : S ! �, by having h act on wave-functionals
of the form 	[�(x); t]. Then H is the sum of pairwise em-
bedding or homotopy hamiltonians. The corresponding func-
tional Schrödinger equation would simply describe the time
evolution of quantised Skyrmions with the base space fixed,
and � 2 SU(2). There have been very few analyses of this
class of problem, and then the base space is usually taken to
be E3. We shall not give the explicit form of h as it is com-
plicated, but wait to present the associated action.
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In the absence of the QSD terms the time evolution in (26)
can be formally written as a functional integral

	[f�g; t0] =
Z Y

�,�

D~���e
iS[f~�g]	[f�g; t]; (28)

where, using the continuum t limit notation, the action is a
sum of pairwise actions,

S[f~�g] =
X
�,�

S�� [~��� ]; (29)

S�� [~�] =

Z t0

t

dt00
Z
dnx

p�g
�
1

2
Tr(@� ~U ~U�1@� ~U ~U�1)+

1

16
Tr[@� ~U ~U�1; @� ~U ~U�1]2

�

and the now time-dependent (indicated by the tilde symbol)
mappings ~� are parametrised by ~U(x; t), ~U 2 S�. The met-
ric g�� is that of the n-dimensional base space, S� , in ��;� :
S� ! S�. As usual in the functional integral formalism the
functional derivatives in the quantum hamiltonian, in (27),
now manifest as the time components @0 in the above equa-
tion, so now this has the form of a ‘classical’ action, and we
see the emergence of ‘classical’ fields, though the emergence
of ‘classical’ behaviour is a more complex process. Eqns.(26)
or (28) describe an infinite set of quantum skyrme systems,
coupled in a pairwise manner. Note that each homotopic map-
ping appears in both orders; namely ��� and ���.

12 Quantum State Diffusion
The Quantum State Diffusion (QSD) (Percival, 1998) terms
are non-linear and stochastic,

QSD =
X
j

�
<L

y
j> Lj � 1

2
L
y
jLj� <L

y
j><Lj>

�
	�t+

X
j

(Lj� <Lj>)	��j ; (30)

which involves summation over the class of Linblad func-
tional operators Lj . The QSD terms are up to 5th order in
	, as in general

<A>t�
Z Y

�,�

D���	[f�g; t]�A	[f�g; t] (31)

and where ��j are complex statistical variables with means
M(��j) = 0, M(��j��j0) = 0 and M(���j��j0) = �(j �
j0)�t. The remarkable property of this QSD term is that the
unitarity of the time evolution in (26) is maintained in the
mean.

13 Emergent Classicality
These QSD terms are ultimately responsible for the emer-
gence of classicality via an objectification (Percival 1998),
but in particular they produce wave-function(al) collapses dur-
ing quantum measurements, as the QSD terms tend to ‘sharpen’
the fuzzy homotopies towards classical or sharp homotopies.
So the QSD terms, as residual SRN effects, lead to the Born
quantum measurement random behaviour, but here arising
from the Process Physics, and not being invoked as a metarule.
Keeping the QSD terms leads to a functional integral repre-
sentation for a density matrix formalism in place of (28), and
this amounts to a derivation of the decoherence formalism
which is usually arrived at by invoking the Born measure-
ment metarule. Here we see that decoherence arises from the
limitations on self-referencing.

In the above we have a deterministic and unitary evo-
lution, tracking and preserving topologically encoded infor-
mation, together with the stochastic QSD terms, whose form
protects that information during localisation events, and which
also ensures the full matching in QHFT of process-time to
real time: an ordering of events, an intrinsic direction or ‘ar-
row’ of time and a modelling of the contingent present mo-
ment effect. So we see that Process Physics generates a com-
plete theory of quantum measurements involving the non-
local, non-linear and stochastic QSD terms. It does this be-
cause it generates both the ‘objectification’ process associ-
ated with the classical apparatus and the actual process of
(partial) wavefunctional collapse as the quantum modes in-
teract with the measuring apparatus. Indeed many of the
mysteries of quantum measurement are resolved when it is
realised that it is the measuring apparatus itself that actively
provokes the collapse, and it does so because the QSD pro-
cess is most active when the system deviates strongly from
its dominant mode, namely the ongoing relaxation of the sys-
tem to a 3D process-space, and matter survives only because
of its topological form. This collapse amounts to an ongo-
ing sharpening of the homotopic mappings towards a ‘clas-
sical’ 3D configuration - resulting in essentially the process
we have long recognised as ‘space’. Being non-local the col-
lapse process does not involve any propagation effects, that is
the collapse does not require any effect to propagate through
the space. For that reason the self-generation of space is in
some sense action-at-a-distance, and the emergence of such
a quantum process underlying reality is, of course, contrary
to the long-held belief by physicists that such action is unac-
ceptable, though that belief arose before the quantum collapse
was experimentally shown to display action at a distance in
the Aspect experiment. Hence we begin to appreciate why the
new theory of gravity does not involve the maximum speed c
of propagation through space. and why it does not predict the
GR gravitational waves travelling at speed c, of the kind long
searched for but not detected.
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The mappings ��� are related to group manifold param-
eter spaces with the group determined by the dynamical sta-
bility of the mappings. This symmetry leads to the flavour
symmetry of the standard model of ‘particle’ physics. Quan-
tum homotopic mappings or skyrmions behave as fermionic
or bosonic modes for appropriate winding numbers; so Pro-
cess Physics predicts both fermionic and bosonic quantum
modes, but with these associated with topologically encoded
information and not with objects or ‘particles’.

