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INTRODUCTION 

 

 

 

In three of my previous published books, namely “Two hundred conjectures and one 

hundred and fifty open problems on Fermat pseudoprimes”,  “Conjectures on primes and Fermat 

pseudoprimes, many based on Smarandache function” and “Two hundred and thirteen 

conjectures on primes”, I showed my passion for conjectures on sequences of integers. In spite 

the fact that some mathematicians stubbornly understand mathematics as being just the science 

of solving and proving, my books of conjectures have been well received by many enthusiasts of 

elementary number theory, which gave me confidence to continue in this direction. 

Part One of this book brings together papers regarding conjectures on primes, twin 

primes, squares of primes, semiprimes, different types of pairs or triplets of primes, recurrent 

sequences, sequences of integers created through concatenation and other sequences of integers 

related to primes. 

 Part Two of this book brings together several articles which present the notions of c-

primes, m-primes, c-composites and m-composites (c/m-integers), also the notions of g-primes, 

s-primes, g-composites and s-composites (g/s-integers) and show some of the applications of 

these notions (because this is not a book structured unitary from the beginning but a book of 

collected papers, I defined the notions mentioned in various papers, but the best definition of 

them can be found in Addenda to the paper numbered tweny-nine), in the study of the squares of 

primes, Fermat pseudoprimes and generally in Diophantine analysis.  

Part Three of this book presents the notions of “Coman constants” and “Smarandache-

Coman constants”, useful to highlight the periodicity of some infinite sequences of positive 

integers (sequences of squares, cubes, triangular numbers, polygonal numbers), respectively in 

the analysis of Smarandache concatenated sequences.  

Part Four of this book presents the notion of Smarandache-Coman sequences, id est 

sequences of primes formed through different arithmetical operations on the terms of 

Smarandache concatenated sequences.  

Part Five of this book presents the notion of Smarandache-Coman function, a function 

based on the well known Smarandache function which seems to be particularly interesting: 

beside other characteristics, it seems to have as values all the prime numbers and, more than that, 

they seem to appear, leaving aside the non-prime values, in natural order. 

 This book of collected papers seeks to expand the knowledge on some well known 

classes of numbers and also to define new classes of primes or classes of integers directly related 

to primes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

CONTENTS 
 

 

 

Part One.  Conjectures on twin primes, squares of primes, semiprimes and 
other classes of integers related to primes……………………………5 

 

1. Formula involving primorials that produces from any prime p probably an infinity 

of semiprimes qr such that r + q – 1 = np………………………………………….5 

2. A formula that produces from any prime p of the form 11 + 30k probably an 

infinity of semiprimes qr such that r + q = 30m…………………………………...6 

3. Two conjectures on squares of primes involving the sum of consecutive primes…7 

4. Two conjectures on squares of primes, involving twin primes and pairs of primes 

p, q, where q = p + 4……………………………………………………………….8 

5. Three conjectures on twin primes involving the sum of their digits………………9 

6. Seven conjectures on the triplets of primes p, q, r where q = p + 4 and r = p + 6..11 

7. An interesting recurrent sequence whose first 150 terms are either primes, powers 

of primes or products of two prime factors………………………………………14 

8. Three conjectures on probably infinite sequences of primes created through 

concatenation of primes with the powers of 2……………………………………16 

9. Conjecture on the infinity of a set of primes obtained from Sophie Germain 

primes…………………………………………………………………………….18 

10. Conjecture which states that there exist an infinity of squares of primes of the 

form 109+420k…………………………………………………………………...19 

11. Seven conjectures on the squares of primes involving the number 4320 

respectively deconcatenation……………………………………………………..21 

12. Three conjectures on a sequence based on concatenation and the odd powers of the 

number 2………………………………………………………………………….24 

13. Two conjectures on the numbers obtained concatenating the integers of the form 

6k+1 with the digits 081………………………………………………………….26 

14. Three conjectures on the numbers obtained concatenating the multiples of 30 with 

the squares of primes……………………………………………………………..27 
 

Part Two.  The notions of c/m-integers and g/s-integers………………………..29 
 

15. Operation based on squares of primes for obtaining twin primes and twin c-primes 

and the definition of a c-prime……………………………………………………29 

16. Operation based on multiples of three and concatenation for obtaining primes and 

m-primes and the definition of a m-prime………………………………………..32 

17. Conjecture that states that any Carmichael number is a cm-composite………….34 

18.  Conjecture that states that, beside few definable exceptions, Poulet numbers are 

either c-primes, m-primes, c-composites or m-composites………………………37 

19. Formula based on squares of primes which conducts to primes, c-primes and m-

primes…………………………………………………………………………….39 

20.  Formula for generating c-primes and m-primes based on squares of primes…….41 



 4 

21.  Two formulas based on c-chameleonic numbers which conducts to c-primes and 

the notion of c-chameleonic number……………………………………………..43 

22.  The notions of c-reached prime and m-reached prime…………………………...45  

23. A property of repdigit numbers and the notion of cm-integer……………………47 

24. The property of Poulet numbers to create through concatenation semiprimes which 

are c-primes or m-primes…………………………………………………………49 

25. The property of squares of primes to create through concatenation semiprimes 

which are c-primes or m-primes………………………………………………….52 

26.  The property of a type of numbers to be often m-primes and m-composites…….54 

27.  The property of a type of numbers to be often c-primes and c-composites……...56 

28. Two formulas for obtaining primes and cm-integers…………………………….58 

29. Formula based on squares of primes and concatenation which leads to primes and 

cm-primes………………………………………………………………………...60 

30. Formula based on squares of primes having the same digital sum that leads to 

primes and cm-primes……………………………………………………………62 

31. An analysis of four Smarandache concatenated sequences using the notion of cm-

integers……………………………………………………………………………65 

32. An analysis of seven Smarandache concatenated sequences using the notion of 

cm-integers……………………………………………………………………….68 

33. On the special relation between the numbers of the form 505+1008k and the 

squares of primes…………………………………………………………………72 

34. The notion of s-primes and a generic formula of 2-Poulet numbers……………..77 

 

Part Three.  The notions of Coman constants and Smarandache-Coman 
constants……………………………………………………………….80 

 

35. The notion of Coman constants…………………………………………………..80 

36. Two classes of numbers which not seem to be characterized by a Coman 

constant…………………………………………………………………………...82 

37. The Smarandache concatenated sequences and the definition of Smarandache-

Coman constants………………………………………………………………….83 

 

Part Four.  The notion of Smarandache-Coman sequences……………………..87  
 

38. Fourteen Smarandache-Coman sequences of primes…………………………….87 

 

Part Five.  The Smarandache-Coman function………………………….………94  
 

39. The Smarandache-Coman function and nine conjectures on it…………………..94 

 

 
 

 

 

 

 

 



 5 

Part One. 

Conjectures on twin primes, squares of primes, semiprimes 

and other classes of integers related to primes 
 

 

 

1. Formula involving primorials that produces from any prime p probably 

an infinity of semiprimes qr such that r + q – 1 = np 
 

 

Abstract. In this paper I make a conjecture involving primorials which states that from 

any odd prime p can be obtained, through a certain formula, an infinity of semiprimes q*r 

such that r + q – 1 = n*p, where n non-null positive integer.  

 

 

Conjecture:  

 

For any odd prime p there exist an infinity of positive integers m such that p + m*π = q*r, 

where π is the product of all primes less than p and q, r are primes such that r + q – 1 = 

n*p, where n is non-null positive integer. 

 

Note that, for p = 3, the conjecture states that there exist an infinity of positive integers m 

such that 3 + 2*m = q*r, where q and r primes and r + q – 1 = n*p, where n is non-null 

positive integer; for p = 5, the conjecture states that there exist an infinity of positive 

integers m such that 5 + 6*m = q*r (...); for p = 7, the conjecture states that there exist an 

infinity of positive integers m such that 7 + 30*m = q*r (...); for p = 11, the conjecture 

states that there exist an infinity of positive integers m such that 11 + 210*m = q*r (...) 

etc. 

Note also that m can be or not divisible by p. 

 

Examples:  

 

For p = 3 we have the following relations: 

: 3 + 2*11 = 25 = 5*5, where 5 + 5 – 1 = 9 = 3*3; 

: 3 + 2*18 = 39 = 3*13, where 3 + 13 – 1 = 15 = 3*5; 

The sequence of m is: 11, 18 (...). Note that m can be or not divisible by p. 

For p = 5 we have the following relations: 

: 5 + 6*25 = 155 = 5*31, where 5 + 31 – 1 = 35 = 7*5; 

: 5 + 6*33 = 203 = 7*29, where 7 + 29 – 1 = 35 = 7*5; 

 The sequence of m is: 25, 33 (...) 

For p = 7 we have the following relations: 

: 7 + 30*34 = 1027 = 13*79, where 13 + 79 – 1 = 91 = 7*13; 

: 7 + 30*49 = 1477 = 7*211, where 7 + 211 – 1 = 217 = 7*31. 

 The sequence of m is: 34, 49 (...) 

For p = 13 we have the following relations: 

: 13 + 2310*5 = 11563 = 31*373, where 31 + 373 – 1 = 403 = 31*13; 

: 13 + 2310*17 = 39283 = 163*241, where 163 + 241 – 1 = 403 = 31*13. 

 The sequence of m is: 5, 17 (...) 
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2. A formula that produces from any prime p of the form 11 + 30k 

probably an infinity of semiprimes qr such that r + q = 30m 
  

 

Abstract. In this paper I make a conjecture which states that from any prime p of the 

form 11 + 30*k can be obtained, through a certain formula, an infinity of semiprimes q*r 

such that r + q = 30*m, where m non-null positive integer.  

 

Conjecture:  

For any prime p of the form 11 + 30*k there exist an infinity of positive integers h such 

that 11 + 30*k + 210*h = q*r, where q, r are primes such that r + q = 30*m, where m is 

non-null positive integer. 

 

Examples:  

 

Let n = 11 + 210*k 

: for k = 1, n = 221 = 13*17 and 13 + 17 = 1*30; 

: for k = 4, n = 851 = 23*37 and 23 + 37 = 2*30; 

: for k = 14, n = 2951 = 13*227 and 13 + 227 = 8*30; 

: for k = 18, n = 221 = 17*223 and 17 + 223 = 8*30. 

 

Let n = 41 + 210*k 

: for k = 12, n = 2561 = 13*197 and 13 + 197 = 7*30; 

: for k = 13, n = 2771 = 17*163 and 17 + 163 = 6*30; 

: for k = 17, n = 3611 = 23*157 and 23 + 157 = 6*30; 

: for k = 30, n = 6341 = 17*373 and 17 + 373 = 13*30. 

 

Let n = 71 + 210*k 

: for k = 7, n = 1541 = 23*67 and 23 + 67 = 3*30; 

: for k = 8, n = 1751 = 17*103 and 17 + 103 = 4*30; 

: for k = 9, n = 1961 = 37*53 and 37 + 53 = 3*30; 

: for k = 10, n = 2171 = 13*167 and 13 + 167 = 6*30. 

 

Let n = 101 + 210*k 

: for k = 3, n = 731 = 17*43 and 17 + 43 = 2*30; 

: for k = 8, n = 1781 = 13*137 and 13 + 137 = 5*30; 

: for k = 21, n = 4511 = 13*347 and 13 + 347 = 12*30; 

: for k = 24, n = 5141 = 53*97 and 53 + 97 = 5*30. 

 

Let n = 131 + 210*k 

: for k = 5, n = 1391 = 13*107 and 13 + 107 = 4*30; 

: for k = 8, n = 2021 = 43*47 and 43 + 47 = 3*30; 

: for k = 9, n = 2231 = 23*97 and 23 + 97 = 4*30; 

: for k = 13, n = 3071 = 37*83 and 37 + 83 = 4*30. 

 

Note: 

The formula 11 + 30*k + 210*h (where 11 + 30*k is prime) seems  

also to produce sets of many consecutive primes; examples: 

: n = 41 + 210*k is prime for k = 4, 5, 6, 7, 8, 9, 10, 11; 

: n = 101 + 210*k is prime for k = 14, 15, 16, 17, 18, 19. 
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3. Two conjectures on squares of primes involving the sum of consecutive 

primes 
 

 

Abstract. In this paper I make a conjecture which states that there exist an infinity of 

squares of primes of the form 6*k - 1 that can be written as a sum of two consecutive 

primes plus one and also a conjecture that states that the sequence of the partial sums of 

odd primes contains an infinity of terms which are squares of primes of the form 6*k + 1. 

 

 

Conjecture 1:  

 

There exist an infinity of squares of primes of the form 6*k - 1 that can be written as a 

sum of two consecutive primes plus one. 

 

First ten terms from this sequence: 

 

: 5^2  = 11 + 13 + 1; 

: 11^2 = 59 + 61 + 1; 

: 17^2 = 139 + 149 + 1;   

: 29^2 = 419 + 421 + 1; 

: 53^2 = 1399 + 1409 + 1; 

: 101^2 = 5099 + 5101 + 1; 

: 137^2 = 9377 + 9391 + 1; 

: 179^2 = 16007 + 16033 + 1; 

: 251^2 = 31489 + 31511 + 1; 

: 281^2 = 39461 + 39499 + 1. 

 

Note other interesting related results: 

: 41^2 = 839 + 841 + 1, where 839 is prime and 841 = 29^2 square of prime; 

: 47^2 = 1103 + 1105 + 1, where 1103 is prime and 1105 is absolute Fermat 

pseudoprime. 

 

Note that I haven’t found in OEIS any sequence to contain the consecutive terms 5, 11, 

17, 29, 53, 101..., so I presume that the conjecture above has not been enunciated before. 

 

Note also the amount of squares of the primes of the form 6*k – 1 that can be written this 

way (10 from the first 31 such primes). 

 

Conjecture 2:  

 

The sequence of the partial sums of odd primes (see the sequence A071148 in OLEIS) 

contains an infinity of terms which are squares of primes of the form 6*k + 1. 

 

First three terms from this sequence: 

 

: 31^2 = 3 + 5 +...+ 89; 

: 37^2 = 3 + 5 +...+ 107; 

: 43^2 = 3 + 5 +...+ 131. 
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4. Two conjectures on squares of primes, involving twin primes and pairs 

of primes p, q, where q = p + 4 
 

 

Abstract. In this paper I make a conjecture which states that there exist an infinity of 

squares of primes that can be written as p + q + 13, where p and q are twin primes, also a 

conjecture that there exist an infinity of squares of primes that can be written as 3*q - p - 

1, where p and q are primes and q = p + 4. 

 

 

Conjecture 1:  

 

There exist an infinity of squares of primes that can be written as p + q + 13, where p and 

q are twin primes. 

 

First five terms from this sequence: 

 

: 5^2 = 5 + 7 + 13; 

: 7^2  = 17 + 19 + 13; 

: 17^2 = 137 + 139 + 13; 

: 67^2 = 2237 + 2239 + 13; 

: 73^2 = 2657 + 2659 + 13. 

 

Conjecture 2:  

 

There exist an infinity of squares of primes that can be written as 3*q - p - 1, where p and 

q are primes and q = p + 4. 

 

First three terms from this sequence: 

 

: 5^2 = 3*11 – 7 - 1; 

: 7^2 = 3*23 – 19 – 1; 

: 13^2 = 3*83 – 79 – 1. 

 

Note that I also conjecture that the formula 3*q - p - 1, where p and q are primes and q = 

p + 4, produces an infinity of primes, an infinity of semiprimes a*b such that b – a + 1 is 

prime and an infinity of semiprimes a*b such that b + a – 1 is prime. 
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5. Three conjectures on twin primes involving the sum of their digits 
 

 

Abstract. Observing the sum of the digits of a number of twin primes, I make in this 

paper the following three conjectures: (1) for any m the lesser term from a pair of twin 

primes having as the sum of its digits an odd number there exist an infinity of lesser 

terms n from pairs of twin primes having as the sum of its digits an even number such 

that m + n + 1 is prime, (2) for any m the lesser term from a pair of twin primes having as 

the sum of its digits an even number there exist an infinity of lesser terms n from pairs of 

twin primes having as the sum of its digits an odd number such that m + n + 1 is prime 

and (3) if a, b, c, d are four distinct terms of the sequence of lesser from a pair of twin 

primes and a + b + 1 = c + d + 1 = x, then x is a semiprime, product of twin primes. 

 

 

Conjecture 1:  

 

For any m the lesser term from a pair of twin primes having as the sum of its digits an 

odd number there exist an infinity of lesser terms n from pairs of twin primes having as 

the sum of its digits an even number such that m + n + 1 is prime. 

 

Example: 

(considering the first 100 terms of the sequence of the lesser from a pair of twin primes) 

 

: For m = 41 (the sum of digits 5, an odd number), p = m + n + 1 is prime for a number of 

28 values of n having the sum of the digits an even number from 47 such values: 

 

 (n, p) = (11, 53), (17, 59), (59, 101), (71, 113), (107, 149), (149, 191), (239, 281), (347, 

389), (419, 461), (521, 563), (617, 659), (659, 701), (1049, 1091), (1061, 1103), (1151, 

1193), (1229, 1361), (1481, 1523), (1667, 1709), (1931, 1973), (1997, 2039), (2309, 

2351), (2381, 2423), (2549, 2591), (2657, 2699), (2969, 3011), (3371, 3413), (3539, 

3581), (3821, 3863). 

 

Conjecture 2:  

 

For any m the lesser term from a pair of twin primes having as the sum of its digits an 

even number there exist an infinity of lesser terms n from pairs of twin primes having as 

the sum of its digits an odd number such that m + n + 1 is prime. 

 

Example: 

(considering the first 100 terms of the sequence of the lesser from a pair of twin primes) 

 

: For m = 71 (the sum of digits 8, an even number), p = m + n + 1 is prime for a number of 

23 values of n having the sum of the digits an odd number from 53 such values: 

 

 (n, p) = (29, 101), (41, 113), (191, 263), (197, 269), (281, 353), (311, 383), (809, 881), 

(881, 953), (1019, 1091), (1031, 1103), (1301, 1373), (1091, 1163), (1451, 1523), (1877, 

1949), (2027, 2099), (2081, 2153), (2267, 2339), (2339, 2441), (2591, 2663), (3251, 

3323), (3257, 3329), (3299, 3371), (3389, 3461).  
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Conjecture 3:  

 

If a, b, c, d are four distinct terms of the sequence of lesser from a pair of twin primes and 

a + b + 1 = c + d + 1 = x, then x is a semiprime, product of twin primes. 

 

Just two such cases I met so far, verifying the examples from the two conjectures above: 

 

: (a, b, c, d) = (41, 857, 71, 827) and, indeed, x = 899 = 29*31; 

: (a, b, c, d) = (41, 3557, 71, 3527) and, indeed, x = 3599 = 59*61. 
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6. Seven conjectures on the triplets of primes p, q, r where q = p + 4 and r 

= p + 6 
 

 

Abstract. In this paper I make seven conjectures on the triplets of primes [p, q, r], where 

q = p + 4 and r = p + 6, conjectures involving primes, squares of primes, c-primes, m-

primes, c-composites and m-composites (the last four notions are defined in previous 

papers, see for instance the paper “Conjecture that states that any Carmichael number is a 

cm-composite”. 

 

 

Conjecture 1:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6. 

 

The ordered sequence of these triplets is: 

[7, 11, 13], [13, 17, 19], [37, 41, 43], [97, 101, 103], [103, 107, 109], [193, 197, 199], 

[223, 227, 229], [307, 311, 313], [457, 461, 463], [613, 617, 619], [823, 827, 829], [853, 

857, 859], [877, 881, 883], [1087, 1091, 1093], [1297, 1301, 1303], [1423, 1427, 1429], 

[1447, 1451, 1453], [1483, 1487, 1489], [1663, 1667, 1669], [1693, 1697, 1699], [1783, 

1787, 1789], [1873, 1877, 1879], [1993, 1997, 1999], [2083, 2087, 2089], [2137, 2141, 

2143], [2377, 2381, 2383] ... 

 

Conjecture 2:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that s = p + q + r is a prime. 

 

The ordered sequence of the quadruplets [p, q, r, s] is: 

[7, 11, 13, 31], [457, 461, 463, 1381], [1087, 1091, 1093, 3271], [1663, 1667, 1669, 

4999], [2137, 2141, 2143, 6421] ... 

 

Conjecture 3:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that p + q + r is a square of a prime s. 

 

The ordered sequence of the quadruplets [p, q, r, s] is: 

[13, 17, 19, 7], [37, 41, 43, 11], [613, 617, 619, 43] ... 

 

Conjecture 4:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that s = p + q + r is a c-prime, without being a prime or a square of a prime. 

 

The first such quadruplets [p, q, r, s] are: 

:  [97, 101, 103, 301], because 301 = 7*43 and 43 – 7 + 1 = 37, prime; 

:  [103, 107, 109, 319], because 319 = 11*29 and 29 – 11 + 1 = 19, prime;   

:  [193, 197, 199, 589], because 589 = 19*31 and 31 – 19 + 1 = 13, prime;   
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:  [223, 227, 229, 679], because 679 = 7*97 and 97 - 7 + 1 = 91 = 7*13 and 13 – 7 + 

1 = 7, prime;   

:  [823, 827, 829, 2479], because 2479 = 37*67 and 67 – 37 + 1 = 31, prime; 

:  [853, 857, 859, 2569], because 2569 = 7*367 and 367 – 7 + 1 = 361, square of 

prime; 

:  [877, 881, 883, 2641], because 2641 = 19*139 and 139 – 19 + 1 = 121, square of 

prime; 

:  [1297, 1301, 1303, 3901], because 3901 = 47*83 and 83 – 47 + 1 = 37, prime; 

:  [1423, 1427, 1429, 4279], because 4279 = 11*389 and 389 – 11 + 1 = 379, prime; 

:  [1447, 1451, 1453, 4351], because 4351 = 19*229 and 229 – 19 + 1 = 211, prime; 

:  [1693, 1697, 1699, 5089], because 5089 = 7*727 and 727 – 7 + 1 = 721 = 7*103 

and 103 – 7 + 1 = 97, prime; 

:  [1783, 1787, 1789, 5359], because 5359 = 23*233 and 233 – 23 + 1 = 211, prime; 

:  [1867, 1871, 1873, 5611], because 5611 = 31*181 and 181 – 31 + 1 = 151, prime; 

:  [1873, 1877, 1879, 5629], because 5629 = 13*433 and 433 – 13 + 1 = 421, prime; 

:  [1993, 1997, 1999, 5989], because 5989 = 53*113 and 113 – 53 + 1 = 61, prime; 

:  [2083, 2087, 2089, 6259], because 6259 = 11*569 and 569 – 11 + 1 = 559 = 

13*43 and 43 – 13 + 1 = 31, prime; 

:  [2377, 2381, 2383, 7141], because 7141 = 37*193 and 193 – 37 + 1 = 157, prime. 

 

Conjecture 5:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that s = p + q + r is a m-prime, without being a prime or a square of a prime. 

 

The first such quadruplets [p, q, r, s] are: 

 

:  [97, 101, 103, 301], because 301 = 7*43 and 43 + 7 - 1 = 37, square of prime; 

:  [103, 107, 109, 319], because 319 = 11*29 and 29 + 11 - 1 = 39 = 3*13 and 3 + 

13 – 1 = 15 = 3*5 and 3 + 5 – 1 = 7, prime;   

:  [193, 197, 199, 589], because 589 = 19*31 and 31 + 19 - 1 = 49, square of prime;   

:  [223, 227, 229, 679], because 679 = 7*97 and 97 + 7 - 1 = 103, prime;   

:  [823, 827, 829, 2479], because 2479 = 37*67 and 67 + 37 - 1 = 103, prime; 

:  [853, 857, 859, 2569], because 2569 = 7*367 and 367 + 7 - 1 = 373, prime; 

:  [877, 881, 883, 2641], because 2641 = 19*139 and 139 + 19 + 1 = 157, prime; 

:  [1447, 1451, 1453, 4351], because 4351 = 19*229 and 229 + 19 + 1 = 247, prime; 

:  [1693, 1697, 1699, 5089], because 5089 = 7*727 and 727 + 7 - 1 = 733, prime; 

:  [1867, 1871, 1873, 5611], because 5611 = 31*181 and 181 + 31 - 1 = 151, prime. 

:  [2083, 2087, 2089, 6259], because 6259 = 11*569 and 569 + 11 - 1 = 573 = 

3*193 and 193 – 3 + 1 = 191, prime; 

:  [2377, 2381, 2383, 7141], because 7141 = 37*193 and 193 + 37 - 1 = 229, prime. 

 

Conjecture 6:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that s = p + q + r is a c-composite. 

 

The first such quadruplets [p, q, r, s] are: 

:  [307, 311, 313, 931], because 931 = 7*7*19 and 7*7 – 19 + 1 = 31, prime;  
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:  [1483, 1487, 1489, 4459], because 4459 = 7*7*7*13 and 7*13 – 7*7 + 1 = 43, 

prime.  

 

Conjecture 7:  

 

There exist an infinity of triplets of primes [p, q, r], where q = p + 4 and r = p + 6, such 

that s = p + q + r is a c-composite. 

 

The first such quadruplets [p, q, r, s] are: 

:  [307, 311, 313, 931], because 931 = 7*7*19 and 7*7 + 19 - 1 = 67, prime; 

:  [1483, 1487, 1489, 4459], because 4459 = 7*7*7*13 and 7*13 + 7*7 - 1 = 139, 

prime.  

 

 Observations:  

 

:  It can be seen that any from the first 26 triplets [p, q, r] falls at least in one of the 

cases involved by the Conjectures 2-7; 

: For all the first 26 triplets [p, q, r] the number s = p + q + r is a prime or a product 

of two prime factors; 

: Both of the triplets from above that are c-composites are also m-composites so 

they are cm-composites; 

: Most of the triplets from above that are c-primes are also m-primes so they are 

cm-primes. 
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7. An interesting recurrent sequence whose first 150 terms are either 

primes, powers of primes or products of two prime factors 
 

 

Abstract. I started this paper in ideea to present the recurrence relation defined as 

follows: the first term, a(0), is 13, then the n-th term is defined as a(n) = a(n–1) + 6 if n is 

odd and as a(n) = a(n-1) + 24, if n is even. This recurrence formula produce an amount of 

primes and odd numbers having very few prime factors: the first 150 terms of the 

sequence produced by this formula are either primes, power of primes or products of two 

prime factors. But then I discovered easily formulas even more interesting, for instance 

a(0) = 13, a(n) = a(n–1) + 10 if n is odd and a(n) = a(n-1) + 80, if n is even (which 

produces 16 primes in first 20 terms!). Because what seems to matter in order to generate 

primes for such a recurrent defined formula a(0) = 13, a(n) = a(n–1) + x if n is odd and as 

a(n) = a(n-1) + y, if n is even, is that x + y to be a multiple of 30 (probably the choice of 

the first term doesn’t matter either but I like the number 13). 

 

 

Conjecture:  

 

The sequence produced by the recurrent formula a(0) = 13, a(n) = a(n-1) + 6 if n is odd 

respectively a(n) = a(n-1) + 24 if n is even contains an infinity of terms which are primes, 

also an infinity of terms which are powers of primes, also an infinity of terms which are 

products of two prime factors. 

 

From the first 150 terms of the sequence the following 83 are primes: 

 

:  13, 19, 43, 73, 79, 103, 109, 139, 163, 193, 199, 223, 277, 283, 307, 313, 337, 367, 373, 

397, 433, 457, 463, 487, 523, 547, 577, 607, 613, 643, 673, 727, 733, 757, 787, 823, 853, 

877, 883, 907, 937, 967, 997, 1033, 1063, 1087, 1093, 1117, 1123, 1153, 1213, 1237, 

1297, 1303, 1327, 1423, 1447, 1453, 1483, 1543, 1567, 1597, 1627, 1657, 1663, 1693, 

1723, 1747, 1753, 1777, 1783, 1867, 1873, 1933, 1987, 1993, 2017, 2053, 2083, 2113, 

2137, 2143, 2203. 

 

From the first 150 terms of the sequence the following are products of two prime factors but not 

semiprimes: 

 

:  637 (=7^2*13), 847 (=7*11^2), 1183 (=7*13^2), 1573 (=11^2*13), 1813 (=7^2*37), 

2023 (=7*17^2), 2107 (=7^2*43).  

 

From the first 150 terms of the sequence the following are powers of primes: 

 

:  49 (=7^2), 169 (=13^2), 343 (=7^3), 2197 (=13^3). 

 

The rest terms up to 150-th term are semiprimes. 

 

Comment:  

 

I haven’t yet studied the sequence enough to know how important is to chose the term 

a(0) the number 13 (I chose it because is my favourite number); I think that rather the 
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amount of primes generated has something to do with the fact that 6 + 24 is a multiple of 

30. I’ll try to apply the definition for, for instance, 4 + 56 = 60.  

 

Indeed, the formula a(0) = 13, a(n) = a(n–1) + 4 if n is odd and as a(n) = a(n-1) + 56, if n 

is even, generates, from the first 50 terms, 32 primes and 18 semiprimes (and a chain of 6 

consecutive primes: 557, 613, 617, 673, 677, 733) so seems to be a formula even more 

interesting that the one presented above. 

 

Let’s try the formula a(0) = 13, a(n) = a(n–1) + 10 if n is odd and as a(n) = a(n-1) + 80, if 

n is even. Only in the first 20 terms we have 16 primes! 

 

Conclusion:  

 

The formula defined as a(0) = 13, a(n) = a(n–1) + x if n is odd and as a(n) = a(n-1) + y, if 

n is even, where x, y even numbers, seems to generate an amount of primes when x + y is 

a multiple of 30 (probably the choice of the first term doesn’t matter but I like the number 

13). 
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8. Three conjectures on probably infinite sequences of primes created 

through concatenation of primes with the powers of 2 
 

 

Abstract. In this paper I present three conjectures, i.e.: (1) For any prime p greater than 

or equal to 7 there exist n, a power of 2, such that, concatenating to the left p with n the 

number resulted is a prime (2) For any odd prime p there exist n, a power of 2, such that, 

subtracting one from the number resulted concatenating to the right p with n, is obtained 

a prime (3) For any odd prime p there exist n, a power of 2, such that, adding one to the 

number resulted concatenating to the right p with n, is obtained a prime. 

 

 

Conjecture 1:  

 

For any prime p greater than or equal to 7 there exist n, a power of 2, such that, 

concatenating to the left p with n the number resulted is a prime. 

 

The sequence of the primes obtained, for p ≥ 7 and the least n for which the number 

obtained through concatenation is prime: 

 

47, 211, 1613, 3217, 419, 223, 229, 431, 1637, 241, 443, 1638447, 853, 859, 461, 467, 

271, 6473, 479, 283, 12889, 1697, 8101, 16103, 2048107, 64109, 2113, 4127, 2131 (...) 

 

The corresponding sequence of the exponents of 2 for which a prime is obtaiend: 

 

2, 1, 4, 5, 2, 1, 1, 2, 4, 1, 2, 14, 3, 3, 2, 2, 1, 6, 2, 1, 7, 4, 3, 4, 11, 6, 1, 2, 1 (...) 

 

Note: I also conjecture that there exist an infinity of pairs of primes (p, p + 6) such that n 

has that same value: such pairs are: (23, 29), (53, 59), (61, 67), which create the primes 

(223, 229), (853, 859), (461, 467). 

 

Conjecture 2:  

 

For any odd prime p there exist n, a power of 2, such that, subtracting one from the 

number resulted concatenating to the right p with n, is obtained a prime. 

 

The sequence of the primes obtained, for odd p and the least n for which the number 

obtained through concatenation is prime: 

 

31, 53, 71, 113, 131, 173, 191, 233, 293, 311, 373, 41257, 431, 47262143, 531023, 593, 

613, 673, 71257 (...) 

 

The corresponding sequence of the exponents of 2 for which a prime is obtaiend: 

 

1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 8, 1, 18, 10, 2, 2, 2, 8 (...) 

 

Note: I also conjecture that there exist an infinity of pairs of primes (p, p + 6) such that n 

has that same value: such pairs are: (5, 11), (7, 13), (11, 17), (23, 29), (31, 37), (61, 67) 

which create the primes (53, 113), (71, 131), (113, 173), (233, 239), (311, 317), (613, 

673). 
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Conjecture 3:  

 

For any odd prime p there exist n, a power of 2, such that, adding one to the number 

resulted concatenating to the right p with n, is obtained a prime. 

 

The sequence of the primes obtained, for odd p and the least n for which the number 

obtained through concatenation is prime: 

 

317, 53, 73, 113, 139, 173, 193, 233, 293, 313, 373, 419, 479, 5333, 613, 673, 719, 733, 

7933, 839, 163, 8933 (...) 

 

The corresponding sequence of the exponents of 2 for which a prime is obtaiend: 

 

4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 3, 1, 5, 3, 1, 5 (...) 

 

Note: I also conjecture that there exist an infinity of pairs of primes (p, p + 6) such that n 

has that same value: such pairs are: (5, 11), (11, 17), (17, 23) which create the primes (53, 

113), (113, 173), (173, 233). 
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9. Conjecture on the infinity of a set of primes obtained from Sophie Germain 

primes 
 

 

Abstract. In this paper I conjecture that there exist an infinity of primes of the form 

2*p^2 – p – 2, where p is a Sophie Germain prime, I show first few terms from this set 

and few larger ones. 

 

 

Conjecture:  

 

There exist an infinity of primes of the form q = 2*p^2 – p – 2, where p is a Sophie 

Germain prime (that obviously implies that there are infinitely many Sophie Germain 

primes). 

 

The first few terms of this set:  

 

q = 13, 43, 229, 1033, 3319, 5563, 13693, 25423, 63901, 108343, 114001, 157639, 

171403, 257401, 392053, 1103353, 2051323, 2432113, 3969151, 4140001, 4209349 (...), 

obtained for p = 3, 5, 11, 23, 41, 53, 83, 113, 179, 233, 239, 281, 293, 359, 443, 743, 

1013, 1103, 1409, 1439, 1451 (...)  

 

Five consecutive larger terms: 

 

 q = 751577599183783 for p = 19385273; 

q = 751743236079151 for p = 19387409; 

q = 751746493167349 for p = 19387451; 

q = 751876782481189 for p = 19389131; 

q = 751901445657751 for p = 19389449. 

 

Note:  

 

Beside the first two Sophie Germain primes, the numbers 2 and 3, all the others are odd 

primes of the form 9*k + 2, 9*k + 5 or 9*k + 8 (and all the numbers q from the set 

presented above are of the form 9*k + 1, 9*k + 4 or 9*k + 7). I conjecture that there exist 

an infinity of primes of the form q = 2*p^2 – p – 2, where p is a Sophie Germain prime, 

such that, reiterating the operation of addition of the digits of q, is eventually reached the 

number 13 (e.g. the sum of the digits of q = 751577599183783 is 85 and 8 + 5 = 13, the 

sum of the digits of q = 751746493167349 is 76 and 7 + 6 = 13 and the sum of the digits 

of q = 751901445657751 is 67 and 6 + 7 = 13).     
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10. Conjecture which states that there exist an infinity of squares of primes of 

the form 109+420k 
  

 

Abstract. In this paper I conjecture that there exist an infinity of squares of primes of the 

form 109 + 420*k, also an infinity of primes of this form and an infinity of semiprimes 

p*g of this form such that q – p = 60. 

 

 

Conjecture:  

 

There exist an infinity of squares of primes of the form p^2 = 109 + 420*k, where k 

positive integer. 

 

The first eight terms of this set:  

 

p^2 = 529(=23^2), 1369(=37^2), 2209(=47^2), 10609(=103^2), 11449(=107^2), 

26569(=163^2), 29929(=173^2), 54289(=233^2) (...), obtained for k = 1, 3, 5, 25, 27, 63, 

71, 129 (...)  

 

Conjecture:  

 

There exist an infinity of primes of the form p = 109 + 420*k, where k positive integer. 

 

The first twenty terms of this set:  

 

p = 109, 1789, 3049, 3469, 3889, 4729, 5569, 6829, 7669, 8089, 8929, 9349, 9769, 

12289, 14389, 15649, 16069, 17749, 18169, 19009 (...), obtained for k = 0, 4, 7, 8, 9, 11, 

13, 16, 18, 19, 21, 22, 23, 29, 34, 37, 38, 42, 43, 45 (...)  

 

Note that, for k from 55 to 60, the formula creates a chain of six consecutive primes 

(23209, 23629, 24049, 24469, 24889, 25309). 

 

Conjecture:  

 

There exist an infinity of semiprimes of the form p*q = 109 + 420*k, where k positive 

integer, such that q – p = 60. 

 

The first six terms of this set:  

 

p*q = 60483(=13*73), 5989(=53*113), 8509(67*127), 15229(=97*157), 

21509(=137*197), 37909(=167*227) (...), obtained for k = 2, 14, 20, 36, 64, 90 (...)  

 

Comment:  

 

The conjectures above inspired me a way to find larger primes when you know two 

primes p, q such that q – p = 60, both primes of the form 10*k + 3 or of the form 10*k + 

7. There are almost sure easy to find primes between the numbers of the form p*q – 

210*k, where k positive integer. 
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Examples:  

 

: m = 13*73 – 210*k is prime for k = 1 (m = 739); 

: m = 23*83 – 210*k is prime for k = 1 (m = 1699); 

: m = 37*97 – 210*k is prime for k = 2 (m = 3169); 

: m = 43*103 – 210*k is prime for k = 1 (m = 4219); 

 

: m = 104123*104183 – 210*k is prime for k = 7 (m = 10847845039); 

: m = 104183*104243 – 210*k is prime for k = 1 (m = 10860348259); 

: m = 104323*104383 – 210*k is prime for k = 3 (m = 10889547079); 

: m = 104537*104597 – 210*k is prime for k = 6 (m = 10934255329); 

: m = 104623*104683 – 210*k is prime for k = 1 (m = 10952249299). 

 

Note that the formula p*q + 210*k (under the given conditions) seems also to conduct 

pretty soon to primes; for m from the last five examples above we have: 

 

: 104123*104183 + 210*3 = 10847847139, prime; 

: 104183*104243 + 210*9 = 10860350359, prime; 

: 104323*104383 + 210*2 = 10889548129, prime; 

: 104537*104597 + 210*4 = 10934257429, prime; 

: 104623*104683 + 210*1 = 10952249719, prime. 
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11. Seven conjectures on the squares of primes involving the number 4320 

respectively deconcatenation 
 

 

Abstract. In this paper I make three conjectures regarding a certain relation between the 

number 4320 and the squares of primes respectively four conjectures on squares of 

primes involving deconcatenation. 

 

 

Conjecture 1:  

 

There exist an infinity of primes of the form p^2 + 4320, where p is prime. 

 

Such primes are:  

 

: 4339 = 4320 + 19^2; 

: 4441 = 4320 + 11^2; 

: 5281 = 4320 + 31^2; 

: 5689 = 4320 + 37^2; 

: 6529 = 4320 + 47^2; 

: 7129 = 4320 + 53^2; 

: 9649 = 4320 + 73^2; 

: 12241 = 4320 + 89^2; 

: 13729 = 4320 + 97^2; 

: 14929 = 4320 + 103^2; 

: 21481 = 4320 + 131^2. 

 

Conjecture 2:  

 

There exist an infinity of semiprimes of the form q1*q2 = p^2 + 4320, where p is prime, 

such that q2 – q1 + 1 is prime. 

 

Such semiprimes are:  

 

: 4369 = 4320 + 7^2 = 17*257 (257 – 17 + 1 = 241, prime); 

: 4609 = 4320 + 17^2 = 11*419 (419 – 11 + 1 = 409, prime); 

: 6001 = 4320 + 41^2 = 17*353 (353 – 17 + 1 = 337, prime); 

: 7801 = 4320 + 59^2 = 29*269 (269 – 29 + 1 = 241, prime); 

: 11209 = 4320 + 83^2 = 11*1019 (1019 – 11 + 1 = 1009, prime); 

: 15769 = 4320 + 107^2 = 13*1213 (1213 – 13 + 1 = 1201, prime); 

: 16201 = 4320 + 109^2 = 17*953 (953 – 17 + 1 = 937, prime); 

: 23089 = 4320 + 137^2 = 11*2099 (2099 – 11 + 1 = 2089, prime); 

: 23641 = 4320 + 139^2 = 47*503 (503 – 47 + 1 = 457, prime); 

: 28969 = 4320 + 157^2 = 59*491 (491 – 59 + 1 = 433, prime); 

: 32209 = 4320 + 167^2 = 31*1039 (1039 – 31 + 1 = 1009, prime); 

: 34249 = 4320 + 173^2 = 29*1181 (1181 – 29 + 1 = 1153, prime). 
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Conjecture 3:  

 

There exist an infinity of semiprimes of the form q1*q2 = p^2 + 4320, where p is prime, 

such that q2 – q1 + 1 is a power of prime. 

 

Such semiprimes are:  

 

: 4681 = 4320 + 19^2 = 31*151 (151 – 31 + 1 = 121 = 11^2); 

: 4849 = 4320 + 23^2 = 13*373 (373 – 13 + 1 = 361 = 19^2); 

: 6169 = 4320 + 43^2 = 31*199 (199 – 31 + 1 = 169 = 13^2); 

: 8809 = 4320 + 67^2 = 23*383 (383 – 23 + 1 = 361 = 19^2); 

: 10561 = 4320 + 79^2 = 59*179 (179 – 59 + 1 = 121 = 11^2); 

: 26521 = 4320 + 149^2 = 11*2411 (2411 – 11 + 1 = 2401 = 7^4). 

 

Note: 

 

For the squares of the 27 from the first 35 primes p greater than or equal to 7 the number 

p^2 + 4320 is either prime either semiprime q1*q2 such that q2 – q1 + 1 is prime or 

square of prime. For other two primes p the number p^2 + 4320 = q1*q2*q3 such that q1 

+ q2 + q3 is prime (8041 = 61^2 + 4320 = 11*17*43 and 11 + 17 + 43 = 71; 9361 = 71^2 

+ 4320 = 11*23*37 and 11 + 23 + 37 = 71) and for other two primes p the number p^2 + 

4320 is a square (13^2 + 4320 = 4489 = 67^2 and 127^2 + 4320 = 20449 = 11^2*13^2. 

 

Conjecture 4:  

 

There exist an infinity of primes formed by deconcatenating a square of a prime and 

inserting the digit 0 between the first of its digits and the others. 

 

Such primes are:  

 

: 409 formed from 49 = 7^2; 

: 1021 formed from 121 = 11^2; 

: 1069 formed from 169 = 13^2; 

: 2089 formed from 289 = 17^2; 

: 3061 formed from 361 = 19^2; 

: 10369 formed from 1369 = 37^2; 

: 20809 formed from 2809 = 53^2; 

: 50329 formed from 5329 = 73^2; 

: 60889 formed from 6889 = 83^2; 

: 70921 formed from 7921 = 89^2; 

: 100609 formed from 10609 = 103^2; 

: 101449 formed from 11449 = 107^2; 

: 102769 formed from 12769 = 113^2; 

: 106129 formed from 16129 = 127^2; 

: 108769 formed from 18769 = 137^2; 

: 109321 formed from 19321 = 139^2; 

: 202201 formed from 22201 = 149^2. 
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Conjecture 5:  

 

There exist an infinity of semiprimes q1*q2 such that q2  - q1 + 1 is prime or square of 

prime formed by deconcatenating a square of a prime and inserting the digit 0 between 

the first of its digits and the others. 