14 Emergent Quantum Field Theory
The QHFT is a very complex ‘book-keeping’ system for the
emergent properties of the neural network, and we now sketch
how we may extract a more familiar Quantum Field Theory
(QFT) that relates to the standard model of ‘particle’ physics.
An effective QFT should reproduce the emergence of the
process-space part of the quantum foam, particularly its 3D
aspects. The QSD processes play a key role in this as they
tend to enhance classicality. Hence at an appropriate scale
QHFT should approximate to a more conventional QFT, namely
the emergence of a wave-functional system 	[U(x); t] where
the configuration space is that of homotopies from a 3-space
to U(x) 2 G, where G is some group manifold space. This
G describes ‘flavour’ degrees of freedom. So we are coarse-
graining out the gebit structure of the quantum-foam. Hence
the Schrödinger wavefunctional equation for this QFT will
have the form

	[U ; t+�t] = 	[U ; t]� iH	[U ; t]�t+QSD terms; (32)

where the general form of H is known, and where a new
residual manifestation of the SRN appears as the new QSD
terms. This system describes skyrmions embedded in a con-
tinuum space. It is significant that such Skyrmions are only
stable, at least in flat space and for static skyrmions, if that
space is 3D. This tends to confirm the observation that 3D
space is special for the neural network process system.

15 Emergent Flavour and Colour
Again, in the absence of the QSD terms, we may express (32)
in terms of the functional integral

	[U ; t0] =

Z
D ~UeiS[

~U ]	[U ; t]: (33)

To gain some insight into the phenomena present in (32) or
(33), it is convenient to use the fact that functional integrals of
this Skyrmionic form my be written in terms of Grassmann-
variable functional integrals, but only by introducing a ficti-
tious ‘metacolour’ degree of freedom and associated coloured
fictitious vector bosons. This is essentially the reverse of the

xx
~~
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Figure 5: The is a representation of the origin of quantum non-
locality. An entity is attached at two disjoint regions of the [3]-space,
with the gebit structure of that space not shown.

Functional Integral Calculus (FIC) hadronisation technique in
the Global Colour Model (GCM) of QCD. The action for the
Grassmann and vector boson part of the system is of the form
(written for flat space)

S[p; p; Aa
�] =

Z
d4x

�
p
�(i@� + g

�a

2
Aa
�)p�

1

4
F a
��(A)F

a��(A)

�
; (34)

where the Grassmann variables pfc(x) and pfc(x) have flavour
and metacolour labels. The Skyrmions are then re-constructed,
in this system, as topological solitons. These coloured and
flavoured but fictitious fermionic fields p and p correspond
to a preon system. As they are purely fictitious, in the sense
that there are no excitations in the system corresponding to
them, the metacolour degree of freedom must be hidden or
confined. We thus arrive at the general feature of the standard
model of particles with flavour and confined colour degrees
of freedom. Then while the QHFT and the QFT represent
an induced syntax for the semantic information, the preons
may be considered as an induced ‘alphabet’ for that syntax.
The advantage of introducing this preon alphabet is that we
can more easily determine the states of the system by using
the more familiar language of fermions and bosons, rather
than working with the skyrmionic system, so long as only
colour singlet states are finally permitted. In order to estab-
lish fermionic behaviour a Wess-Zumino (WZ) process must
be extracted from the iterator behaviour or the QHFT. Such a
WZ process is time-dependent, and so cannot arise from the
frozen SRN. It is important to note that (34) and the action in
(33) are certainly not the final forms. Further analysis will be
required to fully extract the induced actions for the emergent
QFT.