 

Such semiprimes are:  

: 5029 = 47*107 formed from 529 = 23^2 (107 – 47 + 1 = 61, prime); 

: 10681 = 11*971 formed from 1681 = 41^2 (971 – 11 + 1 = 961 = 31^2); 

: 30721 = 31*991 formed from 3721 = 61^2 (991 – 31 + 1 = 961 = 31^2); 

: 40489 = 19*2131 formed from 4489 = 67^2 (2131 – 19 + 1 = 2113, prime); 

: 60241 = 107*563 formed from 6241 = 79^2 (563 – 107 + 1 = 457, prime); 

: 90409 = 11*8219 formed from 9409 = 97^2 (8219 – 11 + 1 = 8209, prime); 

: 100201 = 97*1033 formed from 9409 = 101^2 (1033 – 97 + 1 = 937, prime); 

: 107161 = 101*1061 formed from 17161 = 131^2 (1061 – 101 + 1 = 961 = 31^2); 

: 202801 = 139*1459 formed from 22801 = 151^2 (1459 – 139 + 1 = 1321, prime); 

: 204649 = 19*10771 formed from 24649 = 157^2 (10771 – 19 + 1 = 10753, 

prime). 

 

Conjecture 6:  

 

There exist an infinity of semiprimes q1*q2 such that q2  - q1 + 1 = q3*q4 where q4 – q3 

+ 1 is prime or square of prime formed by deconcatenating a square of a prime and 

inserting the digit 0 between the first of its digits and the others. 

 

Such semiprimes are:  

: 10849 = 19*571 formed from 1849 = 43^2 (571 – 19 + 1 = 553 = 7*79 and 79 – 7 

+ 1 = 73, prime); 

: 20209 = 7*2887 formed from 2209 = 47^2 (2887 – 7 + 1 = 2881 = 43*67 and 67 

– 43 + 1 = 25 = 5^2); 

: 50041 = 163*307 formed from 5041 = 71^2 (307 – 163 + 1 = 145 = 5*29 and 29 

– 5 + 1 = 25 = 5^2). 

 

Conjecture 7:  

 

There exist an infinity of composites q1*q2*q3 such that q1 + q2 + q3 is prime formed 

by deconcatenating a square of a prime and inserting the digit 0 between the first of its 

digits and the others. 

 

Such composites are:  

 

: 8041 = 11*17*43 formed from 841 = 29^2 (11 + 17 + 43 = 71, prime); 

: 9061 = 13*17*41 formed from 961 = 31^2 (13 + 17 + 41 = 71, prime); 

: 30481 = 11*17*163 formed from 3481 = 59^2 (11 + 17 + 163 = 71, prime); 

: 101881 = 13*17*461 formed from 11881 = 109^2 (13 + 17 + 461 = 491, prime); 

: 206569 = 11*89*211 formed from 26569 = 163^2 (11 + 89 + 211 = 311, prime). 

 

Note: 

For all 35 from the first 35 primes greater than or equal to 7 the number formed in the 

way mentioned satisfies one of the conditions defined in the four conjectures above. 
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12. Three conjectures on a sequence based on concatenation and the odd 

powers of the number 2 
 

 

Abstract. In this paper I make three conjectures regarding the infinity of prime terms 

respectively the infinity of a certain kind of semiprime terms of the sequence obtained 

concatenating the odd powers of the number 2 to the left respectively to the right with the 

digit 1. 

 

 

The sequence of the numbers obtained concatenating the odd powers of the number 2 to the left 

respectively to the right with the digit 1 (see A004171 in OEIS for the odd powers of the number 

2):  

 

121, 181, 1321, 11281, 15121, 120481, 181921, 1327681, 11310721, 15242881, 120971521, 

183886081, 1335544321, 11342177281, 15368709121, 121474836481, 185899345921, 

1343597383681, 11374389534721, 15497558138881, 121990232555521, 187960930222081, 

1351843720888321, 11407374883553281, 15629499534213121 (...) 

 

Conjecture 1:  

 

There exist an infinity of primes of the form 1n1 (where 1n1 is a number formed by 

concatenation, not 1*n*1), where n is an odd power of 2. 

 

Such primes are:  

 

181, 1321, 15121, 1335544321, 121474836481, 1351843720888321, 

194447329657392904273921, 1405648192073033408478945025720321, 

125961484292674138142652481646100481, 

1425352958651173079329218259289710264321, 

16805647338418769269267492148635364229121 (...) 

 

Conjecture 2:  

 

There exist an infinity of semiprimes q1*q2 of the form 1n1, where n is an odd power of 

2, such that q2 – q1 + 1 is prime or square of prime. 

 

: 11281 = 29*389 (389 – 29 + 1 = 361 = 19^2); 

: 120481 = 211*571 (571 – 211 + 1 = 361 = 19^2); 

: 1327681 = 467*2843 (2843 – 467 + 1 = 2377, prime); 

: 11310721 = 2777*4073 (4073 – 2777 + 1 = 1297, prime); 

: 185899345921 = 61*3047530261 (3047530261 – 61 + 1 = 3047530201, prime); 

: 127222589353675077077069968594541456916481 = 

535583191189*237540295227039642622315748029 

(237540295227039642622315748029 – 535583191189 + 1 = 

237540295227039642086732556841, prime). 
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Conjecture 3:  

 

There exist an infinity of semiprimes q1*q2 of the form 1n1, where n is an odd power of 

2, such that q2 – q1 + 1 = q3*q4, where q4 – q3 + 1 is prime, square of prime or 

semiprime with the property that, reiterating the operation described, it’s finnaly reached 

a prime or a square of prime. 

 

: 181921 = 109*1669 (1669 – 109 + 1 = 1561 = 7*223 and 223 – 7 + 1 = 217 = 

7*31 and 31 – 7 + 1 = 25 = 5^2); 

: 15242881 = 331*46051 (46051 – 331 + 1 = 45721 = 13*3517 and 3517 – 13 + 1 

= 3505 = 5*701 and 701 – 5 + 1 = 697 = 17*41 and 41 – 17 + 1 = 25 = 5^2); 

: 120971521 = 11*10997411 (10997411 – 11 + 1 = 10997401 = 137*80273 and 

80273 – 137 + 1 = 80137 = 127*631 and 631 – 127 + 1 = 505 = 5*101 and 101 – 

5 + 1 = 97, prime); 

: 11407374883553281 = 61*187006145632021 (187006145632021 – 61 + 1 = 

187006145631961 = 19813*9438557797 and 9438557797 – 19813 + 1 = 

9438537985 = 5*1887707597 and 1887707597 – 5 + 1 = 1887707597, prime). 
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13. Two conjectures on the numbers obtained concatenating the integers 

of the form 6k+1 with the digits 081 
 

 

Abstract. In this paper I conjecture that there exist an infinity of positive integers m of 

the form 6*k + 1 such that the numbers formed by concatenation n = m081 are primes or 

powers of primes, respectively semiprimes p*q such that q – p + 1 is prime or power of 

prime.  

 

 

Conjecture 1:  

 

There exist an infinity of positive integers m of the form 6*k + 1 such that the numbers 

formed by concatenation n = m081 are primes or powers of primes. 

 

Such pairs [m, n] are:  

 

: [19, 19081]; [31, 31081]; [97, 97081]; [49, 49081]; [85, 85081]; [91, 91081]; 

[121, 121081]; [127, 127081]; [157, 157081]; [175, 175081]; [181, 181081]; 

[187, 187081]; [199, 199081]; [205, 205081]; [217, 217081]; [229, 229081]; 

[241, 241081 = 491^2]; [253, 253081]; [259, 259081 = 509^2]; [295, 295081]; 

[313, 313081]; [325, 325081]; [331, 331081]; [337, 337081]; [343, 343081]; 

[349, 349081]; [379, 379081]; [385, 385081]; [409, 409081]; [421, 421081]; 

[427, 427081]; [439, 439081]; [475, 475081]; [517, 517081]; [559, 559081]; 

[577, 577081]; [563, 563081]; [569, 569081]; [595, 595081]; [607, 607081]... 

 

Conjecture 2:  

 

There exist an infinity of positive integers m of the form 6*k + 1 such that the numbers 

formed by concatenation n = m081 are semiprimes p*q such that q – p + 1 is prime or 

power of prime.  

 

Such pairs [m, n] are:  

 

: [1, 1081 = 23*47 and 47 – 23 + 1 = 25 = 5^2]; 

: [7, 7081 = 73*97 and 97 – 73 + 1 = 25 = 5^2]; 

: [13, 13081 = 103*127 and 127 – 103 + 1 = 25 = 5^2]; 

: [37, 37081 = 11*3371 and 3371 – 11 + 1 = 3361]; 

: [43, 43081 = 67*643 and 643 – 67 + 1 = 577]; 

: [73, 73081 = 107*683 and 683 – 107 + 1 = 577]; 

: [79, 79081 = 31*2551 and 2551 – 31 + 1 = 2521]; 

: [115, 115081 = 157*733 and 733 – 157 + 1 = 577]; 

: [145, 145081 = 59*2459 and 2459 – 59 + 1 = 2401 = 7^4]; 

: [247, 247081 = 211*1171 and 1171 – 211 + 1 = 961 = 31^2]; 

: [271, 271081 = 307*883 and 883 – 307 + 1 = 577]; 

: [463, 463081 = 571*811 and 811 – 571 + 1 = 241]; 

: [529, 529081 = 7*75583 and 75583 – 7 + 1 = 75577]; 

: [535, 535081 = 109*4909 and 4909 – 109 + 1 = 4801]; 

: [541, 541081 = 199*2719 and 2719 – 199 + 1 = 2521]; 

: [547, 547081 = 229*2389 and 2389 – 229 + 1 = 2161] [...] 
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14. Three conjectures on the numbers obtained concatenating the multiples of 

30 with the squares of primes 
 

 

Abstract. In this paper I conjecture that there exist an infinity of numbers ab formed by 

concatenation from a multiple of 30, a, and a square of a prime, b, which are primes or 

powers of primes, respectively semiprimes p*q such that q – p + 1 is prime or power of 

prime, respectively semiprimes p1*q1 such that q1 – p1 + 1 is semiprime p2*q2 such that 

q2 – p2 + 1 is prime or power of prime. 

 

 

Conjecture 1:  

 

There exist an infinity of numbers ab formed by concatenation from a multiple of 30, a, 

and a square of a prime, b, which are primes or powers of primes. 

 

Such triplets [a, b, ab] are:  

 

: [30, 49, 3049]; [30, 169, 30169]; [30, 529, 30529]; [30, 841, 30841]; [30, 1681, 

301681]; [30, 4489, 304489]; [30, 5329, 305329]; [60, 169, 60169]; [60, 289, 

60289]; [60, 961, 60961]; [60, 1849, 601849]; [60, 5329, 605329]; [60, 6241, 

606241]; [60, 7921, 607921]; [90, 49, 9049]; [90, 121, 90121]; [90, 289, 90289]; 

[90, 529, 90529]; [90, 841, 90841]; [90, 4489, 904489]; [90, 5329, 905329]; [90, 

9409, 909409]; [120, 49, 12049]; [120, 121, 120121]; [150, 169, 150169]; [180, 

49, 18049]; [180, 289, 180289]; [210, 361, 210361]; [240, 49, 24049]; [270, 121, 

270121]; [300, 961, 300961]; [330, 49, 33049]... 

 

Note:  

 

Two interesting sequences can be made:  

 

(1) The least prime p for which the numbers formed by concatenation mp^2, where m 

= 30*n, n taking positive integer values, are primes: 

: 7, 13, 11, 11, 13, 7, 19, 7, 11, 31, 7 {...) 

 

(2) The least positive integer n for which the numbers formed by concatenation 

mp^2, where m = 30*n, p taking the values of primes greater than or equal to 7, 

are primes: 

: 1, 3, 1, 2, 6, 1, 1, 2, 5, 1, 2, 5, 7 (...) 

Conjecture 2:  

 

There exist an infinity of numbers ab formed by concatenation from a multiple of 30, a, 

and a square of a prime, b, which are semiprimes p*q such that q – p + 1 is prime or 

power of prime. 

 

Such triplets [a, b, ab] are:  

 

: [30, 1849, 301849 = 151*1999 and 1999 – 151 + 1 = 1849 = 43^2]; 

: [30, 3481, 303481 = 157*1933 and 1933 – 157 + 1 = 1777]; 

: [30, 9409, 309409 = 277*1117 and 1117 – 277 + 1 = 841 = 29^2]; 
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: [60, 49, 6049 = 23*263 and 263 – 23 + 1 = 241]; 

: [60, 121, 60121 = 59*1019 and 1019 – 59 + 1 = 961 = 31^2]; 

: [60, 529, 60529 = 7*8647 and 8647 – 7 + 1 = 8641]; 

: [60, 841, 60841 = 11*5531 and 5531 – 11 + 1 = 5521]; 

: [60, 2209, 602209 = 23*26183 and 26183 – 23 + 1 = 26161]; 

: [60, 2809, 602809 = 617*977 and 977 – 617 + 1 = 361 = 19^2]; 

: [60, 3481, 603481 = 79*7639 and 7639 – 79 + 1 = 7561]; 

: [60, 5041, 605041 = 167*3623 and 3623 – 167 + 1 = 3457]; 

: [60, 9409, 609409 = 113*5393 and 5393 – 113 + 1 = 5281]; 

: [90, 169, 90169 = 37*2437 and 2437 – 37 + 1 = 2401 = 7^4]; 

: [90, 1369, 901369 = 7*128767 and 128767 – 7 + 1 = 128761]; 

: [90, 2809, 902809 = 859*1051 and 1051 – 859 + 1 = 193]; 

: [120, 169, 120169 = 7*17167 and 17167 – 7 + 1 = 17161 = 131^2]; 

: [150, 49, 15049 = 101*149 and 149 – 101 + 1 = 49 = 7^2]; 

: [150, 289, 150289 = 137*1097 and 1097 – 137 + 1 = 961 = 31^2]; 

: [180, 121, 180121 = 281*641 and 641 – 281 + 1 = 361 = 19^2]; 

: [180, 529, 180529 = 73*2473 and 2473 – 73 + 1 = 2401 = 7^4]; 

[...] 

 

Conjecture 3:  

 

There exist an infinity of numbers ab formed by concatenation from a multiple of 30, a, 

and a square of a prime, b, which are semiprimes p1*q1 such that q1 – p1 + 1 is 

semiprime p2*q2 such that q2 – p2 + 1 is prime or power of prime. 

 

Such triplets [a, b, ab] are:  

 

: [30, 289, 30289 = 7*4327 and 4327 – 7 + 1 = 4321 = 29*149 and 149 – 29 + 1 = 

121 = 11^2]; 

: [30, 361, 30361 = 97*313 and 313 – 97 + 1 = 217 = 7*31 and 31 – 7 + 1 = 25 = 

5^2]; 

: [30, 961, 30961 = 7*4423 and 4423 – 7 + 1 = 4417 = 7*631 and 631 – 7 + 1 = 

625 = 5^4]; 

: [30, 1369, 301369 = 23*13103 and 13103 – 23 + 1 = 13081 = 103*127 and 127 – 

103 + 1 = 25 = 5^2]; 

: [60, 4489, 604489 = 83*7283 and 7283 – 83 + 1 = 7201 = 19*379 and 379 – 19 + 

1 = 361 = 19^2]; 

: [90, 5041, 905041 = 89*10169 and 10169 – 89 + 1 = 10081 = 17*593 and 593 – 

17 + 1 = 577]; 

: [120, 529, 120529 = 43*2803 and 2803 – 43 + 1 = 2761 = 11*251 and 251 – 11 + 

1 = 241]; 

[...] 
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Part Two. 

The notions of c/m-integers and g/s-integers 

 

 

 

15. Operation based on squares of primes for obtaining twin primes and twin 

c-primes and the definition of a c-prime 
 

 

Abstract. In this paper I show how, concatenating to the right the squares of primes with 

the digit 1, are obtained primes or composites n = p(1)*p(2)*...*p(m), where p(1), p(2), 

..., p(m) are the prime factors of n, which seems to have often (I conjecture that always) 

the following property: there exist p(k) and p(h), where p(k) is the product of some 

distinct prime factors of n and p(h) the product of the other distinct prime factors such 

that the numbers p(k) + p(h) ± 1 are twin primes or twin c-primes and I also define the 

notion of a c-prime. 

 

 

Conjecture:  

 

Concatenating to the right the squares of primes, greater than or equal to 5, with the digit 

1, are obtained always either primes either composites n = p(1)*p(2)*...*p(m), where 

p(1), p(2), ..., p(m) are the prime factors of n, which have the following property: there 

exist p(k) and p(h), where p(k) is the product of some distinct prime factors of n and p(h) 

the product of the other distinct prime factors such that the numbers p(k) + p(h) ± 1 are 

twin primes or twin c-primes. 

 

Definition:  

 

We name a c-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), p(1) < q(1), with the property that the number q(1) – p(1) + 1 is either 

prime either semiprime p(2)*q(2) with the property that the number q(2) – p(2) + 1 is 

either prime either semiprime with the property showed above... (until, eventualy, is 

obtained a prime). 

 

Example: 4979 is a c-prime because 4979 = 13*383, where 383 – 13 + 1 = 371 = 7*53, 

where 53 – 7 + 1 = 47, a prime. 

 

Verifying the conjecture:  

(for the first n primes greater than or equal to 5) 

 

For p = 5, p^2 = 25; 

: the number 251 is prime; 

For p = 7, p^2 = 49; 

: the number 491 is prime; 

For p = 11, p^2 = 121; 

: 1211 = 7*173; indeed, the numbers 7 + 173 ± 1 are twin primes (179 and 181); 

For p = 13, p^2 = 169; 

: 1691 = 19*89; indeed, the numbers 19 + 89 ± 1 are twin primes (107 and 109); 
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For p = 17, p^2 = 289; 

: 2891 = 49*59; indeed, the numbers 49 + 59 ± 1 are twin primes (107 and 109); 

For p = 19, p^2 = 361; 

: 3611 = 23*157; indeed, the numbers 23 + 157 ± 1 are twin primes (179 and 181); 

For p = 23, p^2 = 529; 

: 5291 = 11*13*37; indeed, the numbers 11*13 + 37 ± 1 are twin primes (179 and 

181); 

For p = 29, p^2 = 841; 

: 8411 = 13*647; indeed, the numbers 13 + 647 ± 1 are twin primes (659 and 661); 

For p = 31, p^2 = 961; 

: 9611 = 7*1373; indeed, the numbers 7 + 1373 ± 1 are twin c-primes (1381 is 

prime and 1379 is c-prime because is equal to 7*197, where 197 – 7 + 1 = 191, 

which is prime); 

For p = 37, p^2 = 1369; 

: the number 13691 is prime; 

For p = 41, p^2 = 1681; 

: the number 16811 is prime; 

For p = 43, p^2 = 1849; 

: 18491 = 11*41^2; indeed, the numbers 11 + 1681 ± 1 are twin c-primes (1693 is 

prime and 1691 is c-prime because is equal to 19*89, where 89 – 19 + 1 = 71, 

which is prime); 

For p = 47, p^2 = 2209; 

: the number 22091 is prime; 

For p = 53, p^2 = 2809; 

: 28091 = 7*4013; indeed, the numbers 7 + 4013 ± 1 are twin primes (4019 and 

4021); 

For p = 59, p^2 = 3481; 

: 34811 = 7*4973; indeed, the numbers 7 + 4973 ± 1 are twin c-primes (4981 is c-

prime because is equal to 17*293, where 293 – 17 + 1 = 277, which is prime, and 

4979 is c-prime because is equal to 13*383, where 383 – 13 + 1 = 371 = 7*53, 

where 53 – 7 + 1 = 47, which is prime); 

For p = 61, p^2 = 3721; 

: 37211 = 127*293; indeed, the numbers 127 + 293 ± 1 are twin primes (419 and 

421); 

For p = 67, p^2 = 4489; 

: 44891 = 7*11^2*53; indeed, the numbers 7*53 + 11^2 ± 1 are twin c-primes (491 

is prime and 493 is c-prime because is equal to 17*29, where 29 – 17 + 1 = 13, 

which is prime); 

For p = 71, p^2 = 5041; 

: the number 50411 is prime; 

For p = 73, p^2 = 5329; 

: 53291 = 7*23*331; indeed, the numbers 7*23 + 331 ± 1 are twin c-primes (491 is 

prime and 493 is c-prime because is equal to 17*29, where 29 – 17 + 1 = 13, 

which is prime); 

 

 Note that, coming to confirm the potential of the operation of concatenation used 

on squares of primes, concatenating to the right with the digit one the squares of 

the primes 67 and 73 are obtained the numbers 44891 = 7*11^2*53 and 53291 = 

7*23*331 with the property that 7*53 + 11^2 = 7*23 + 331 = 492, which is a fact 

interesting enough by itself.  
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For p = 79, p^2 = 6241; 

: 62411 = 139*449; indeed, the numbers 139 + 449 ± 1 are twin c-primes (587 is 

prime and 589 is c-prime because is equal to 19*31, where 31 – 19 + 1 = 13, 

which is prime); 

For p = 83, p^2 = 6889; 

: the number 68891 is prime; 

For p = 89, p^2 = 7921; 

: 79211 = 11*19*379; indeed, the numbers 11*19 + 379 ± 1 are twin c-primes (587 

is prime and 589 is c-prime because is equal to 19*31, where 31 – 19 + 1 = 13, 

which is prime); 

 

Note that (see the note above also) concatenating to the right with the digit one 

the squares of the primes 79 and 89 are obtained the numbers 62411 = 139*449 

and 79211 = 11*19*379 with the property that 139 + 449 = 11*19 + 379 = 588. 

 

For p = 97, p^2 = 9409; 

: 94091 = 37*2543; indeed, the numbers 37 + 2543 ± 1 are twin c-primes (2579 is 

prime and 2581 is c-prime because is equal to 29*89, where 89 – 29 + 1 = 61, 

which is prime). 

For p = 101, p^2 = 10201; 

: 102011 = 7*13*19*59; indeed, the numbers 7*13 + 19*59 ± 1 are twin c-primes 

(1213 is prime and 1211 is c-prime because is equal to 7*173, where 173 – 7 + 1 

= 167, which is prime). 
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16.  Operation based on multiples of three and concatenation for obtaining 

primes and m-primes and the definition of a m-prime 
 

 

Abstract. In this paper I show how, concatenating to the right the multiples of 3 with the 

digit 1, obtaining the number m, respectively with the number 11, obtaining the number 

n, by the simple operation n – m + 1, under the condition that both m and n are primes, is 

obtained often (I conjecture that always) a prime or a composite r = p(1)*p(2)*..., where 

p(1), p(2), ... are the prime factors of r, which have the following property: there exist 

p(k) and p(h), where p(k) is the product of some distinct prime factors of r and p(h) the 

product of the other distinct prime factors such that the number p(k) + p(h) – 1 is m-

prime and I also define a m-prime. 

 

 

Conjecture:  

 

Concatenating to the right the multiples of 3 with the digit 1, obtaining the number m, 

respectively with the number 11, obtaining the number n, by the simple operation n – m + 

1, under the condition that both m and n are primes, is obtained always a prime or a 

composite r = p(1)*p(2)*..., where p(1), p(2), ... are the prime factors of r, which have the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of r and p(h) the product of the other distinct prime factors such that the 

number p(k) + p(h) – 1 is m-prime. 

 

Definition:  

 

We name a m-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), with the property that the number p(1) + q(1) - 1 is either prime either 

semiprime p(2)*q(2) with the property that the number p(2) + q(2) - 1 is either prime 

either semiprime with the property showed above... (until, eventualy, is obtained a 

prime). 

 

Example: 5411 is a m-prime because 5411 = 7*773, where 7 + 773 - 1 = 779 = 19*41, 

where 19 + 41 - 1 = 59, a prime. 

 

 

Verifying the conjecture:  

(for the first 20 multiples of 3 for which both numbers obtained by concatenation with 1 

respectively with 11 are primes) 

 

For 3, both 31 and 311 are primes; 

: the number 311 – 31 + 1 = 281 is prime; 

For 15, both 151 and 1511 are primes; 

: the number 1511 – 151 + 1 = 1361 is prime; 

For 18, both 181 and 1811 are primes; 

: the number 1811 – 181 + 1 = 1631 is m-prime because is equal to 7*233 and 7 + 

233 – 1 = 239 which is prime; 

For 21, both 211 and 2111 are primes; 

: the number 2111 – 211 + 1 = 1901 is prime; 

For 24, both 241 and 2411 are primes; 
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: the number 2411 – 241 + 1 = 2171 is m-prime because is equal to 13*167 and 13 

+ 167 – 1 = 179 which is prime; 

For 27, both 271 and 2711 are primes; 

: the number 2711 – 271 + 1 = 2441 is prime; 

For 42, both 421 and 4211 are primes; 

: the number 4211 – 421 + 1 = 3791 is m-prime because is equal to 17*223 and 17 

+ 223 – 1 = 239 which is prime; 

For 57, both 571 and 5711 are primes; 

: the number 5711 – 571 + 1 = 5141 is m-prime because is equal to 53*97 and 53 + 

97 – 1 = 149 which is prime; 

For 60, both 601 and 6011 are primes; 

: the number 6011 – 601 + 1 = 5411 is m-prime because is equal to 7*773 and 7 + 

773 – 1 = 779 = 19*41, where 19 + 41 – 1 = 59, which is prime; 

For 63, both 631 and 6311 are primes; 

: the number 6311 – 631 + 1 = 5681 is m-prime because is equal to 13*19*23 and 

13*19 + 23 – 1 = 269 which is prime; 

For 69, both 691 and 6911 are primes; 

: the number 6911 – 691 + 1 = 6221 is prime; 

For 81, both 811 and 8111 are primes; 

: the number 8111 – 811 + 1 = 7301 is m-prime because is equal to 7^2*149 and 

7^2 + 149 – 1 = 197 which is prime; 

For 102, both 1021 and 10211 are primes; 

: the number 10211 – 1021 + 1 = 9191 is m-prime because is equal to 7*13*101 

and 7*13 + 101 – 1 = 191 which is prime; 

For 120, both 1201 and 12011 are primes; 

: the number 12011 – 1201 + 1 = 10811 is m-prime because is equal to 19*569 and 

19 + 569 – 1 = 587 which is prime; 

For 129, both 1291 and 12911 are primes; 

: the number 12911 – 1291 + 1 = 11621 is prime; 

For 183, both 1831 and 18311 are primes; 

: the number 18311 – 1831 + 1 = 16481 is prime; 

For 216, both 2161 and 21611 are primes; 

: the number 21611 – 2161 + 1 = 19451 is m-prime because is equal to 53*367 and 

53 + 367 – 1 = 419 which is prime; 

For 225, both 2251 and 22511 are primes; 

: the number 22511 – 2251 + 1 = 20261 is prime; 

For 228, both 2281 and 22811 are primes; 

: the number 22811 – 2281 + 1 = 20531 is m-prime because is equal to 7^2*419 

and 7^2 + 419 – 1 = 467 which is prime; 

For 267, both 2671 and 26711 are primes; 

: the number 26711 – 2671 + 1 = 24041 is m-prime because is equal to 29*829 and 

29 + 829 – 1 = 857 which is prime. 
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17. Conjecture that states that any Carmichael number is a cm-composite 

 

 

Abstract. In two of my previous papers I defined the notions of c-prime respectively m-

prime. In this paper I will define the notion of cm-prime and the notions of c-composite, 

m-composite and cm-composite and I will conjecture that any Carmichael number is a 

cm-composite. 

 

 

Introduction:  

 

Though, as I mentioned in Abstract, I already defined the notions of c-prime and m-prime 

in previous papers, in order to be, this paper, self-contained, I shall define them here too.  

 

Definition 1:  

 

We name a c-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), p(1) < q(1), with the property that the number q(1) – p(1) + 1 is either 

prime either semiprime p(2)*q(2) with the property that the number q(2) – p(2) + 1 is 

either prime either semiprime with the property showed above... (until, eventualy, is 

obtained a prime). 

 

Example: 4979 is a c-prime because 4979 = 13*383, where 383 – 13 + 1 = 371 = 7*53, 

where 53 – 7 + 1 = 47, a prime. 

 

Definition 2:  

 

We name a m-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), with the property that the number p(1) + q(1) - 1 is either prime either 

semiprime p(2)*q(2) with the property that the number p(2) + q(2) - 1 is either prime 

either semiprime with the property showed above... (until, eventualy, is obtained a 

prime). 

 

Example: 5411 is a m-prime because 5411 = 7*773, where 7 + 773 - 1 = 779 = 19*41, 

where 19 + 41 - 1 = 59, a prime. 

 

Definition 3:  

 

We name a cm-prime a number which is both c-prime and m-prime. 

 

Definition 4:  

 

We name a c-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors such that the 

number p(k) - p(h) + 1 is a c-prime. 
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Definition 5:  

 

We name a m-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors such that the 

number p(k) + p(h) - 1 is a m-prime.  

 

Definition 6:  

 

We name a cm-composite a number which is both c-composite and m-composite. 

 

Note: We will consider the number 1 to be a prime in the six definitions from above; we will not 

discuss the controversed nature of number 1, just not to repeat in definitions “a prime or number 

1”. 

 

Conjecture: Any Carmichael number is a cm-composite.  

 

Verifying the conjecture 

(for the first 11 Carmichael numbers): 

 

For 561 = 3*11*17 we have: 

: the number 3*17 – 11 + 1 = 41, a prime; 

: the number 3*17 + 11 – 1 = 61, a prime. 

For 1105 = 5*13*17 we have: 

: the number 5*17 – 13 + 1 = 73, a prime; 

: the number 5*17 + 13 – 1 = 97, a prime. 

For 1729 = 7*13*19 we have: 

: the number 7*13 – 19 + 1 = 73, a prime; 

: the number 7*13 + 19 – 1 = 109, a prime. 

For 2465 = 5*17*29 we have: 

: the number 5*17 – 29 + 1 = 57 = 3*19, a c-prime because 19 – 3 + 1 = 17, a 

prime; 

: the number 5*17 + 29 - 1 = 113, a prime. 

For 2821 = 7*13*31 we have: 

: the number 7*31 – 13 + 1 = 205 = 5*41, a c-prime because 41 – 5 + 1 = 37, a 

prime; 

: the number 7*31 + 13 - 1 = 229, a prime. 

For 6601 = 7*23*41 we have: 

: the number 23*41 – 7 + 1 = 937, a prime; 

: the number 23*41 + 7 – 1 = 949 = 13*73, a m-prime because 13 + 73 – 1 = 85 = 

5*17 and 5 + 17 – 1 = 21 = 3*7 and 3 + 7 – 1 = 9 = 3*3 and 3 + 3 – 1 = 5, a 

prime. 

For 8911 = 7*19*67 we have: 

: the number 7*19 – 67 + 1 = 67, a prime; 

: the number 7*19 + 67 – 1 = 199, a prime. 

For 10585 = 5*29*73 we have: 

: the number 5*29 – 73 + 1 = 73, a prime; 

: the number 5*29 + 73 – 1 = 217 = 7*31, a m-prime because 7 + 31 – 1 = 37, a 

prime. 
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For 15841 = 7*31*73 we have: 

: the number 7*31 – 73 + 1 = 145 = 5*29, a c-prime because 29 – 5 + 1 = 25 and 5 

– 5 + 1 = 1; 

: the number 7*31 + 73 – 1 = 289, a m-prime because 17 + 17 – 1 = 33 = 3*11 and 

3 + 11 – 1 = 13, a prime. 

For 29341 = 13*37*61 we have: 

: the number 13*37 – 61 + 1 = 421, a prime; 

: the number 13*37 + 61 – 1 = 541, a prime. 

For 41041 = 7*11*13*41 we have: 

: the number 11*41 – 7*13 + 1 = 361, a c-prime because 19 – 19 + 1 = 1; 

: the number 11*41 + 7*13 – 1 = 541, a prime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

18. Conjecture that states that, beside few definable exceptions, Poulet 

numbers are either c-primes, m-primes, c-composites or m-composites 

 

 

Abstract. In one of my previous paper, “Conjecture that states than any Carmichael 

number is a cm-composite”, I defined the notions of c-prime, m-prime, cm-prime, c-

composite, m-composite and cm-composite. I conjecture that all Poulet numbers but a set 

of few definable exceptions belong to one of these six sets of numbers. 

 

Conjecture:  

All Poulet numbers but a set of few definable exceptions belong to one of the following 

six sets of numbers: c-primes, m-primes, cm-primes, c-composites, m-composites and 

cm-composites. 

Note:  

Because the Poulet numbers with three or more prime factors have a nature which is 

nearer than the nature of Carmichael numbers (which, all of them, have three or more 

prime factors), we will verify the conjecture only for 2-Poulet numbers. We highlight that 

only 2-Poulet numbers can be c-primes, m-primes or cm-primes, because, by definition, 

these numbers can only be primes or semiprimes. That means that the conjecture implies 

that all Poulet numbers with three or more prime factors (beside the exceptions 

mentioned) are c-composites, m-composites or cm-composites. 

 

Verifying the conjecture (for the first fifteen 2-Poulet numbers): 

 

For 341 = 11*31 we have: 

: 31 – 11 + 1 = 21 = 3*7 and 7 – 3 + 1 = 5, a prime; 

: 31 + 11 – 1 = 41, a prime. 

The number 341 is a cm-prime. 

 

For 1387 = 19*73 we have: 

: 73 – 19 + 1 = 55 = 5*11 and 11 – 5 + 1 = 7, a prime; 

: 73 + 19 – 1 = 91 = 7*13 and 7 + 13 – 1 = 19, a prime. 

The number 1387 is a cm-prime. 

 

For 2701 = 37*73 we have: 

: 73 – 37 + 1 = 37, a prime; 

: 73 + 37 – 1 = 109, a prime. 

The number 2701 is a cm-prime. 

 

For 3277 = 29*113 we have: 

: 113 – 29 + 1 = 85 = 5*17 and 17 – 15 + 1 = 3, a prime; 

: 29 + 113 – 1 = 141 = 3*47 and 3 + 47 – 1 = 49 = 7^2 and 7 + 7 – 1 = 13, a prime. 

The number 3277 is a cm-prime. 

 

For 4033 = 37*109 we have: 

: 109 – 37 + 1 = 73, a prime; 

: 37 + 109 – 1 = 145 = 5*29 and 5 + 29 – 1 = 33 = 3*11 and 3 + 11 - 1 = 13, a 

prime. 

The number 4033 is a cm-prime. 
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For 4369 = 17*257 we have: 

: 257 – 17 + 1 = 241, a prime; 

: 17 + 257 – 1 = 273 = 3*7*13;  

The number 4369 is a c-prime. 

 

For 4681 = 31*151 we have: 

: 151 – 31 + 1 = 121 = 11^2, square of prime; 

: 151 + 31 – 1 = 181, prime;  

The number 4681 is a cm-prime. 

 

For 5461 = 43*127 we have: 

: 127 – 43 + 1 = 85 = 5*17 and 17 – 5 + 1 = 13, a prime; 

: 127 + 43 – 1 = 169 = 13^2 and 13 + 13 – 1 = 25 = 5^2 and 5 + 5 – 1 = 9 – 3^2 

and 3 + 3 – 1 = 5, a prime;  

The number 5461 is a cm-prime. 

 

For 7957 = 73*109 we have: 

: 109 – 73 + 1 = 37, prime; 

: 73 + 109 – 1 = 181, prime;  

The number 7957 is a cm-prime. 

 

For 8321 = 53*157 we have: 

: 157 – 53 + 1 = 105 = 3*5*7; 

: 53 + 157 – 1 = 209 = 11*19 and 11 + 19 – 1 = 29, prime;  

The number 4681 is a m-prime. 

For 10261 = 31*331 we have: 

: 331 – 31 + 1 = 301 = 7*43 and 43 – 7 + 1 = 37, prime; 

: 31 + 331 – 1 = 361 = 19^2 and 19 + 19 – 1 = 37, prime;  

The number 10261 is a cm-prime. 

 

For 13747 = 59*233 we have: 

: 233 – 59 + 1 = 175 = 5^2*7; 

: 59 + 233 – 1 = 291 = 3*97 and 3 + 97 – 1 = 99 = 3^2*11;  

The number 13747 is not a c-number. 

  

For 14491 = 43*337 we have: 

: 337 – 43 + 1 = 295 = 5*59 and 59 – 5 + 1 = 55 = 5*11 and 11 – 5 + 1 = 7, prime; 

: 43 + 337 – 1 = 379, prime;  

The number 14491 is a cm-prime. 

 

For 15709 = 23*683 we have: 

: 683 – 23 + 1 = 661, prime; 

: 23 + 683 – 1 = 705 = 3*5*47; 

The number 15709 is a c-prime. 

 

For 18721 = 97*193 we have: 

: 193 – 97 + 1 = 97, prime; 

: 97 + 193 – 1 = 289 = 17^2 and 17 + 17 – 1 = 33 = 3*11 and 3 + 11 – 1 = 13, 

prime;  

The number 18721 is a cm-prime. 
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19. Formula based on squares of primes which conducts to primes, c-primes 

and m-primes 
 

 

Abstract. In my previous paper “Conjecture that states that any Carmichael number is a 

cm-composite” I defined the notions of c-prime, m-prime and cm-prime, odd positive 

integers that can be either primes either semiprimes having certain properties, and also 

the notions of c-composites, m-composites and cm-composites. In this paper I present a 

formula based on squares of primes which seems to lead often to primes, c-primes, m-

primes and cm-primes. 

 

 

Observation:  

 

Many terms (beside the first) of the sequence obtained through the iterative formula a(n + 

1) = 2*a(n) – 1, where a(1) is a square of prime minus nine, are primes,  c-primes, m-

primes or a cm-primes.  

 

Verifying the observation: 

(for the first 14 terms of the sequence, beside a(1), when the prime is 5, 7 or 11) 

 

For a(1) = 5^2 – 9 = 16 we obtain the following terms: 

: a(2) = 31, a prime; 

: a(3) = 61, a prime; 

: a(4) = 121 = 11^2, a cm-prime (c-prime because is square of prime and p – p + 1 = 1, a c-

prime by definition, and m-prime because 11 + 11 – 1 = 2 = 3*7 and 7 + 3 - 1 = 9 and 3 + 

3 – 1 = 5, a prime); 

: a(5) = 241, a prime; 

:  a(6) = 481 = 13*37, a cm-prime (c-prime because 37 – 13 + 1 = 25 = 5^2 and m-prime 

because 37 + 13 – 1 = 49 = 7*7 and 7 + 7 – 1 = 13, a prime; 

:  a(7) = 961 = 31^2, a cm-prime (c-prime because is a square of prime and m-prime 

because 31 + 31 – 1 = 61, a prime; 

:  a(8) = 1921 = 17*113, a c-prime because 113 – 7 + 1 = 97, a prime; 

:  a(9) = 3841 = 23*167, a c-prime because 167 – 23 = 145 = 5*29 and 29 – 5 + 1 = 25, a 

square; 

:  a(10) = 7681, a prime; 

:  a(11) = 15361, a prime; 

:  a(12) = 30721 = 31*991, a cm-prime (c-prime because 991 – 31 = 961 = 31^2, a square 

and m-prime because 31 + 991 – 1 = 1021, a prime; 

:  a(13) = 61441, a prime; 

:  a(14) = 122881 = 11*11171, a c-prime because 11171 – 11 + 1 = 11161, a prime; 

 

For a(1) = 7^2 – 9 = 40 we obtain the following terms: 

: a(2) = 79, a prime; 

: a(3) = 157, a prime; 

: a(4) = 313, a prime; 

: a(5) = 625 = 5^4, a mc-composite (c-composite because 5*5 - 5*5 + 1 = 1, a c-prime by 

definition, and m-composite because 5*5 + 5*5 – 1 = 49 = 7*7, a m-prime because 7 – 7 

+ 1 = 1); 

:  a(6) = 1249, a prime; 
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:  a(7) = 2497 = 11*227, a c-prime because 227 - 11 + 1 = 217 = 7*31 and 31 – 7 + 1 = 25 

= 5*5 and 5 – 5 + 1 = 1;  

:  a(8) = 4993, a prime; 

:  a(9) = 9985 = 5*1997, a c-prime because 1997 – 5 + 1 = 1993, a prime; 

:  a(10) = 19969 = 19*1051, a cm-prime (c-prime because 1051 – 19 + 1 = 1033, a prime, 

and m-prime because 19 + 1051 – 1 = 1069, a prime; 

:  a(11) = 39937, a prime; 

:  a(12) = 79873, a prime; 

:  a(13) = 159745 = 5*43*743, a c-composite because 5*743 – 43 + 1 = 3673, a prime; 

:  a(14) = 319489, a prime; 

:  a(15) = 638977, a prime; 

:  a(16) = 1277953 = 101*12653, a c-prime because 12653 – 101 + 1 = 12553, a prime. 

 

For a(1) = 11^2 – 9 = 112 we obtain the following terms: 

: a(2) = 223, a prime; 

: a(3) = 445 = 5*89, a cm-prime (a c-prime because 89 – 5 + 1 = 85 = 5*17 and 17 – 5 + 1 

= 13, a prime and m-prime because 89 + 5 – 1 = 93 = 3*31 and 3 + 31 – 1 = 33 = 3*11 

and 3 + 11 – 1 = 13, a prime); 

: a(4) = 889 = 7*127, a cm-prime (c-prime because 127 – 7 + 1 = 11^2, a square and m-

prime because 7 + 127 = 133, a prime); 

: a(5) = 1777, a prime; 

:  a(6) = 3553 = 11*17*19, a c-composite because 11*17 – 19 + 1 = 169 = 13^2, a square; 

:  a(7) = 7105 = 5*7^2*29, a cm-composite (c-composite because 5*29 – 7*7 + 1 = 97, a 

prime and m-composite because 5*29 + 7*7 – 1 = 193, a prime); 

:  a(8) = 14209 = 13*1093, a c-prime because 1093 – 13 + 1 = 1081 = 23*47 and 47 – 23 + 

1 = 25 = 5^2, a square; 

:  a(9) = 28417 = 157*181, a cm-prime (c-prime because 181 – 157 + 1 = 25 = 5^2, a 

square and m=prime because 157 + 181 – 1 = 337, a prime); 

:  a(10) = 56833 = 7*23*353, a c-prime because 353 – 7*23 = 193, a prime; 

:  a(11) = 113665 = 5*127*179, a cm-prime (c-prime because 5*179 – 127 + 1 = 769, a 

prime and m-prime because 5*179 + 127 – 1 = 1021, a prime; 

:  a(12) = 227329 = 281*809, a c-prime because 809 – 281 + 1 = 529 = 23^2, a square; 

:  a(13) = 454657 = 7*64951, a c-composite because 64951 – 7 + 1 = 64945 = 5*31*419 

and 419 – 5*31 + 1 = 265 = 5*53 and 53 – 5 + 1 = 47, a prime; 

:  a(14) = 909313 = 17*89*601, a cm-composite (c-composite because 17*89 – 601 + 1 = 

913 = 11*83 and 83 – 11 + 1 = 73, a prime and m-composite because 17*89 + 601 – 1 = 

2113, a prime; 

:  a(15) = 1818625 = 5^3*14549 is a c-composite because 5^2*14549 – 5 + 1 = 557*653 

and 653 – 557 + 1 = 97, a prime. 
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20. Formula for generating c-primes and m-primes based on squares of 

primes 
 

 

Abstract. In this paper I present a formula, based on squares of primes, which seems to 

generate a large amount of c-primes and m-primes (I defined the notions of c-primes and 

m-primes in my previous paper “Conjecture that states that any Carmichael number is a 

cm-composite”). 