16 Hilbert Spaces
Process Physics has suggested the origin of quantum phe-
nomena and of its Hilbert-space formalism. This phenomena
is associated with the time evolution of the conserved topo-
logical defects embedded in the process space. However that
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embedding need not be local, as illustrated in Fig.5. This par-
ticular situation corresponds to the Hilbert space ‘sum’

 (x) =  1(x) +  2(x); (35)

where  1(x) and  2(x) are non-zero only in the respective
embedding regions. This is how quantum non-locality man-
ifests in conventional quantum theory. So the Hilbert space
‘sum’ is the representation of the connectivity shown in Fig.5.
Such a non-local embedding is also responsible for the phe-
nomenon of quantum entanglement.

17 Quantum Matter and Dynamical
Space

The dynamics and detection of space is a phenomenon that
physics missed from its beginning, with space modelled as a
geometric entity without structure or time dependence. That
has changed recently with the determination of the speed and
direction of the solar system through the dynamical space,
and the characterisation of the flow turbulence: gravitational
waves. Detections used various techniques and have all pro-
duced the same speed and direction (Cahill 2005b - 2014b) .
The detected dynamical space was missing from all conven-
tional theories in physics: Gravity, Electromagnetism, Atomic,
Nuclear, Climate,... The detection of the dynamical space has
led to a major new and extensively tested theory of reality.

Above we presented a “bottom up” theory. Here we present
a “top down” theory that follows from a minimal extension of
the quantum theory and the gravity theory by introducing the
detected dynamical space.

The Schrödingier equation extension to include the dy-
namical space is, Cahill 2006c,

i~
@ (r; t)

@t
= � ~

2

2m
r2 (r; t) + V (r; t) (r; t) +

�i~
�
v(r; t)�r+

1

2
r�v(r; t)

�
 (r; t) (36)

Here v(r; t) is the velocity field describing the dynamical
space at a classical field level, and the coordinates r give
the relative location of  (r; t) and v(r; t), relative to a Eu-
clidean embedding space, and also used by an observer to
locate structures. At sufficiently small distance scales that
embedding and the velocity description is conjectured to be
not possible, as then the dynamical space requires an indeter-
minate dimension embedding space, being possibly a quan-
tum foam, as noted above. This minimal generalisation of
the original Schrödingier equation arises from the replace-
ment @=@t ! @=@t + v:r, which ensures that the quantum
system properties are determined by the dynamical space,
and not by the embedding coordinate system. The same re-
placement is also to be implemented in the original Maxwell

equations, yielding that the speed of light is constant only
wrt the local dynamical space, as observed, and which re-
sults in lensing from stars and black holes. The extra r�
v term in (36) is required to make the hamiltonian in (36)
hermitian. Essentially the existence of the dynamical space
in all theories has been missing. The dynamical theory of
space itself is briefly reviewed below. The dynamical space
velocity has been detected with numerous techniques, dat-
ing back to the 1st detection, the Michelson-Morley experi-
ment of 1887, which was misunderstood, and which lead to
physics developing flawed theories of the various phenomena
noted above. A particularly good technique used the NASA
Doppler shifts from spacecraft Earth-flybys, Cahill 2009b, to
determine the anisotropy of the speed of EM waves. All suc-
cessful detection techniques have observed significant fluctu-
ations in speed and direction: these are the actually “gravita-
tional waves”, because they are associated with gravitational
and other effects. In particular we report here the role of
these waves in solar flare excitations and Earth climate sci-
ence (Cahill, 2014b).

A significant effect follows from (36), namely the emer-
gence of gravity as a quantum effect: a wave packet analysis
shows that the acceleration of a wave packet, due to the space
terms alone (when V (r; t) = 0), given by g = d2<r>=dt2,
(Cahill, 2006c), gives

g(r; t) =
@v

@t
+ (v� r)v (37)

That derivation showed that the acceleration is independent
of the mass m: whence we have the 1st derivation of the
Weak Equivalence Principle, discovered experimentally by
Galileo. As noted below the dynamical theory for v(r; t) has
explained numerous gravitational phenomena.