 

 

Observation:  

 

The formula m = (5*n + 1)*p^2 – 5*n, where p is prime, p ≥ 7, and n positive integer, 

seems to generate often c-primes and m-primes. 

 

Examples: 

 

: For n = 1 we have the formula m = 6*p^2 - 5 and the following values for m for the first 

twelve such primes: 

: for p = 7, m = 289 = 17^2, so m is c-prime (square of prime); also 17 + 17 – 1 = 

33 = 3*11 and 3 + 11 – 1 = 13, prime, so m is m-prime too;  

: for p = 11, m = 721 = 7*103 and 103 – 7 + 1 = 97, prime, so m is c-prime; also 

103 + 7 – 1 = 109, prime, so m is m-prime too;  

: for p = 13, m = 1009, prime, so m is implicitly c-prime and m-prime; 

: for p = 17, m = 1729, which is not semiprime so it can’t be c-prime or m-prime 

(but it is, as I conjectured in the paper mentioned in Abstract, as a Carmichael 

number, cm-composite – notion defined in the same paper); 

: for p = 19, m = 2161, prime, so m is implicitly c-prime and m-prime; 

: for p = 23, m = 3169, prime, so m is implicitly c-prime and m-prime; 

: for p = 29, m = 5041 = 71^2, so m is c-prime (square of prime); also 71 + 71 – 1 

= 141 = 3*47 and 3 + 47 – 1 = 49 = 7*7 and 7 + 7 – 1 = 13, prime, so m is m-

prime too;  

: for p = 31, m = 5761 = 7*823 and 823 – 7 + 1 = 817 = 19*43 and 43 – 19 + 1 = 

25 = 5^2, square of prime, so m is c-prime; also 823 + 7 – 1 = 829, prime, so m is 

m-prime too;  

: for p = 37, m = 8209, prime, so m is implicitly c-prime and m-prime; 

: for p = 41, m = 10081 = 17*593 and 593 – 17 + 1 = 577, prime, so m is c-prime; 

: for p = 43, m = 11089 = 13*853 and 853 – 13 + 1 = 841 = 29^2, so m is c-prime; 

also 853 + 13 – 1 = 865 = 5*173 and 5 + 173 – 1 = 177 = 3*59 and 3 + 59 – 1 = 

61, prime, so m is m-prime too;  

: for p = 47, m = 13249, prime, so m is implicitly c-prime and m-prime. 

 

: For n = 2 we have the formula m = 11*p^2 - 10 and the following values for m for the 

first twelve such primes: 

: for p = 7, m = 529 = 23^2, so m is c-prime (square of prime);  

: for p = 11, m = 1321 = 7*103 and 103 – 7 + 1 = 97, prime, so m is c-prime; also 

103 + 7 – 1 = 109, prime, so m is m-prime too;  

: for p = 13, m = 1849 = 43^2, so m is c-prime (square of prime); also 43 + 43 – 1 

= 85 = 5*17 and 5 + 17 – 1 = 21 = 3*7 and 3 + 7 – 1 = 9 = 3*3 and 3 + 3 – 1 = 5, 

prime, so m is also m-prime;  
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: for p = 17, m = 3169, prime, so m is implicitly c-prime and m-prime; 

: for p = 19, m = 3961 = 17*233 and 233 – 17 + 1 = 217 = 7*31 and 31 – 7 + 1 = 

25 = 5^2, square of prime, so m is c-prime; also 233 + 17 – 1 = 249 = 3*83 and 3 

+ 83 – 1 = 85, so m is m-prime too (see above); 

: for p = 23, m = 5809 = 37*157 and 157 – 37 + 1 = 121 = 11^2, square of prime, 

so m is c-prime; also 157 + 37 – 1 = 193, prime, so m is m-prime too; 

: for p = 29, m = 9241, prime, so m is implicitly c-prime and m-prime; 

: for p = 31, m = 10561 = 59*179 and 179 – 59 + 1 = 121 = 11^2, square of prime, 

so m is c-prime; 

: for p = 37, m = 15049 = 101*149 and 149 – 101 + 1 = 49 = 7^2, square of prime, 

so m is c-prime; also 149 + 101 – 1 = 249 = 3*83 and 3 + 83 – 2 = 85 so m is m-

prime too (see above); 

: for p = 41, m = 18481, prime, so m is implicitly c-prime and m-prime; 

: for p = 43, m = 20329 = 29*701 and 701 – 29 + 1 = 673, prime, so m is c-prime;  

: for p = 47, m = 24289 = 101*227 and 227 – 101 + 1 = 127, prime, so m is c-

prime; also 101 + 227 – 1 = 327 = 3*109 and 3 + 109 – 1 = 111 = 3*37 and 3 + 

37 – 1 = 39 = 3*13 and 3 + 13 – 1 = 15 = 3*5 and 3 + 5 – 1 = 7, prime, so m is m-

prime too. 
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21. Two formulas based on c-chameleonic numbers which conducts to c-

primes and the notion of c-chameleonic number 
 

 

Abstract. In one of my previous papers I defined chameleonic numbers as the positive 

composite squarefree integers C not divisible by 2, 3 or 5 having the property that the 

absolute value of the number P – d + 1 is always a prime or a power of a prime, where d 

is one of the prime factors of C and P is the product of all prime factors of C but d. In this 

paper I revise this definition, I introduce the notions of c-chameleonic numbers and m-

chameleonic numbers and I show few interesting connections between c-primes and c-

chameleonic numbers (I defined the notions of a c-prime in my paper “Conjecture that 

states that any Carmichael number is a cm-composite”). 

 

 

Definition 1:  

 

We name a chameleonic number a number which is either c-chameleonic or m-

chameleonic. 

 

Definition 2:  

 

We name a c-chameleonic number a positive integer, not necessary squarefree, not 

divisible by 2 or 3, with three or more prime factors, having the property that the absolute 

value of all the numbers P – d + 1, where d is one of its prime factors and P the product 

of all the others, is prime. 

 

Example: 1309 = 7*11*17 is a c-chameleonic number because 7*11 – 17 + 1 = 61, 

prime, 7*17 – 11 + 1 = 109, prime and 11*17 – 7 + 1 = 181, prime (in fact, 1309 is the 

smallest c-chameleonic squarefree number with three prime factors). 

 

Definition 3:  

 

We name a m-chameleonic number a positive integer, not necessary squarefree, not 

divisible by 2 or 3, with three or more prime factors, having the property that the absolute 

value of all the numbers P + d - 1, where d is one of its prime factors and P the product of 

all the others, is prime. 

 

Example: The Carmichael number 29341 = 13*37*61 is a m-chameleonic number 

because 13*37 + 61 – 1 = 541, prime, 13*61 + 37 - 1 = 829, prime and 37*61 + 13 – 1 = 

2269, prime. 

 

Observation 1:  

 

Let p*q*r be a c-chameleonic number with three prime factors; then the number (p + 

1)*(q + 1)*(r + 1) + 1 seems to be often a c-prime. 

 

Examples: 

 

: For p = q = 5 we have the following ordered sequence of c-chameleonic numbers: 

: 5*5*7 because 5*5 – 7 + 1 = 19, prime and 5*7 – 5 + 1 = 31, prime; 
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Indeed, the number 6*6*8 + 1 = 289 = 17^2 is a c-prime (is a square of prime); 

: 5*5*13 because 5*5 – 13 + 1 = 13, prime and 5*13 – 5 + 1 = 61, prime; 

Indeed, the number 6*6*14 + 1 = 505 = 5*101 is a c-prime (101 – 5 + 1 = 97, 

prime); 

: 5*5*31 because 31 – 5*5 + 1 = 7, prime and 31*5 – 5 + 1 = 151, prime; 

Indeed, the number 6*6*32 + 1 = 1153 is prime, implicitly a c-prime; 

: 5*5*37 because 37 – 5*5 + 1 = 13, prime and 37*5 – 5 + 1 = 181, prime; 

Indeed, the number 6*6*38 + 1 = 1369 = 37^2 is a c-prime (is a square of prime); 

: 5*5*43 because 43 – 5*5 + 1 = 19, prime and 43*5 – 5 + 1 = 211, prime; 

Indeed, the number 6*6*44 + 1 = 1585 = 5*317 is a c-prime (317 – 5 + 1 = 313, 

prime); 

: 5*5*67 because 67 – 5*5 + 1 = 43, prime and 67*5 – 5 + 1 = 331, prime; 

Indeed, the number 6*6*68 + 1 = 2449 = 31*79 is a c-prime (79 – 31 + 1 = 49 = 

7^2, a square of prime); 

: 5*5*127 because 127 – 5*5 + 1 = 103, prime and 127*5 – 5 + 1 = 631, prime; 

Indeed, the number 6*6*128 + 1 = 4609 = 11*419 is a c-prime (419 – 11 + 1 = 

409, prime); 

  (...) 

Note: 

 

A very interesting thing is that, through the formula above, is obtained from the c-

chameleonic number 1309 = 7*11*17 the Hardy-Ramanujan number 1729 = 7*13*19; 

indeed, 8*12*18 + 1 = 1729. 

 

Observation 2:  

 

Let C = p*q*r be a c-chameleonic number with three prime factors; then the numbers C + 

30*(p – 1), C + 30*(q – 1) and C + 30*(r – 1) seems to be often c-primes. 

 

Examples: 

 

: For C = 1309 = 7*11*17 we have: 

 : 1309 + 30*6 = 1489, prime, implicitly a c-prime; 

 : 1309 + 30*10 = 1609, prime, implicitly a c-prime; 

 : 1309 + 30*16 = 1789, prime, implicitly a c-prime. 
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22. The notions of c-reached prime and m-reached prime  
 

 

Abstract. In spite the fact that I wrote seven papers on the notions (defined by myself) of 

c-primes, m-primes, c-composites and m-composites (see in my paper “Conjecture that 

states that any Carmichael number is a cm-composite” the definitions of all these 

notions), I haven’t thinking until now to find a connection, beside the one that defines, of 

course, such an odd composite n, namely that, after few iterative operations on n, is 

reached a prime p, between the number n and the prime p. This is what I try to do in this 

paper, and also to give a name to this prime p, namely, say, “reached prime”, and, in 

order to distinguish, because a number can be same time c-prime and m-prime, 

respectively c-composite and m-composite, “c-reached prime” or “m-reached prime”.   

 

 

Notes:  

 

We name “the c-reached prime” the prime number that is reached, after the iterative 

operations that defines a c-prime. We also name “the m-reached prime” the prime 

number that is reached, after the iterative operations that defines a m-prime.  

 

We name “a c-reached prime” a prime number that is reached, after the iterative 

operations that defines a c-composite. We also name “a m-reached prime” a prime 

number that is reached, after the iterative operations that defines a m-composite.  

 

Note that I used “a” beside “the” because a c-composite (m-composite) can have more 

than one c-reached prime (m-reached prime). 

 

This names do not indicate an intrinsic quality of the respective primes, because any 

prime can be “reached”, they have sence just in association with the respective c-prime, 

c-composite, m-prime or m-composite and it is just useful to simplify the reference to it, 

not to adress to this number with the syntagma “that prime hwo is reached after the 

operations...”. 

 

Examples: 

 

: The number 37 is the c-reached prime for the c-prime 4237 = 19*223 because 223 – 19 + 

1 = 205 = 5*41 and 41 – 5 + 1 = 37; 

: The number 241 is the m-reached prime for the m-prime 4237 = 19*223 because 223 + 

19 – 1 = 241, prime. 

 

 (in the example above, the number 4237 is a cm-prime, i.e. both c-prime and m-prime, 

but, of course, this is not a rule) 

 

 

: The number 73 is a c-reached prime for the c-composite 1729 = 7*13*19 because 7*13 – 

19 + 1 = 73 and the number 241 is another c-reached prime for 1729 because 13*19 – 7 + 

1 = 241; 

 

: The number 109 is a m-reached prime for the m-composite 1729 = 7*13*19 because 

7*13 + 19 - 1 = 109. 
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 (in the example above, the number 1729 is a cm-composite, i.e. both c-composite and m-

composite, but, of course, this is not a rule) 

 

Comment:  

 

 As I mentioned in Abstract, I haven’t thinking until now to find other connections 

between a c-prime n (m-prime) and the c-reached prime p (m-reached prime) respectively 

between a c-composite n (m-composite) and a c-reached prime p (m-reached prime). I’m 

sure that such connections exist, one of them being that n – p + 1 is often a c-prime (c-

composite) respectively that n + p – 1 is often a m-prime (m-composite). I shall randomly 

choose some such numbers from my previous papers to prove this fact. 

 

: 71 is the c-reached prime for 1691 = 19*89, because 89 – 19 + 1 = 71; and, indeed, 1691 

– 71 + 1 = 1621 prime, so n – p + 1 = 1621 is c-prime; 

: 277 is the c-reached prime for 4981 = 17*293, because 293 – 17 + 1 = 277; and, indeed, 

4981 – 277 + 1 = 4705 = 5*941 and 941 – 5 + 1 =  937 prime, so n – p + 1 = 4705 is c-

prime; 

: 47 is the reached c-prime for 4979 = 13*383, because 383 – 13 + 1 = 371 = 7*53 and 53 

– 7 + 1 = 47; and, indeed, 4979 – 47 + 1 = 4933 prime, so n – p + 1 = 4933 is c-prime; 

: 13 is the reached c-prime for 589 = 19*31 because 31 – 19 + 1 = 13; and, indeed, 589 – 

13 = 577, prime, so n – p + 1 = 577 is c-prime. 

: 61 is the c-reached prime for 2581 and 2521 = 2581 – 61 + 1 is a prime (implicitly, by 

definition c-prime); 

: 167 is the c-reached prime for 1213 and 1045 = 1211 – 167 + 1 is a c-composite because 

1045 = 5*11*19 and 5*11 – 19 + 1 = 37 prime; 

: 239 is the c-reached prime for 1811 and 1811 + 239 - 1 = 2049 = 3*683 is a m-prime 

because 683 + 3 – 1 = 685 = 5*137 and 137 + 5 – 1 = 141 = 3*47 and 47 + 3 – 1 = 49 

and 7 + 7 – 1 = 13, prime; 

: 179 is the m-reached prime for 2171 and 2171 + 179 – 1 = 2349 is a m-composite 

because 2349 = 3^4*29 and 3^4 + 29 – 1 = 109, prime; 

: 541 is the m-reached prime for 41041 and 41041 + 541 – 1 = 41581 is a m-composite 

because 41581 = 43*967 and 967 + 43 – 1 = 1009, prime; 

: 541 is the m-reached prime for 29341 and 29341 + 541 – 1 = 29881 is a prime. 

 

Conclusion:  

 

 Indeed, I am already convinced by this connection between the numbers described above, 

so I stop here with the examples and I shall try in future papers to highlight other such 

conections. 
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23. A property of repdigit numbers and the notion of cm-integer 
 

 

Abstract. In this paper I want to name generically all the numbers which are either c-

primes, m-primes, cm-primes, c-composites, m-composites or cm-composites with the 

name “cm-integers” and to present what seems to be a special quality of repdigit numbers 

(it’s about the odd ones) namely that are often cm-integers. 

 

 

Observation:  

 

The odd repdigit numbers (by definition, only odd numbers can be cm-integers) seems to 

be often cm-integers (either c-primes, m-primes, cm-primes, c-composites, m-composites 

or cm-composites). 

 

Verifying the observation for the first few repdigit numbers:  

 

(I shall not show here how I calculated the c-reached primes and the m-reached primes, see the 

paper “The notions of c-reached prime and m-reached prime”) 

 

 

For digit 1: 

 

: 11 is prime; 

: 111 is cm-prime having the c-reached prime equal to 3 and the m-reached prime 

equal to 7; 

: 1111 is cm-prime having the c-reached prime equal to the m-reached prime and 

equal to 7; 

: 11111 is m-prime having the m-reached prime equal to 311. 

 

For digit 3: 

 

: 33 is cm-prime having the c-reached prime equal to 1 and the m-reached prime 

equal to 13; 

: 333 is cm-composite having two c-reached primes, equal to 29 and 109, and one 

m-reached prime equal, to 113; 

: 3333 is cm-composite having three c-reached primes, equal to 5, 293 and 1109, 

and two m-reached primes, equal to 5 and 313; 

: 33333 is cm-composite having two c-reached primes, equal to 151 and 773, and 

two m-reached primes, equal to 153 and 853. 

For digit 5: 

 

: 55 is cm-prime having the c-reached prime equal to the m-reached prime and 

equal to 7; 

: 555 is cm-composite having three c-reached primes, equal to 1, 59 and 107, and 

one m-reached prime, equal to 19; 

: 5555 is cm-composite having one c-reached prime, equal to 19, and three m-

reached primes, equal to 11, 47 and 227; 

: 55555 is c-composite having three c-reached primes, equal to 31 and 67. 
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For digit 7: 

 

: 77 is cm-prime having the c-reached prime equal to 5 and the m-reached prime 

and equal to 17; 

: 777 is cm-composite having two c-reached primes, equal to 17 and 257, and one 

m-reached prime, equal to 5; 

: 7777 is cm-composite having one c-reached prime, equal to 1, and three m-

reached primes, equal to 1117, 241 and 61; 

: 77777 is cm-composite having two c-reached primes, equal to 17 and 617, and 

three m-reached primes, equal to 29, 557 and 11117. 

 

For digit 9: 

 

: 99 is cm-composite having two c-reached primes, equal to 1 and 31, and two m-

reached primes, equal to 11 and 19; 

: 999 is cm-composite having three c-reached primes, equal to 11, 103 and 331, 

and two m-reached primes, equal to 7 and 23; 

: 9999 is cm-composite having four c-reached primes, equal to 3, 271, 1103 and 

3331, and three m-reached primes, equal to 71, 199 and 919. 
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24. The property of Poulet numbers to create through concatenation 

semiprimes which are c-primes or m-primes  
 

 

Abstract. In this paper I present a very interesting characteristic of Poulet numbers, 

namely the property that, concatenating two of such numbers, is often obtained a 

semiprime which is either c-prime or m-prime. Using just the first 13 Poulet numbers are 

obtained 9 semiprimes which are c-primes, 20 semiprimes which are m-primes and 9 

semiprimes which are cm-primes (both c-primes and m-primes). 

 

Observation:  

 

Concatenating two Poulet numbers, is often obtained a semiprime which is either c-prime 

or m-prime. 

 

The sequence of Poulet numbers: 

(A001567 in OEIS) 

 

341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 

4681, 5461, 6601, 7957, 8321, 8481, 8911, 10261, 10585, 11305, 12801, 13741, 13747, 

13981, 14491, 15709, 15841, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 29341 

(...) 

 

There are obtained, using just the first 13 terms from this sequence: 

 

Nine semiprimes which are c-primes: 

 

: 1105561 = 17*65033 is c-prime because 65033 – 17 + 1 = 65017 = 79*823 and 823 – 

79 + 1 = 745 = 5*149 and 149 – 5 + 1 = 145 = 5*29 and 29 – 5 + 1 = 25 = 5*5 and 5 – 5 

+ 1 = 1, c-prime by definition); 

 

: 1387561 = 7*198223 is c-prime because 198223 – 7 + 1 = 198217 = 379*523 and 523 – 

379 + 1 = 145 = 5*29 and 29 – 5 + 1 = 25 = 5*5 and 5 – 5 + 1 = 1, c-prime by 

definition); 

 

: 5611729 = 73*76873 is c-prime because 76873 – 73 + 1 = 76801, prime; 

: 5614033 = 643*8731 is c-prime because 8731 – 643 + 1 = 8089, prime; 

 

: 4033561 = 7*576223 is c-prime because 576223 – 7 + 1 = 576217, prime; 

 

: 6451729 = 571*11299 is c-prime because 11299 – 571 + 1 = 10729, prime; 

 

: 6452701 = 1559*4139 is c-prime because 4139 – 1559 + 1 = 2581 = 29*89 and 89 – 29 

+ 1 = 61, prime; 

 

: 6454033 = 17*379649 is c-prime because 379649 – 17 + 1 = 25379633, prime; 

 

: 19051105 = 5*3810221 is c-prime because 3810221 – 5 + 1 = 3810217 = 587*6491 and 

6491 – 587 + 1 = 5905 = 5*1181 and 1181 – 5 + 1 = 1177 = 11*107 and 107 – 11 + 1 = 

97, prime. 
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: Note that the following numbers are also c-primes: 17293277 (with c-reached prime 

22277). 

 

Twenty semiprimes which are m-primes: 

 

: 341561 = 11*31051 is m-prime because 31051 + 11 – 1 = 31061 = 89*349 and 89 + 

349 – 1 = 437 = 19*23 and 19 + 23 – 1 = 41, prime; 

 

: 561341 = 11*51031 is m-prime because 51031 + 11 – 1 = 51041 = 43*1187 and 1187 + 

43 – 1 = 1229, prime; 

 

: 341645 = 5*68329 is m-prime because 68329 + 5 – 1 = 68333 = 23*2971 and 23 + 

2971 – 1 = 2993 = 41*73 and 41 + 73 – 1 = 103, prime; 

: 1105341 = 3*368447 is m-prime because 368447 + 3 – 1 = 368449 = 607^2 and 607 + 

607 – 1 = 1213, prime; 

 

: 1905341 = 251*7591 is m-prime because 7591 + 251 – 1 = 7841, prime; 

 

: 5611387 = 337*16651 is m-prime because 16651 + 337 – 1 = 16987, prime; 

 

: 2701561 = 43*62827 is m-prime because 62827 + 43 – 1 = 62869, prime; 

 

: 2047645 = 5*409529 is m-prime because 409529 + 5 – 1 = 409533 = 3*136511 and 

136511 + 3 - 1 = 136513 = 13*10501 and 10501 + 13 – 1 = 10513, prime. 

 

: Note that the following numbers are also m-primes: 13871729 (with m-reached prime 

113), 28211387 (with m-reached prime 57947), 17292701 (with m-reached prime 17), 

32771729 (with m-reached prime 16349), 17294033 (with m-reached prime 1181), 

40331729 (with m-reached prime 17), 19052047 (with m-reached prime 2721727), 

19052465 (with m-reached prime 3810497), 20472701 (with m-reached prime 15809), 

27012047 (with m-reached prime 2399), 27012821 (with m-reached prime 27013277), 

40333277 (with m-reached prime 14657). 

 

Nine semiprimes which are cm-primes (both c-primes and m-primes): 

 

: 645341 = 97*6653 is cm-prime because is c-prime (6653 – 97 + 1 = 6557 = 79*83 and 

83 – 79 + 1 = 5, prime) and is m-prime (653 + 97 – 1 = 6749 = 17*397 and 17 + 397 – 1 

= 413 = 7*59 and 7 + 59 – 1 = 65 = 5*13 and 5 + 13 – 1 = 17, prime); 

 

: 2465341 = 1237*1993 is cm-prime because is c-prime (1993 – 1237 + 1 = 757, prime) 

and is m-prime (1993 + 1237 – 1 = 3229, prime); 

 

: 1729561 = 523*3307 is cm-prime because is c-prime (3307 – 523 + 1 = 2785 = 5*557 

and 557 – 5 + 1 = 553 = 7*79 and 79 – 7 + 1 = 73, prime) and is m-prime (3307 + 523 – 

1 = 3829 = 7*547 and 7 + 547 – 1 = 553 = = 7*79 and 79 – 7 + 1 = 73, prime); note that, 

in the case of this number, the c-reached prime is equal to the m-reached prime (two such 

special numbers like 561, the first absolute Fermat pseudoprime, and 1729, the Hardy-

Ramanujan number, could only hace a special behaviour); 
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: 2047561 = 1327*1543 is cm-prime because is c-prime (1543 – 1327 + 1 = 217 = 7*31 

and 31 – 7 + 1 = 25 = 5*5, square of prime) and is m-prime (1543 + 1327 – 1 = 2869 = 

19*151 and 151 + 19 – 1 = 169 = 13*13 and 13 + 13 – 1 = 25 = 5*5 and 5 + 5 – 1 = 9 = 

3*3 and 3 + 3 – 1 = 5, prime); 

 

: 5612701 = 2011*2791 is cm-prime because is c-prime (2791 – 2011 + 1 = 781 = 1*71 

and 71 – 11 + 1 = 61, prime) and is m-prime (2791 + 2011 – 1 = 4801, prime); 

 

: 5612821 = 151*37171 is cm-prime because is c-prime (37171 – 151 + 1 = 37021, 

prime) and is m-prime (37171 + 151 – 1 = 37321, prime); 

 

: 11051729 = 13*850133 is cm-prime because is c-prime (850133 – 13 + 1 = 850121, 

prime) and is m-prime (850133 + 13 – 1 = 850145 = 5*170029 and 170029 + 5 - 1 = 

170033 = 193*881 and 881 + 193 – 1 = 1073 = 29*37 and 29 + 37 – 1 = 65 = 5*13 and 5 

+ 13 – 1 = 17, prime). 

 

: Note that the following numbers are also cm-primes: 11053277 (with c-reached prime 

1277 and m-reached prime 41057), 19051729 (with c-reached prime 1 and m-reached 

prime 12589). 
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25. The property of squares of primes to create through concatenation 

semiprimes which are c-primes or m-primes  
 

 

Abstract. In a previous paper I presented a very interesting characteristic of Poulet 

numbers, namely the property that, concatenating two of such numbers, is often obtained 

a semiprime which is either c-prime or m-prime. Because the study of Fermat 

pseudoprimes is a constant passion for me, I observed that in many cases they have a 

behaviour which is similar with that of the squares of primes. Therefore, I checked if the 

property mentioned above applies to these numbers too. Indeed, concatenating two 

squares of primes, are often obtained semiprimes which are either c-primes, m-primes or 

cm-primes. Using just the squares of the first 13 primes greater than or equal to 7 are 

obtained not less then: 6 semiprimes which are c-primes, 31 semiprimes which are m-

primes and 15 semiprimes which are cm-primes. 

 

 

Observation:  

 

Concatenating two squares of primes, is often obtained a semiprime which is either c-

prime or m-prime. 

 

The squares of primes: 

(A001248 in OEIS) 

 

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 

3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409 (...) 

 

There are obtained, using just the first 13 terms greater than or equal to 49 from this sequence: 

 

Six semiprimes which are c-primes: 

 

  

:  52949 = 13*4073 (c-reached prime = 101); 

:  361121 = 331*1091 (c-reached prime = 761); 

:  1212209 = 97*12497 (c-reached prime = 12401); 

:  529169 = 19*27851 (c-reached prime = 2129); 

:  1681961 = 367*4583 (c-reached prime = 4217); 

:  28091849 = 853*32933 (c-reached prime = 17). 

 

Thirty-one semiprimes which are m-primes: 

 

 

:  16949 = 17*997 (m-reached prime = 1013); 

:  49289 = 23*2143 (m-reached prime = 41); 

:  49361 = 13*3797 (m-reached prime = 17); 

:  84149 = 13*6473 (m-reached prime = 1301); 

:  49961 = 47*1063 (m-reached prime = 1109); 

:  491369 = 89*5521 (m-reached prime = 149); 

:  491681 = 53*9277 (m-reached prime = 509); 

:  492809 = 461*1069 (m-reached prime = 149); 
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:  1211369 = 17*71257 (m-reached prime = 53); 

:  1211681 = 709*1709 (m-reached prime = 2417); 

:  1211849 = 353*3433 (m-reached prime = 761); 

:  169289 = 41*4129 (m-reached prime = 389); 

:  169529 = 47*3607 (m-reached prime = 293); 

:  169961 = 11*15451 (m-reached prime = 15461); 

:  289529 = 419*691 (m-reached prime = 1109); 

:  1369289 = 139*9851 (m-reached prime = 1433); 

:  2891681 = 13*222437 (m-reached prime = 1409); 

:  2892809 = 1217*2377 (m-reached prime = 3593); 

:  841361 = 41*20521 (m-reached prime = 17); 

:  961361 = 173*5557 (m-reached prime = 353); 

:  1849361 = 23*80407 (m-reached prime = 80429); 

:  5291681 = 317*16693 (m-reached prime = 17); 

:  1681529 = 503*3343 (m-reached prime = 773); 

:  5291849 = 701*7549 (m-reached prime = 41); 

:  841961 = 23*36607 (m-reached prime = 36629); 

:  1849841 = 7*264263 (m-reached prime = 264269); 

:  1849961 = 41*45121 (m-reached prime = 45161); 

:  13691849 = 89*153841 (m-reached prime = 153929); 

:  22091369 = 4241*5209 (m-reached prime = 89); 

:  18491681 = 13*1422437 (m-reached prime = 203213); 

:  16812209 = 461*36469 (m-reached prime = 36929). 

 

Fifteen semiprimes which are cm-primes (both c-primes and m-primes): 

 

 

:  36149 = 37*977 (c-reached prime = 941 and m-reached prime = 1013); 

:  168149 = 181*929 (c-reached prime = 101 and m-reached prime = 1109); 

:  491849 = 149*3301 (c-reached prime = 1049 and m-reached prime = 3449); 

:  492209 = 61*8069 (c-reached prime = 8009 and m-reached prime = 113); 

:  121289 = 7*17327 (c-reached prime = 17321 and m-reached prime = 17333); 

:  121361 = 157*773 (c-reached prime = 617 and m-reached prime = 929); 

:  1692209 = 1201*1409 (c-reached prime = 1 and m-reached prime = 2609); 

:  529289 = 59*8971 (c-reached prime = 2969 and m-reached prime = 9029); 

:  2891849 = 421*6869 (c-reached prime = 6449 and m-reached prime = 233); 

:  2892209 = 769*3761 (c-reached prime = 1 and m-reached prime = 653); 

:  361841 = 487*743 (c-reached prime = 257 and m-reached prime = 1229); 

:  3611681 = 37*97613 (c-reached prime = 97577 and m-reached prime = 97649); 

:  8411369 = 1621*5189 (c-reached prime = 41 and m-reached prime = 53); 

:  1681841 = 7*240263 (c-reached prime = 240257 and m-reached prime = 113); 

:  9612809 = 1933*4973 (c-reached prime = 3041 and m-reached prime = 281). 
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26. The property of a type of numbers to be often m-primes and m-composites 
 

 

Abstract. In previous papers I presented already few types of numbers which conduct 

through concatenation often to cm-integers. In this paper I present a type of numbers 

which seem to be often m-primes or m-composites. These are the numbers of the form 

1nn...nn1 (in all of my papers I understand through a number abc the number where a, b, 

c are digits and through the number a*b*c the product of a, b, c), where n is a digit or a 

group of digits, repetead by an odd number of times. 

 

 

Observation:  

 

The numbers of the form 1nn...nn1, where n is a digit or a group of digits, repetead by an 

odd number of times, seem to be often m-primes or m-composites. 

 

Examples: 
 

: N = 131 is prime, so m-prime by definition; 

: N = 13331 is prime, so m-prime by definition; 

: N = 1333331 is prime, so m-prime by definition; 

: N = 133333331 = 11287*11813 and 11287 + 11813 – 1 = 23099 which is prime so N is 

m-prime; 

: N = 13333333331 = 53*109*2308003 and 109*2308003 + 53 – 1 = 251572379 which is 

prime so N is m-composite; 

 

: N = 141 = 3*47 and 47 + 3 – 1 = 49 = 7*7 and 7 + 7 – 1 = 13 which is prime so N is m-

prime; 

: N = 14441 = 7*2063 and 7 + 2063 – 1 = 2069 which is prime so N is m-prime; 

: N = 1444441 is prime, so m-prime by definition; 

: N = 14444444441 = 7*67*127*197*1231 and 67*127*197*1231  + 7 – 1 = 2063492069 

which is prime so N is m-composite; 

 

: N = 151 is prime, so m-prime by definition; 

: N = 15551 is prime, so m-prime by definition; 

: N = 155555551 = 31*61*82261 and 61*82261 + 31 – 1 = 5017951 which is prime so N 

is m-composite; 

: N = 15555555551 = 1709*9102139 and 9102139 + 1709 - 1 = 9103847 which is prime 

so N is m-prime; 

: N = 1555555555551 = 3*19*733*2081*17891 and 3*19*733*17891 + 2081 - 1 = 

747505951 which is prime so N is m-composite; 

: N = 101 is prime, so m-prime by definition; 

: N = 1000001 = 101*9901 and 101 + 9901 – 1 = 10001 = 73*137 and 73 + 137 – 1 = 209 

= 11*19 and 11 + 19 – 1 = 29 which is prime so N is m-prime; 

: N = 100000001 = 17*5882353 and 17 + 5882353 – 1 = 5882369 = 137*42937 and 137 + 

42937 – 1 = 43073 = 19*2267 and 19 + 2267 – 1 = 2285 = 5*457 and 5 + 457 – 1 = 461 

which is prime so N is m-prime; 
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: N = 12323231 = 29*424939 and 424939 + 29 – 1 = 424967 which is prime so N is m-

prime; 

: N = 13232321 = 3539*3739 and 3539 + 3739 – 1 = 7277 = 19*383 and 19 + 383 – 1 = 

401 which is prime so N is m-prime; 

: N = 13434341 = 373*36017 and 373 + 36017 – 1 = 36389 which is prime so N is m-

prime; 

: N = 14343431 = 59*243109 and 59 + 243109 – 1 = 243167 which is prime so N is m-

prime; 

: N = 12424241 is prime, so m-prime by definition; 

: N = 14242421 is prime, so m-prime by definition; 

: N = 12525251 is prime, so m-prime by definition; 

: N = 13535351 = 61*221891 and 61 + 221891 – 1 = 221951 which is prime so N is m-

prime; 

: N = 15353531 is prime, so m-prime by definition; 

: N = 16767671 = 19*79*11171 and 19*79 + 11171 - 1 = 12671 which is prime so N is m-

composite; 

: N = 17676761 = 3529*5009 and 5009 + 3529 – 1 = 8537 which is prime so N is m-

prime; 

: N = 18989891 = 131*144961 and 131 + 144961 – 1 = 145091 which is prime so N is m-

prime; 

: N = 19898981 = 41*43*11287 and 41*43 + 11287 - 1 = 13049 which is prime so N is m-

composite; 

 

 

: N = 12342342341 = 7*61*28904783 and 61*28904783 + 7 - 1 = 1763191769 which is 

prime so N is m-composite; 

: N = 14324324321 = 17*193*283*15427 and 17*283*15427 + 193 - 1 = 74219489 which 

is prime so N is m-composite; 

: N = 14224224221 is prime, so m-prime by definition; 

: N = 14424424421 = 11*109*349*34471 and 109*349*34471 + 11 – 1 = 1311311321 

which is prime so N is m-composite; 

: N = 12442442441 = 11*13*31*73*38449 and 11*31*73*38449 + 13 – 1 = 957110969 

which is prime so N is m-composite; 

: N = 12442442441 = 11*13*31*73*38449 and 11*31*73*38449 + 13 – 1 = 957110969 

which is prime so N is m-composite; 

: N = 14334334331 = 19*3041*248089 and 19*3041 + 248089 – 1 = 305867 which is 

prime so N is m-composite; 

: N = 13343343341 = 20047*665603 and 20047 + 665603 – 1 = 685649 which is prime so 

N is m-prime. 
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27. The property of a type of numbers to be often c-primes and c-composites 
 

 

Abstract. In a previous paper I presented a type of numbers which seem to be often m-

primes or m-composites (the numbers of the form 1nn...nn1, where n is a digit or a group 

of digits, repetead by an odd number of times). In this paper I present a type of numbers 

which seem to be often c-primes or c-composites. These are the numbers of the form 

1abc (formed through concatenation, not the product 1*a*b*c), where a, b, c are three 

primes such that b = a + 6 and c = b + 6.  

 

 

Observation:  

 

The numbers of the form 1abc (formed through concatenation, not the product 1*a*b*c), 

where a, b, c are three primes such that b = a + 6 and c = b + 6, seem to be often c-primes 

or c-composites. 

 

Examples: 
 

: N = 151117 = 349*433 and 433 – 349 + 1 = 85 = 5*17 and 17 – 5 + 1 = 13 which is 

prime so N is c-prime; 

: N = 171319 = 67*2557 and 2557 – 67 + 1 = 2491 = 47*53 and 53 – 47 + 1 = 7 which is 

prime so N is c-prime; 

: N = 1111723 is prime, so N is c-prime by definition; 

: N = 1172329 is prime, so N is c-prime by definition; 

: N = 1313743 = 17*77279 and 77279 – 17 + 1 = 77263 which is prime so N is c-prime; 

: N = 1414753 = 23*61511 and 61511 – 23 + 1 = 61489 = 17*3617 and 3617 – 17 + 1 = 

3601 = 13*277 and 277 – 13 + 1 = 265 = 5*53 and 53 – 5 + 1 = 49 which is square of 

prime so N is c-prime by definition; 

: N = 1475359 = 127*11617 and 11617 – 127 + 1 = 11491 which is prime so N is c-prime; 

: N = 1616773 = 883*1831 and 1831 – 883 + 1 = 949 = 13*73 and 73 – 13 + 1 = 61 which 

is prime so N is c-prime; 

: N = 197103109 = 7*28157587 and 28157587 – 7 + 1 = 28157581 which is prime so N is 

c-prime; 

: N = 1101107113 = 173*6364781 and 6364781 – 173 + 1 = 6364609 = 137*46457 and 

46457 – 137 + 1 = 46321 = 11*421 and 421 – 11 + 1 = 4201 which is prime so N is c-

prime; 

: N = 1227233239 = 31*39588169 and 39588169 – 31 + 1 = 39588139 = 181*218719 and 

218719 – 181 + 1 = 218539 = 83*2633 and 2633 – 83 + 1 = 2551 which is prime so N is 

c-prime; 

: N = 1251257263 is prime, so N is c-prime by definition; 

: N = 1257263269 = 19*97*682183 and 19*682183 – 97 + 1 = 12961381 which is prime 

so N is c-composite; 

: N = 1347353359 = 11*83*1475743 and 83*1475743 – 11 + 1 = 122486659 which is 

prime so N is c-composite; 

: N = 1367373379 is prime, so N is c-prime by definition; 

: N = 1557563569 = 61*2833*9013 and 61*9013 – 2833 + 1 = 546961 which is prime so 

N is c-composite; 

: N = 1587593599 = 127^2*257*383 and 127^2*383 – 257 + 1 = 6177151 which is prime 

so N is c-composite; 
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: N = 1601607613 is prime, so N is c-prime by definition; 

: N = 1647653659 is prime, so N is c-prime by definition; 

: N = 1727733739 is prime, so N is c-prime by definition; 

N = 1971977983 = 31* 63612193 and 63612193 – 31 + 1 =  = 1153* 55171 and 55171 – 

1153 + 1 = 54019 = 7*7717 and 7717 – 7 + 1 = 7711 = 11*701 and 701 – 1 + 1 = 691 

which is prime so N is c-composite; 

: N = 1109110971103 = 19*137*426089501 and 137*426089501 – 19 + 1 = 58374261619 

which is prime so N is c-composite; 

 

: N = 1102471025310259 = 11*83*2083*9343*62047 and 83*2083*9343*62047 – 11 + 1 

= 100224638664559 which is prime so N is c-composite; 

 

: N = 1100511100517100523 is prime, so N is c-prime by definition. 

 

Conjecture:  

 

There exist an infinity of primes of the form 1abc (formed through concatenation, not of 

course the product 1*a*b*c), where a, b, c are three primes such that b = a + 6 and c = b 

+ 6 (of course, that implies that there exist an infinity of such triplets of primes [a, b, c]). 

The sequence of these primes is: 1111723, 1172329, 1251257263, 1367373379, 

1601607613, 1647653659, 1727733739 (...) 
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28. Two formulas for obtaining primes and cm-integers 
 

 

Abstract. In this paper I present two very interesting and easy formulas that conduct 

often to primes or cm-integers (c-primes, m-primes, cm-primes, c-composites, m-

composites, cm-composites).  

 

  

Formula 1:  

 

:  Take two distinct odd primes p and q;  

:  Find a prime r such that the numbers r + p – 1 and r + q – 1 are both primes;  

:  Then the numbers p*q – r + 1, p*r – q + 1 and q*r – p + 1, in absolute value, are 

often primes or cm-integers.  

 

 

Verifying the formula:  
(for few randomly chosen values)  

 

We take (p, q) = (7, 13):  

 

r = 5 satisfies the condition and:  

 

:  7*13 – 5 + 1 = 87 = 3*29, m-prime (29 + 3 – 1 = 31, prime);  

:  5*13 – 7 + 1 = 59, prime;  

:  5*7 – 13 + 1 = 23, prime.  

 

r = 31 satisfies the condition and:  

 

: 7*13 – 31 + 1 = 61, prime;  

: 31*13 – 7 + 1 = 397, prime;  

: 31*7 – 13 + 1 = 205 = 5*41, c-prime (41 – 5 + 1 = 37, prime). 

 

r = 97 satisfies the condition and:  

 

:  97 – 7*13 + 1 = 7, prime;  

:  97*13 – 7 + 1 = 1255 = 5*251, c-prime (251 – 5 + 1 = 247 = 13*19 and 19 – 13 + 1 = 7, 

prime);  

:  97*7 – 13 + 1 = 667 = 23*29, c-prime (29 – 23 + 1 = 7, prime). 

 

r = 14627 satisfies the condition and:  

 

:  14627 – 7*13 + 1 = 14537, prime;  

:  14627*13 – 7 + 1 = 190145 = 5*17*2237, c-composite (2237 – 5*17 + 1 = 2153, prime);  

:  14627*7 – 13 + 1 = 102377 = 11*41*227, m-composite (11*41 + 227 – 1 = 677, prime).  
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Formula 2:  
:  Take two distinct odd primes p and q;  

:  Find a prime r such that the numbers r – p + 1 and r – q + 1 are both primes;  

: Then the numbers p*q + r – 1, p*r + q – 1 and q*r + p – 1 are often primes or cm-

integers.  

 

 

Verifying the formula:  
(for few randomly chosen values)  

 

We take (p, q) = (7, 13):  

 

r = 109 satisfies the condition and:  

 

:  7*13 + 109 – 1 = 199, prime;  

:  109*7 + 13 – 1 = 775 = 5^2*31, c-compozite (31 – 5*5 + 1 = 7, prime);  

:  109*13 + 7 – 1 = 1423, prime.  

 

r = 163 satisfies the condition and:  

 

:  7*13 + 163 – 1 = 253 = 11*23, c-prime (23 – 11 + 1 = 13, prime);  

:  163*7 + 13 – 1 = 1153, prime;  

:  163*13 + 7 – 1 = 2125 = 5^3*17, cm-composite (5*17 – 5*5 + 1 = 61, prime and 5*17 + 

5*5 = 109, prime). 

 

r = 1439 satisfies the condition and:  

 

:  7*13 + 1439 – 1 = 1529 = 11*139, m-prime (11 + 139 – 1 = 149, prime);  

:  1439*7 + 13 – 1 = 10085 = 5*2017, m-prime (5 + 2017 – 1 = 2021, prime);  

:  1439*13 + 7 – 1 = 18713, prime.  

 

We take (p, q) = (23, 89):  

 

r = 101 satisfies the condition and:  

 

:  23*89 + 101 – 1 = 2147 = 19*113, cm-prime (113 – 19 + 1 = 97, prime and 113 + 19 – 1 

= 131, prime);  

:  101*23 + 89 – 1 = 2411, prime;  

:  101*89 + 23 – 1 = 9011, prime.  