The experimental data reveals the existence of a dynam-
ical space. It is a simple matter to arrive at the dynamical
theory of space, and the emergence of gravity as a quantum
matter effect, as noted above. The key insight is to note that
the emergent quantum-theoretic matter acceleration in (37),
@v=@t+ (v� r)v, is also, and independently, the constituent
Euler acceleration a(r; t) of the space flow velocity field,

a(r; t) = lim
�t!0

v(r+ v(r; t)�t; t+�t)� v(r; t)

�t

=
@v

@t
+ (v�r)v (38)

which describes the acceleration of a constituent element of
space by tracking its change in velocity. This means that
space has a structure that permits its velocity to be defined and
detected, which experimentally has been done. This then sug-
gests, from (37) and (38), that the simplest dynamical equa-
tion for v(r; t) is

r�
�
@v

@t
+ (v�r)v

�
= �4�G�(r; t); r� v = 0 (39)
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because it then givesr:g = �4�G�(r; t); r�g = 0, which
is Newton’s inverse square law of gravity in differential form.
Hence the fundamental insight is that Newton’s gravitational
acceleration field g(r; t) for matter is really the acceleration
field a(r; t) of the structured dynamical space, and that quan-
tum matter acquires that acceleration because it is fundamen-
tally a wave effect, and the wave is refracted by the accelera-
tions of space.

While the above leads to the simplest 3-space dynamical
equation this derivation is not complete yet. One can add ad-
ditional terms with the same order in speed spatial derivatives,
and which cannot be a priori neglected. There are two such
terms, as in

r�
�
@v

@t
+ (v�r)v

�
+
5�

4

�
(trD)2 � tr(D2)

�
+::: = �4�G�

where Dij = @vi=@xj . However to preserve the inverse
square law external to a sphere of matter the two terms must
have coefficients � and ��, as shown. Here � is a dimen-
sionless space self-interaction coupling constant, which ex-
perimental data reveals to be, approximately, the fine struc-
ture constant, � = e2=~c. The ellipsis denotes higher order
derivative terms with dimensioned coupling constants, which
come into play when the flow speed changes rapidly wrt dis-
tance. The observed dynamics of stars and gas clouds near
the centre of the Milky Way galaxy has revealed the need for
such a term (Cahill and Kerrigan, 2011), and we find that the
space dynamics then requires an extra term:
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�
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where � has the dimension of length, and appears to be a very
small Planck-like length. This then gives us the dynamical
theory of 3-space. It can be thought of as arising via a deriva-
tive expansion from a deeper theory, such as a quantum foam
theory, above. Note that the equation does not involve c, is
non-linear and time-dependent, and involves non-local direct
interactions. Its success implies that the universe is more con-
nected than previously thought. Even in the absence of matter
there can be time-dependent flows of space.

Note that the dynamical space equation, apart from the
short distance effect - the � term, there is no scale factor, and
hence a scale free structure to space is to be expected, namely
a fractal space. That dynamical equation has back hole and
cosmic filament solutions (Cahill and Kerrigan, 2011, Rothall
and Cahill, 2013), which are non-singular because of the ef-
fect of the � term. At large distance scales it appears that a
homogeneous space is dynamically unstable and undergoes
dynamical breakdown of symmetry to form a spatial network
of black holes and filaments, (Rothall and Cahill, 2013), to
which matter is attracted and coalesces into gas clouds, stars
and galaxies.

Figure 6: Representation of the fractal wave data revealing the
fractal textured structure of the 3-space, with cells of space having
slightly different velocities and continually changing, and moving
wrt the Earth with a speed of �500 km/s, and from a southerly di-
rection, namely almost perpendicular to the plane of the ecliptic.
This “pink space” is suggestive of the 1/f spectrum of the detected
fluctuations.

The dynamical space equation (40) explains phenomena
such as Earth bore-hole gravity anomalies, from which the
value of � was extracted, flat rotation curves for spiral galax-
ies, galactic black holes and cosmic filaments, the universe
growing/expanding at almost a constant rate, weak and strong
gravitational lensing of light,.... A significant aspect of the
space dynamics is that space is not conserved: it is continu-
ally growing, giving the observed universe expansion, and is
dissipated by matter. As well it has no energy density mea-
sure. Nevertheless it can generate energy into matter.

18 Detecting Dynamical Space Speed
and Turbulence with Diodes

The Zener diode in reverse bias mode can easily and reliably
measure the space speed fluctuations, Fig.7, and two such de-
tectors can measure the speed and direction of the space flow
and waves, (Cahill, 2013c - 2014b). Consider plane waves
with energy E = ~!. Then (36) with v = 0 and V = 0
gives  = e�!t+ik�r. When v , 0, but locally uniform wrt
to the diode, the energy becomes E ! E + ~k � v. This
energy shift can be easily detected by the diode as the elec-
tron transmission current increases with increased energy. By
using spatially separated diodes the speed and direction has
been measured, and agrees with other detection techniques.