 

r = 131 satisfies the condition and:  

 

:  23*89 + 131 – 1 = 2177 = 7*311, m-prime (7 + 311 + 7 – 1 = 317, prime);  

:  131*23 + 89 – 1 = 3101 = 7*443, cm-prime (443 – 7 + 1 = 437 = 19*23 and 23 – 19 + 1 

= 5, prime and 443 + 7 – 1 = 449, prime);  

:  131*89 + 23 – 1 = 11681, prime. 
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29. Formula based on squares of primes and concatenation which leads to 

primes and cm-primes 
 

 

Abstract. In this paper I present the following observation: concatenating to the right the 

number p^2 – 1, where p is a prime of the form 6*k – 1, with the digit 1, is often obtained 

a prime or a c-prime; also, concatenating to the right the number p^2 – 1, where p is a 

prime of the form 6*k + 1, with the digit 1, is often obtained a prime or a m-prime. 

 

 

Conjecture 1:  

 

The sequence of the numbers obtained concatenating to the right the numbers p^2 – 1, 

where p are primes of the form 6*k – 1, with the digit 1, contains an infinity of terms 

which are primes. 

 

Example: because p^2 = 5^2 = 25 and p^2 – 1 = 24, the term from the sequence defined 

above corresponding to 5 is 241. 

 

The set of primes:  

 

241, 1201, 5281, 28081, 68881, 79201, 102001, 127681, 278881, 299281, 320401, 

364801, 388081 (...), corresponding to the primes 5, 11, 23, 53, 83, 89, 101, 113, 167, 

173, 179, 191, 197 (...) 

 

Conjecture 2:  

 

The sequence of the numbers obtained concatenating to the right the numbers p^2 – 1, 

where p are primes of the form 6*k – 1, with the digit 1, contains an infinity of terms 

which are c-primes. 

 

The set of c-primes:  

 

: 2881 = 43*67, which is c-prime because 67 – 43 + 1 = 25 = 5^2, a square of 

prime; 

: 8401 = 31*271, which is c-prime because 271 – 31 + 1 = 241, prime; 

: 16801 = 53*317, which is c-prime because 317 – 53 + 1 = 265 = 5*53 and 53 – 5 

+ 1 = 49 = 7^2, which is square of prime; 

: 22081 = 71*311, which is c-prime because 311 – 71 + 1 = 241, prime. 

: 50401 = 13*3877, which is c-prime because 3877 – 13 + 1 = 3865 = 5*773 and 

773 – 5 + 1 = 769, prime; 

: 114481 = 239*479, which is c-prime because 479 – 239 + 1 = 241, prime; 

: 171601 = 157*1093, which is c-prime because 1093 – 157 + 1 = 937, prime; 

: 222001 = 13*17077, which is c-prime because 17077 – 13 + 1 = 17065 = 5*3413 

and 3413 – 5 + 1 = 3409 = 4*487 and 487 – 7 + 1 = 481 = 13*37 and 37 – 13 + 1 

= 25, a square of prime. 

 

Note that, for the numbers 8401, 22081 and 114481, corresponding to the primes 29, 53 

and 107, we have the same c-reached prime, the number 241. 
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Conjecture 3:  

 

The sequence of the numbers obtained concatenating to the right the numbers p^2 – 1, 

where p are primes of the form 6*k + 1, with the digit 1, contains an infinity of terms 

which are primes. 

 

The set of primes:  

 

481, 9601, 13681, 18481, 37201, 53281, 62401, 118801, 161281, 193201, 372481, 

396001, 497281 (...), corresponding to the primes 7, 31, 37, 43, 61, 73, 79, 109, 127, 139, 

193, 199, 223 (...) 

 

Conjecture 4:  

 

The sequence of the numbers obtained concatenating to the right the numbers p^2 – 1, 

where p are primes of the form 6*k + 1, with the digit 1, contains an infinity of terms 

which are m-primes. 

 

The set of m-primes:  

 

: 3601 = 13*277, which is m-prime because 13 + 277 – 1 = 289 = 17^2 and 17 + 17 

– 1 = 33 = 3*11 and 3 + 11 – 1 = 13, a prime; 

: 44881 = 37*1213, which is m-prime because 1213 + 37 – 1 = 1249, prime; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

30. Formula based on squares of primes having the same digital sum that 

leads to primes and cm-primes 
 

 

Abstract. In this paper I present the observation that the formula p^2 – q^2 + 1, where p 

and q are primes with the special property that the sums of their digits are equal, leads 

often to primes (of course, having only the digital root equal to 1 due to the property of p 

and q to have same digital sum implicitly same digital root) or to special kinds of 

semiprimes: some of them named by me, in few previous papers, c/m-primes, and some 

of them named by me, in this paper, g-primes respectively s-primes. Note that I chose the 

names “g/s-primes” instead “g/s-semiprimes” not to exist confusion with the names “g/s-

composites”, which I intend to define and use in further papers. 

 

Definition 1:  

 

We name g-primes the semiprimes of the form p*q, p < q, with the property that q can be 

written as k*p + k – 1, where k is positive integer (it can be seen that, for k = 2, p is a 

Sophie Germain prime because q = 2*p + 1 is also prime). 

 

Examples: n = 1081 = 23*47 is a g-prime because 47 = 23*2 + 1 and also n = 1513 = 

17*89 is a g-prime because 89 = 17*5 + 4. 

 

Definition 2:  

 

We name s-primes the semiprimes of the form p*q, p < q, with the property that q can be 

written as k*p - k + 1, where k is positive integer. 

 

Examples: n = 91 = 7*13 is a s-prime because 13 = 7*2 - 1 and also n = 4681 = 31*151 is 

a s-prime because 151 = 31*5 - 4. 

 

Observation:  

 

The formula p^2 – q^2 + 1, where p and q are primes with the special property that the 

sums of their digits are equal, leads often to primes (of course, having only the digital 

root equal to 1) or to c/m-primes or g/s-primes. 

 

SQUARES OF PRIMES WITH THE DIGITAL SUM 4 

 

The sequence of this squares is: 

: 121(=11^2), 10201(=101^2). 

 

SQUARES OF PRIMES WITH THE DIGITAL SUM 10 

 

The sequence of this squares is: 

: 361(=19^2), 5041(=71^2). 

 

SQUARES OF PRIMES WITH THE DIGITAL SUM 13 

 

The sequence of this squares is: 

: 49(=7^2), 841(=29^2), 2209(=47^2), 3721(=61^2), 6241(=79^2). 
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SQUARES OF PRIMES WITH THE DIGITAL SUM 16 

 

The sequence of this squares is: 

: 169(=13^2), 529(=23^2), 961(=31^2), 1681(=41^2), 3481(=59^2). 

 

SQUARES OF PRIMES WITH THE DIGITAL SUM 19 

 

The sequence of this squares is: 

: 289(=17^2), 1369(=37^2), 2809(=53^2), 5329(=19^2). 

 

SQUARES OF PRIMES WITH THE DIGITAL SUM 22 

 

The sequence of this squares is: 

: 1849(=43^2), 9409(=97^2). 

 

 

Verifying the observation: 

(up to the square of 101) 

 

 

: 5041 – 361 + 1 = 4681 = 31*151, 

a s-prime because 151 = 31*5 – 4, a c-prime because 151 – 31 + 1 = 121, a square 

of prime, and also a m-prime because 151 + 31 – 1 = 181, prime; 

 

 

: 841 – 49 + 1 = 793 = 13*61,   

a s-prime because 61 = 13*5 – 4, a c-prime because 61 – 13 + 1 = 49, a square of 

prime and a m-prime because 13 + 61 – 1 = 73, prime; 

: 2209 – 49 + 1 = 2161, prime; 

: 3721 – 49 + 1 = 3673, prime; 

6241 – 49 + 1 = 6193 = 11*563,  

a g-prime because 11*47 + 46 = 563 and a c-prime because 563 – 11 + 1 = 553 = 

7*79 and 79 – 7 + 1 = 73, prime; 

: 2209 – 841 + 1 = 1369, square of prime (37^2); 

: 3721 – 841 + 1 = 2881 = 43*67,  

a c-prime because 67 – 43 + 1 = 25, square of prime, and a m-prime because 43 + 

67 – 1 = 109, prime; 

: 6241 – 841 + 1 = 5401 = 11*491,  

a g-prime because 491 = 11*41 + 40 and a c-prime because 491 – 11 + 1 = 481 = 

13*37 and 37 – 13 + 1 = 25, square of prime; 

: 3721 – 2209 + 1 = 1513 = 17*89,  

a g-prime because 89 = 17*5 + 4 and a c-prime because 89 – 17 + 1 = 73, prime; 

: 6241 – 2209 + 1 = 4033 = 37*109,  

s-prime because 109 = 37*3 – 2, also a c-prime and m-prime;  

: 6241 – 3721 + 1 = 2521, prime; 

 

 

: 529 – 169 + 1 = 361, square of prime (19^2); 

: 961 – 169 + 1 = 793 = 13*61 (see above); 

: 1681 – 169 + 1 = 1513 = 17*89 (see above); 
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: 3481 – 169 + 1 = 3313, prime; 

: 1681 – 529 + 1 = 1153, prime; 

: 3481 – 529 + 1 = 2953, prime; 

: 1681 – 961 + 1 = 721 = 7*103,  

a q-prime because 103 = 7*13 + 12, a c-prime because 103 – 7 + 1 = 97, prime, 

and a m-prime because 103 + 7 – 1 = 109, prime; 

: 3481 – 961 + 1 = 2521, prime; 

: 3481 – 1681 + 1 = 1801, prime; 

 

 

: 1369 – 289 + 1 = 1081 = 23*47,  

g-prime because 47 = 23*2 + 1 and c-prime because 47 – 23 + 1 = 25, square of 

prime; 

: 2809 – 289 + 1 = 2521, prime; 

: 5329 – 289 + 1 = 5041, square of prime (71^2); 

: 2809 – 1369 + 1 = 1441 = 11*131,  

g-prime because 131 = 11*11 + 10 and c-prime because 131 – 11 + 1 = 121, 

square of prime; 

: 5329 – 1369 + 1 = 3961 = 17*233,  

g-prime because 233 = 17*13 + 12 and c-prime because 233 – 17 + 1 = 217 = 

7*31 and 31 – 7 + 1 = 25, square of prime; 

: 5329 – 2808 = 2521, prime; 

 

: 9409 – 1849 + 1 = 7561, prime. 

 

 

Comment:  

 

One of the semiprimes obtained above, 4033(=37*109), is also a 2-Poulet number; many 

such numbers are g-primes or s-primes; to give to these semiprimes a name is justified at 

least in the study of Fermat pseudoprimes to base two with two prime factors (see the 

sequence A214305 in OEIS). 
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31. An analysis of four Smarandache concatenated sequences using the notion 

of cm-integers 
 

 

Abstract. In this paper I show that Smarandache concatenated sequences presented here 

(i.e. The consecutive numbers sequence, The concatenated odd sequence, The 

concatenated even sequence, The concatenated prime sequence), sequences well known 

for the common feature that contain very few terms which are primes, per contra, contain 

very many terms which are c-primes, m-primes, c-reached primes and m-reached primes 

(notions presented in my previous papers, see “Conjecture that states that any Carmichael 

number is cm-composite” and “A property of repdigit numbers and the notion of cm-

integer”). 

 

 

Note:  

 

The Smarandache concatenated sequences are well known for sharing a common feature: 

they all contain a small number of prime terms. Interesting is that, per contra, they seem 

to contain a large number of c-primes and m-primes. More than that, applying different 

operations on terms, like the sum of two consecutive terms or partial sums, we obtain 

again a large number of c-primes and m-primes respectively of c-reached primes and m-

reached primes. 

 

Note:  

 

In the following analysis I will not show how I calculated the c-reached primes and the 

m-reached primes, see for that my paper “The notions of c-reached prime and m-reached 

prime”. 

 

Verifying the observation for the following Smarandache concatenated sequences: 

 

(1) The Smarandache consecutive numbers sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n positive 

integers. The first ten terms of the sequence (A007908 in OEIS) are 12, 123, 1234, 

12345, 123456, 1234567, 12345678, 123456789, 12345678910. 

 

This sequence seems to have the property that the value of the sum of two consecutive 

terms is often (I conjecture that always) a cm-integer. 

 

The first few such values are: 

 

: 12 + 123 = 135 = 3^3*5. This number is cm-composite, having three c-reached 

primes, 7, 23, 43, and three m-reached primes, 23, 31, 47; 

: 123 + 1234 = 1357 = 23*59. This number is cm-prime, having the c-reached 

prime equal to 37 and the m-reached prime equal to 1; 

: 1234 + 12345 = 13579 = 37*367. This number is cm-prime, having the c-reached 

prime equal to 331 and the m-reached prime equal to 43; 

: 12345 + 123456 = 135801 = 3^2*79*191. This number is cm-composite, having 

a c-reached prime, 521, and a m-reached prime, 601; 
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: 123456 + 1234567 = 1358023 = 67*20269. This number is c-prime, having the c-

reached prime equal to 139; 

: 1234567 + 12345678 = 13580245 = 5*7*587*661. This number is cm-composite, 

having three c-reached primes, 1693, 22549 and 387973, and two m-reache 

primes, 7561 and 1940041. 

 

(2) The Smarandache concatenated odd sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n odd 

numbers (the n-th term of the sequence is formed through the concatenation of the odd 

numbers from 1 to 2*n – 1). The first ten terms of the sequence (A019519 in OEIS) are 1, 

13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 

135791113151719. 

 

This sequence seems to have the property that the value of the terms is often (I conjecture 

that always) a cm-integer. 

 

The first few such values are: 

 

: 13. This number is prime, so cm-prime by definition; 

: 135 = 3^3*5. This number is cm-composite, having four c-reached primes, 5, 7, 

23 and 43, and three m-reached primes, 23, 31 and 47; 

: 1357 = 23*59. This number is c-prime, having the c-reached prime equal to 47; 

: 13579 = 37*367. This number is cm-prime, having the c-reached prime equal to 

331 and the m-reached prime equal to 403; 

: 1357911 = 3^3*19*2647. This number is cm-composite, having a c-reached 

prime equal to 23767 and two m-reached primes equal to 8111 and 23879; 

: 135791113 = 11617*11689. This number is c-prime, having the c-reached prime 

equal to 73. 

  

(3) The Smarandache concatenated even sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n even 

numbers (the n-th term of the sequence is formed through the concatenation of the even 

numbers from 1 to 2*n). The first ten terms of the sequence (A019520 in OEIS) are 2, 24, 

246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 

2468101214161820. 

 

This sequence seems to have the property that the value of the numbers (S – 1), where S 

are the partial sums, is often (I conjecture that always) a cm-integer. 

 

The first few such values are: 

 

: 2 + 24 – 1 = 25 = 5*5. This number is cm-prime, having the c-reached prime 

equal to 1 and the m-reached prime equal to 5; 

: 2 + 24 + 246 – 1 = 271. This number is prime, so cm-prime by definition; 

: 2 + 24 + 246 + 2468 – 1 = 2739 = 3*11*83. This number is c-composite, having 

two c-reached primes equal to 239 and 911; 



 67 

: 2 + 24 + 246 + 2468 + 246810 – 1 = 249549 = 3*193*431. This number is cm-

composite, having a c-reached prime equal to 149 and a m-reache primes equal to 

8111 and 1009; 

: 2 + 24 + 246 + 2468 + 246810 + 24681012 – 1 = 24930561 = 3*1187*7001. This 

number is m-reached composite, having a m-reached prime equal to 22189. 

 

This sequence seems also to have the property that the value of the numbers (S – 1), 

where S is the sum of two consecutive terms, is often a cm-integer. 

 

The first few such values are: 

 

: 2 + 24 – 1 = 25 = 5*5. This number is cm-prime, having the c-reached prime 

equal to 1 and the m-reached prime equal to 5; 

: 24 + 246 – 1 = 269. This number is prime, so cm-prime by definition; 

: 246 + 2468 – 1 = 2713. This number is prime, so cm-prime by definition; 

: 2468 + 246810 – 1 = 249277 = 7*149*249. This number is m-composite, having 

a reached m-prime equal to 35617. 

 

(4) The concatenated prime sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n primes. 

The first ten terms of the sequence (A019518 in OEIS) are 2, 23, 235, 2357, 235711, 

23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329. 

 

This sequence seems to have the property that the value of the numbers  a(n) – a(n-1) – 1 

is often a cm-integer. 

 

The first few such values are: 

 

: 235 – 23 – 1 = 211. This number is prime, so cm-prime by definition; 

: 2357 – 235 – 1 = 2121 = 3*7*101. This number is m-composite, having two m-

reached primes, 107 and 709. 

: 235711 – 2357 – 1 = 233353. This number is prime, so cm-prime by definition; 

: 23571113 – 235711 – 1 = 23335401. I haven’t completely analyzed the number, 

but is at least m-composite having a m-reached prime 804697; 

: 2357111317 – 23571113 – 1 = 2333540203 = 541*4313383. This number is c-

prime (because 4313383 – 541 + 1 = 4312843 = 389*11087 and 11087 – 389 + 1 

= 10699 = 13*823 and 823 – 13 + 1 = 811, which is prime) having the c-reached 

prime equal to 811; 

: 235711131719 – 2357111317 = 233354020401 = 3^2*25928224489. This 

number is m-composite (because 3*25928224489 + 3 - 1 = 77784673469) having 

the m-reached prime equal to 77784673469. 
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32. An analysis of seven Smarandache concatenated sequences using the 

notion of cm-integers 
 

 

Abstract. In this paper I show that many Smarandache concatenated sequences, well 

known for the common feature that contain very few terms which are primes (I present 

here The concatenated square sequence, The concatenated cubic sequence, The sequence 

of triangular numbers, The symmetric numbers sequence, The antisymmetric numbers 

sequence, The mirror sequence, The “n concatenated n times” sequence) contain (or 

conduct to, through basic operations between terms) very many numbers which are cm-

integers (c-primes, m-primes, c-composites, m-composites). 

 

 

Observation:  

 

Many Smarandache concatenated sequences, well known for the common feature that 

contain very few terms which are primes, contain (or conduct to, through basic operations 

between terms) very many numbers which are cm-integers (c-primes, m-primes, c-

composites, m-composites). 

 

Note:  

 

In the following analysis I will not show how I calculated the c-reached primes and the 

m-reached primes, see for that the paper “The notions of c-reached prime and m-reached 

prime”. 

 

Verifying the observation for the following Smarandache concatenated sequences: 

 

(1) The concatenated square sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n squares. 

The first ten terms of the sequence (A019521 in OEIS) are 1, 14, 149, 14916, 1491625, 

149162536, 14916253649, 1491625364964, 149162536496481, 149162536496481100. 

 

This sequence seems to have the property that the value of the number a(n+1) – a(n), 

where a(n) and a(n+1) are two consecutive terms and n is odd, is often a c-prime or a c-

composite. 

 

The first few such values are: 

 

: 14 – 1 = 13. This number is prime, so by definition c-prime; 

: 14916 – 149 = 14767. This number is prime, so by definition c-prime; 

: 149162536 – 1491625 = 147670911 = 3^3*109*50177. This number is c-

composite, having a c-reached prime equal to 149551; 

: 1491625364964 – 14916253649 = 1476709111315 = 5*449*657776887. This 

number is c-composite, having a c-reached prime equal to 3288883987; 

: 149162536496481100 – 149162536496481 = 149013373959984619 = 

29*5138392205516711. This number is c-composite, having a c-reached prime 

equal to 11922023678263. 
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(2) The concatenated cubic sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n cubes. The 

first ten terms of the sequence (A019521 in OEIS) are 1, 18, 1827, 182764, 182764125, 

182764125216, 182764125216343, 182764125216343512, 182764125216343512729, 

1827641252163435127291000. 

 

This sequence seems to have the property that the value of the number a(n) + a(n+2) – 

a(n+1), where n is even, is often a mc-integer. 

 

The first few such values are: 

 

: 18 + 182764 – 1827 = 180955 = 5*36191. This number is c-prime, having a c-

reached prime equal to 36187. 

: 182764 + 182764125216 – 182764125 = 182581543855 = 5*17*2148018163. 

This number is c-composite, having a c-reached prime equal to 36516308767. 

: 182764125216 + 182764125216343512 – 182764125216343 = 

182581543855252385 = 5*1249*29236436165773. This number is m-composite, 

having a m-reached prime equal to 36516308771050481 and a m-reached prime 

equal to 146182180830113. 

: 182764125216343512 + 1827641252163435127291000 – 

182764125216343512729 = 1827458670802344000121783. This number is 

prime, so c-prime and m-prime (cm-prime) by definition. 

  

 

(3) The sequence of triangular numbers 

 

Sn is defined as the sequence obtained through the concatenation of the first n triangular 

numbers. The triangular numbers are a subset of the polygonal numbers (which are a 

subset of figurate numbers) constructed with the formula T(n) = (n*(n + 1))/2 = 1 + 2 + 3 

+… + n. The first ten terms of the sequence (A078795 in OEIS) are 1, 13, 136, 13610, 

1361015, 136101521, 13610152128, 1361015212836, 136101521283645, 

13610152128364555. 

 

There are only two terms of this sequence that are primes (among the first 5000 terms, 

i.e. 13 and 136101521); on the other side, seems that relatively easy can be constructed 

primes using basic operations between the terms of the sequence, like for instance a(n) + 

a(n+1) – 1, for n and n + 1 even, and a(n) + a(n+1) + 1, for n and n + 1 odd.   

 

Two such values are: 

 

: 1361015 + 136101521 + 1 = 137462537, a prime number; 

: 13610152128 + 1361015212836 – 1 = 1374625364963, a prime number. 

 

 

(4) The symmetric numbers sequence 

 

Sn is defined as the sequence obtained through concatenation in the following way: if n is 

odd, the n-th term of the sequence is obtained through concatenation 123…(m-1)m(m-

1)…321, where m = (n + 1)/2; if n is even, the n-th term of the sequence is obtained 
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through concatenation 123…(m-1)mm(m-1)…321, unde m = n/2. The first ten terms of 

the sequence (A007907 in OEIS) are 1, 11, 121, 1221, 12321, 123321, 1234321, 

12344321, 123454321, 1234554321, 12345654321. 