Although this Zener diode effect was only discovered in
2013, (Cahill, 2013c), Zener diode detectors have been avail-
able commercially for much longer, and are known as Ran-
dom Event Generators, (REG). That terminology was based
on the flawed assumption that the quantum tunnelling fluctua-
tions were random wrt an average. However the data (Cahill,
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Figure 7: Circuit of Zener Diode Gravitational Wave Detector,
showing 1.5V AA battery, one 1N4728A Zener diodes operating in
reverse bias mode, and having a Zener voltage of 3.3V, and resistor
R= 10K
. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
Zener diodes. Current fluctuations from two collocated detectors are
shown to be the same, but when spatially separated there is a time
delay effect, so the current fluctuations are caused by space speed
fluctuations. Using diodes in parallel increases S/N.

2013c) showed that this is not the case. That experimental re-
sult contradicts the standard interpretation of “randomness”
in quantum processes, which dates back to the Born interpre-
tation in 1926. To the contrary the recent experiments show
that the fluctuations are not random, but are directly deter-
mined by the fluctuations in the passing dynamical space.

The various detections of the dynamical space always
showed turbulence/wave effects, and we can represent the
fractal structure of this space in Fig.6.

19 Neo-Lorentz Relativity
The major extant relativity theories - Galileo’s Relativity
(GaR), Lorentz’s Relativity (LR) and Einstein’s Special Rel-
ativity (SR), with the latter much celebrated, while the LR is
essentially ignored. Indeed it is often incorrectly claimed that
SR and LR are experimentally indistinguishable. It has been
shown that (i) SR and LR are experimentally distinguishable,
(ii) that comparison of gas-mode Michelson interferometer
experiments with spacecraft earth-flyby Doppler shift data
demonstrate that it is LR that is consistent with the data, while
SR is in conflict with the data, (iii) SR is exactly derivable
from GaR by means of a mere linear change of space and
time coordinates that mixes the Galilean space and time coor-
dinates (Cahill, 2013a). So it is GaR and SR that are equiva-
lent. Hence the well-known SR relativistic effects are purely
coordinate effects, and cannot correspond to the observed rel-
ativistic effects. The connections between these three rela-
tivity theories has become apparent following the discovery
that space is an observable dynamical textured system, and
that space and time are distinct phenomena, leading to a neo-
Lorentz Relativity (nLR). The observed relativistic effects are

dynamical consequences of nLR and 3-space. In particular in
SR length contraction of rods and time dilation of clocks are
supposedly caused only by motion wrt the observer, whereas
in nLR these effects are caused by motion wrt the space lo-
cal to the rods and clocks, and apply only to actual rods and
clocks. In the case of Maxwell’s EM theory the dynamical
space is incorporated into the vacuum field equation by mak-
ing the change @=@t! @=@t+ v � r (Cahill 2009a).

20 Conclusions
The discovery that a dynamical space exists by Cahill and
Kitto 2003 represented a dramatic turning point in our under-
standing of reality, since until then physicists had assumed
that space and time, or even spacetime, were successful purely
geometrical modellings of the phenomena of space and time,
and denied any notion that a dynamical 3-space exists which
displays a flow velocity wrt an observer, and which displays
turbulence/gravitational wave effects. These are now easy to
measure and characterise, exhibiting a fractal time dependent
structure. This space is fundamental to all phenomena, and
we are now entering a new epoch in physics in which the
role of space in all phenomena is now emerging, see for ex-
ample the recent discoveries re solar flares and earth climate,
(Cahill 2014b). Here we have reviewed two related aspects
of this new physics: first we considered reality to be a self-
referencing stochastic network, and showed that there is evi-
dence that a dynamical fractal space arises and with quantum
matter also arising as topological defects in the space. As well
we have briefly discussed the consequences of modifying the-
ories of the quantum, EM radiation and gravity by including
a dynamical space modelled at the classical level by a veloc-
ity field. Of key significance is that in recent years a vari-
ety of new 3-space detection technologies have been devised,
with the latest being the nanotechnology pn diode detection
device, which is incredibly simple, cheap and robust. The
success of that device demonstrated the the standard interpre-
tation of “quantum randomness” was incorrect, namely that
the observed fluctuations were caused by the space passing
through the diode.
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