 

This sequence seems to have the following property: the terms of the form 12…(n-1)n(n-

1)…21, where n is odd, are often cm-integers. 

 

Few such values are: 

 

: 1234567654321 = 239^2*4649^2. This number is m-composite, having a m-

reached prime equal to 21670321. 

: 12345678987654321 = 3^4*37^2*333667^2. This number is m-composite, 

having a m-reached prime equal to 457247369913149; 

: 123456789101110987654321 = 7*17636684157301569664903. This number is 

c-composite, having a c-reached prime equal to 17636684157301569664897. 

 

 

(5) The antisymmetric numbers sequence 

 

Sn is defined as the sequence obtained through the concatenation in the following way: 

12…(n)12…(n). The first ten terms of the sequence (A019524 in OEIS) are 11, 1212, 

123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 

123456789123456789. 

 

This sequence seems to have the following property: the values of the numbers 2*a(n) + 

1, where a(n) are the terms corresponding to n odd, are often cm-integers. 

 

Few such values are: 

 

: 2*123123 + 1 =  246247. This number is prime, so c-prime and m-prime (cm-

prime) by definition; 

: 2*1234512345 + 1 = 2469024691 = 7^2*50388259. This number is c-composite, 

having a c-reached prime equal to 50388211; 

: 2*123456789123456789 + 1 = 246913578246913579 = 17*14524328132171387. 

This number is c-composite, having a c-reached prime equal to 

14524328132171371. 

 

 

(6) The mirror sequence 

 

Sn is defined as the sequence obtained through concatenation in the following way: n(n – 

1)…32123…(n – 1)n. The first ten terms of the sequence (A007942 in OEIS) are 1, 212, 

32123, 4321234, 543212345, 65432123456, 7654321234567, 876543212345678, 

98765432123456789, 109876543212345678910. 

 

This sequence seems to have the following property: the values of the numbers obtained 

deconcatenating to the right with the last digit the even terms are often cm-integers. 

 

The first few such values are: 
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: 21 = 3*7. This number is cm-prime, having the c-reached prime equal to 5 and the 

m-reached prime equal to 5; 

: 432123 = 3*17*37*229. This number is cm-composite, having c-reached primes 

equal to 59 and 8423 and m-reached primes equal to 19, 1699, 4003; 

: 6543212345 = 5*71*271*117779. This number is m-composite, having a m-

reached prime equal to 371573; 

: 87654321234567 = 3^4*229*239*4253*4649. This number is m-composite, 

having a m-reached prime equal to 87654321234567; 

: 1098765432123456789 = 3^2*17*37*333667*581699347. This number is c-

composite, having a c-reached prime equal to 36815221. 

 

 

(7) The “n concatenated n times” sequence 

 

Sn is defined as the sequence of the numbers obtained concatenating n times the number 

n. The first ten terms of the sequence (A000461 in OEIS) are 1, 22, 333, 4444, 55555, 

666666, 7777777, 88888888, 999999999, 10101010101010101010. 

 

This sequence seems to have the property that the value of the number a(n+1) – a(n) is 

often a m-prime or a m-composite. 

 

The first few such values are: 

 

: 22 – 1 = 21 = 3*7. This number is m-prime, having the m-reached prime equal to 

5; 

: 333 – 22 = 311. This number is prime, so m-prime by definition; 

: 4444 – 333 = 4111. This number is prime, so m-prime by definition; 

: 55555 – 4444 = 51111 = 3^4*631. This number is m-composite, having two m-

reached primes, equal to 23 and 1559; 

: 666666 – 55555 = 611111. This number is prime, so m-prime by definition; 

: 7777777 – 666666 = 7111111 = 7*19*127*421. This number is m-composite, 

having three m-reached primes, equal to 103, 8887 and 374287; 

: 88888888 – 7777777 = 81111111 = 3*27037037. This number is m-prime, 

having the m-reached prime equal to 342319. 
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33. On the special relation between the numbers of the form 505+1008k and 

the squares of primes 
 

 

Abstract. The study of the power of primes was for me a constant probably since I first 

encounter “Fermat’s last theorem”. The desire to find numbers with special properties, as 

is, say, Hardy-Ramanujan number, was another constant. In this paper I present a class of 

numbers, i.e. the numbers of the form n = 505 + 1008*k, where k positive integer, which, 

despite the fact that they don’t seem to be, prima facie, “special”, seem to have a strong 

connection with the powers of primes: for a lot of values of k (I show in this paper that 

for nine from the first twelve and I conjecture that for an infinity of the values of k), there 

exist p and q primes such that p^2 – q^2 + 1 = n. The special nature of the numbers of the 

form 505 + 1008*k is also highlight by the fact that they are (all the first twelve of them, 

as much I checked) primes or g/s-integers or c/m-integers (I define in Addenda to this 

paper the two new notions mentioned). 

 

 

The sequence of the squares of primes (A001248 in OEIS):  

 

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 

3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 

16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 

36481 (...) 

 

The sequence of the numbers of the form 505 + 1008*k:  

 

505, 1513, 2521, 3529, 4537, 5545, 6553, 7561, 8569, 9577, 10585, 11593 (...) 

 

Conjecture 1:  

 

There exist an infinity of values of k, positive integer, such that the number n = 505 + 

1008*k can be written as n = p^2 – q^2 + 1, where p and q are primes. 

 

Note: 

 

The numbers from the sequence above more probably to can be written the way 

mentioned are the ones that have the last digit 1, 3 or 9, because p^2 and q^2 have, 

without an exception (I refer only to primes greater than or equal to 5), the number 25, 

only the values 1 and 9 for the last digit; that means that the numbers from the sequence 

above ended in digits 5 or 7 can only satisfy the equation if q^2 is 25 (but the numbers 

505 and 10585 do satisfy the equation!).  

 

Examples:  

(The ways in which n from the examples below can be written as mentioned is revealed just up 

to p = 191 that means p^2 = 36481) 

 

: The number 505 (obtained for k = 0) can be written as 

 : 505 = 23^2 – 5^2 + 1. 

: The number 1513 (obtained for k = 1) can be written as 

 : 1513 = 41^2 – 13^2 + 1; 
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 : 1513 = 61^2 – 47^2 + 1. 

: The number 2521 (obtained for k = 2) can be written as 

 : 2521 = 53^2 – 17^2 + 1; 

: 2521 = 59^2 – 31^2 + 1; 

 : 2521 = 73^2 – 53^2 + 1. 

: The number 3529 (obtained for k = 3) can be written as 

 : 3529 = 67^2 – 31^2 + 1; 

: 3529 = 107^2 – 89^2 + 1. 

: The number 6553 (obtained for k = 6) can be written as 

 : 6553 = 89^2 – 37^2 + 1; 

: 6553 = 109^2 – 73^2 + 1; 

: 6553 = 131^2 – 103^2 + 1; 

: 6553 = 139^2 – 113^2 + 1. 

: The number 7561 (obtained for k = 7) can be written as 

 : 7561 = 89^2 – 31^2 + 1. 

: The number 8569 (obtained for k = 8) can be written as 

 : 8569 = 137^2 – 101^2 + 1; 

: 8569 = 167^2 – 139^2 + 1. 

: The number 10585 (obtained for k = 10) can be written as 

 : 10585 = 103^2 – 5^2 + 1. 

: The number 11593 (obtained for k = 11) can be written as 

 : 11593 = 109^2 – 17^2 + 1; 

: 11593 = 149^2 – 103^2 + 1. 

 

 

ON THE SPECIAL NATURE OF THE NUMBERS OF THE FORM 505 + 1008*K 

 

As I mentioned in Abstract, all the first 12 such numbers are primes or c/m-integers or g/s-

integers (I defined in Addenda 1 respectively in Addenda 2, see below, these two new notions). 

  

The numbers 2521, 3521, 6553, 7561, 11593 are primes; the rest of the numbers from the 

sequence checked (up to the term 11593) are both c/m-integers and s/m-integers. 

 

Conjecture 2:  

 

All the numbers of the form n = 505 + 1008*k, where k positive integer, are either primes 

either c/m-integers and/or g/s-integers. 

 

Verifying the conjecture: 

(for the seven numbers which are not primes from the first twelve from sequence) 

 

: the number 505 = 5*101 is g-prime because 101 = 5*17 + 16; is also c-prime because 

101 – 5 + 1 = 97, prime; 

: the number 1513 = 17*89 is g-prime because 89 = 17*5 + 4; is also c-prime because 89 – 

17 + 1 = 73, prime; 

: the number 4537 = 13*349 is a g-prime because 349 = 13*25 + 24; is also c-prime 

because 349 – 13 + 1 = 337, prime; is also m-prime because 349 + 12 – 1 = 361 = 19^2 

and 19 + 19 – 1 = 37, prime; 

: the number 5545 = 5*1109 is a g-prime because 1109 = 5*185 + 184;  

: the number 9577 = 61*157 is a c-prime because 157 – 61 + 1 = 97, a prime; 
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: the number 8569 = 11*19*41 is a gs-composite, g-composite because 19*41 = 11*65 + 

64 and s-composite because 11*41 = 19*25 – 24; it is also cm-composite, c-composite 

because 11*41 – 19 + 1 = 433, prime (also 19*41 – 11 + 1 = 769, prime, and 11*91 – 41 

+ 1 = 169, square of prime) and m-composite because 11*41 + 19 – 1 = 7*67 (m-prime 

because 7 + 67 – 1 = 73, prime); 

: the number 10585 = 5*29*73 is a gs-composite, g-composite because 5*353 + 352 = 

29*73 and s-composite because 73*2 – 1 = 5*29 (and also 29*13 – 12 = 5*73); it is also 

cm-composite, c-composite because 5*29 – 73 + 1 = 73, prime (and also 5*73 – 29 + 1 = 

337, prime and 29*73 – 5 + 1 = 2113, prime) and m-composite because 5*29 + 73 – 1 = 

217 = 7*31 and 7 + 31 – 1 = 37, prime; 

 

Comment:  

 

Note that the number 10585 (obtained for k = 10) is also a Carmichael number. In a 

previous paper, namely “Conjecture that states that any Carmichael number is a cm-

composite”, I conjectured that these numbers have the property mentioned in title. In 

further papers I shall check to what extent the Fermat pseudoprimes (Poulet numbers and 

Carmichael numbers) are g/s-integers (notion defined for the first time in this paper). 

Another thing to be checked: the formula n + q^2 – 1 can lead sometimes to Poulet 

numbers (it is the case 6553 + 7^1 – 1 = 6601). 

 

 

 

 

ADDENDA 1. C/M-INTEGERS 

 

 

Definition of a c-prime:  

 

We name a c-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), p(1) < q(1), with the property that the number q(1) – p(1) + 1 is either 

prime either semiprime p(2)*q(2) with the property that the number q(2) – p(2) + 1 is 

either prime either semiprime with the property showed above... (until, eventualy, is 

obtained a prime). 

 

Example: 4979 is a c-prime because 4979 = 13*383, where 383 – 13 + 1 = 371 = 7*53, 

where 53 – 7 + 1 = 47, a prime. 

 

Definition of a m-prime:  

 

We name a m-prime a positive odd integer which is either prime either semiprime of the 

form p(1)*q(1), with the property that the number p(1) + q(1) - 1 is either prime either 

semiprime p(2)*q(2) with the property that the number p(2) + q(2) - 1 is either prime 

either semiprime with the property showed above... (until, eventualy, is obtained a 

prime). 

 

Example: 5411 is a m-prime because 5411 = 7*773, where 7 + 773 - 1 = 779 = 19*41, 

where 19 + 41 - 1 = 59, a prime. 
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Definition of a cm-prime:  

 

We name a cm-prime a number which is both c-prime and m-prime (not to be confused 

with the notation c/m-primes which I use to express “c-primes or m-primes”). 

 

Definition of a c-composite:  

 

We name a c-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors such that the 

number p(k) - p(h) + 1 is a c-prime. 

 

Definition of a m-composite:  

 

We name a m-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors such that the 

number p(k) + p(h) - 1 is a m-prime.  

 

Definition of a cm-composite:  

 

We name a cm-composite a number which is both c-composite and m-composite (not to 

be confused with the notation c/m-composites which I use to express “c-composites or m-

composites”). 

 

Definition of a c/m-integer:  

 

We name a c/m-integer a number which is either c-prime, m-prime, cm-prime, c-

composite, m-composite or cm-composite. 

 

 

ADDENDA 2. G/S-INTEGERS 

 

 

Definition of a g-prime:  

 

We name g-primes the semiprimes of the form p*q, p < q, with the property that q can be 

written as k*p + k – 1, where k is positive integer (it can be seen that, for k = 2, p is a 

Sophie Germain prime because q = 2*p + 1 is also prime). 

 

Examples: n = 1081 = 23*47 is a g-prime because 47 = 23*2 + 1 and also n = 1513 = 

17*89 is a g-prime because 89 = 17*5 + 4. 

 

Definition of a s-prime:  

 

We name s-primes the semiprimes of the form p*q, p < q, with the property that q can be 

written as k*p - k + 1, where k is positive integer. 
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Examples: n = 91 = 7*13 is a s-prime because 13 = 7*2 - 1 and also n = 4681 = 31*151 is 

a s-prime because 151 = 31*5 - 4. 

 

Definition of a g-composite:  

 

We name a g-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors, also there exist 

the number m, positive integer, such that p(h) can be written as m*p(k) + m - 1. 

 

Example: n = 8569 = 11*19*41 is a g-composite because 11*65 + 65 - 1 = 19*41. 

 

Definition of a s-composite:  

 

We name a s-composite the composite number with three or more prime factors n = 

p(1)*p(2)*...*p(m), where p(1), p(2), ..., p(m) are the prime factors of n, which has the 

following property: there exist p(k) and p(h), where p(k) is the product of some distinct 

prime factors of n and p(h) the product of the other distinct prime factors, also there exist 

the number m, positive integer, such that p(h) can be written as m*p(k) - m + 1. 

 

Example: n = 8569 = 11*19*41 is a s-composite because 19*25 – 25 + 1 = 11*41. 

 

Definition of a gs-composite:  

 

We name a gs-composite a number which is both g-composite and s-composite (not to be 

confused with the notation g/m-composites which I use to express “g-composites or s-

composites”). 

 

Definition of a g/s-integer:  

 

We name a g/s-integer a number which is either g-prime, s-prime, g-composite, s-

composite or gs-composite. 
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34. The notion of s-primes and a generic formula of 2-Poulet numbers 
 

 

Abstract. In Addenda to my previous paper “On the special relation between the 

numbers of the form 505+1008k and the squares of primes” I defined the notions of c/m-

integers and g/s-integers and showed some of their applications. In a previous paper I 

conjectured that, beside few definable exceptions, the Fermat pseudoprimes to base 2 

with two prime factors are c/m-primes, but I haven’t defined the “definable exceptions”. 

However, in this paper I confirm one of my constant beliefs, namely that the relations 

between the two prime factors of a 2-Poulet number are definable without exceptions and 

I make a conjecture about a generic formula of these numbers, namely that the most of 

them are s-primes and the exceptions must satisfy a given Diophantine equation.  

 

 

Definition of a s-prime:  

 

We name s-primes the semiprimes of the form p*q, p < q, with the property that q can be 

written as k*p - k + 1, where k is positive integer. 

 

Preliminary conjecture:  

 

All 2-Poulet numbers but a set of few definable exceptions are s-primes. 

 

Note:  

 

For a list of 2-Poulet numbers see the sequence A214305 submitted by me on OEIS. 

 

Verifying the conjecture (for the first thirty 2-Poulet numbers): 

 

For 341 = 11*31 we have: 

: 11*3 – 2 = 31. The number 341 is a s-prime. 

 

For 1387 = 19*73 we have: 

: 19*4 – 3 = 73. The number 1387 is a s-prime. 

 

For 2701 = 37*73 we have: 

: 37*2 – 1 = 73. The number 2701 is a s-prime. 

 

For 3277 = 29*113 we have: 

: 29*4 – 3 = 113. The number 3277 is a s-prime. 

 

For 4033 = 37*109 we have: 

: 37*3 – 2 = 109. The number 4033 is a s-prime. 

 

For 4369 = 17*257 we have: 

: 17*16 – 15 = 257. The number 4369 is a s-prime. 

 

For 4681 = 31*151 we have: 

: 31*3 – 2 = 151. The number 4681 is a s-prime. 
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For 5461 = 43*127 we have: 

: 43*3 – 2 = 127. The number 5461 is a s-prime. 

 

The number 7957 = 73*109 is an exception (we will try to define it when more 

exceptions will occur) 

 

For 8321 = 53*157 we have: 

: 53*3 – 2 = 157. The number 4681 is a s-prime. 

 

For 10261 = 31*331 we have: 

: 31*11 – 10 = 331. The number 10261 is a s-prime. 

 

For 13747 = 59*233 we have: 

: 59*4 – 3 = 233. The number 13747 is a s-prime. 

  

For 14491 = 43*337 we have: 

: 43*8 – 7. The number 14491 is a s-prime. 

 

For 15709 = 23*683 we have: 

: 23*31 – 30 = 683. The number 15709 is a s-prime. 

 

For 18721 = 97*193 we have: 

: 97*2 – 1 = 193. The number 18721 is a s-prime. 

 

For 19951 = 71*281 we have: 

: 71*3 – 2 = 281. The number 19951 is a s-prime. 

 

The number 23377 = 97*241 is an exception (we will try to define it when more 

exceptions will occur) 

 

For 31417 = 89*353 we have: 

: 89*4 – 3 = 353. The number 31417 is a s-prime. 

 

For 31609 = 73*433 we have: 

: 73*6 – 5 = 433. The number 31609 is a s-prime. 

 

For 31621 = 103*307 we have: 

: 103*3 – 2 = 307. The number 31621 is a s-prime. 

 

The number 35333 = 89*397 is an exception (we will try to define it when more 

exceptions will occur) 

 

The number 42799 = 127*337 is an exception (we will try to define it when more 

exceptions will occur) 

 

For 49141 = 157*313 we have: 

: 157*2 – 1 = 313. The number 49141 is a s-prime. 

 

The number 49981 = 151*331 is an exception (we will try to define it when more 

exceptions will occur) 
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For 60701 = 101*601 we have: 

: 101*6 – 5 = 601. The number 60701 is a s-prime. 

 

The number 60787 = 89*683 is an exception (we will try to define it when more 

exceptions will occur) 

 

For 65281 = 97*673 we have: 

: 97*7 – 6 = 673. The number 65281 is a s-prime. 

 

For 80581 = 61*1321 we have: 

: 61*22 – 21 = 1321. The number 80581 is a s-prime. 

 

For 83333 = 167*499 we have: 

: 167*3 – 2 = 499. The number 83333 is a s-prime. 

 

Conclusion:  

  

I studied the exceptions and I found one thing common to them: they satisfy the equation 

a*q = b*p + c, where p and q are the two prime factors, p < q, a and b positive integers 

and c integer that satisfy the condition a = b + c: 

 

:  7957 = 73*109: satisfies for (a, b, c) = (3, 2, 1) 

Indeed, 3*73 = 2*109 + 1 and 3 = 2 + 1; 

 

:  23377 = 97*241: satisfies for (a, b, c) = (5, 2, 3) 

Indeed, 5*97 = 2*241 + 3 and 5 = 2 + 3; 

 

: 35333 = 89*397: satisfies for (a, b, c) = (8, 36, -28) 

Indeed, 8*397 = 36*89 - 28 and 8 = 36 - 28; 

 

:  42799 = 127*337: satisfies for (a, b, c) = (8, 3, 5)  

Indeed, 8*127 = 3*337 + 5 and 8 = 3 + 5; 

 

:  49981 = 151*331: satisfies for (a, b, c) = (5, 11, -6)  

Indeed, 5*331 = 11*151 - 6 and 5 = 11 – 6. 

 

Conjecture on a generic formula of 2-Poulet numbers:  

 

All 2-Poulet numbers p*q, p < q (or equal in the two cases known, the squares of the 

Wieferich primes) satisfy at least one of the following two conditions: 

(i) q can be written as k*p - k + 1, where k is positive integer; 

(ii) they satisfy the equation a*q = b*p + c, where a and b are positive integers and c 

integer that satisfy the condition a = b + c. 
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Part Three. 

The notions of Coman constants and Smarandache-Coman 

constants 
 

 

 

35. The notion of Coman constants 
 

 

Abstract. In this paper I present a notion based on the digital root of a number, namely 

“Coman constant”, that highlights the periodicity of some infinite sequences of non-null 

positive integers (sequences of squares, cubes, triangular numbers, polygonal numbers 

etc). 

 

 

Definition: 

 

We understand by “Coman constants” the numbers with n digits obtained by 

concatenation from the values of the digital root of the first n terms of an infinite 

sequence of non-null positive integers, if the values of the terms of such a sequence form 

themselves a periodic sequence, with a periodicity equal to n. We consider that it is 

interesting to see, from some well known sequences of positive integers, which one is 

characterized by a Coman constant and which one it isn’t. 

 

Example: 

The values of the digital root of the terms of the cubic numbers sequence (1, 8, 27, 64, 

125, 216, 343, 512, 729, 1000, 1331, ...) are 1, 8, 9, 1, 8, 9 (...) so these values form a 

sequence with a periodicity equal to three, the terms 1, 8, 9 repeating infinitely. 

Concatenating these three values is obtained a Coman constant, i.e. the number 189.  

 

Let’s take the following sequences: 

 

(1) The cubic numbers sequence 

 

Sn is the sequence of the cubes of positive integers and, as it can be seen in the example 

above, is characterized by a Coman constant with three digits, the number 189. 

 

(2) The square numbers sequence 

 

Sn is the sequence of the square of positive integers (A000290 in OEIS): 1, 4, 9, 16, 25, 

36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441 (...) and is 

characterised by a Coman constant with nine digits, the number 149779419. 

 

(3) The triangular numbers sequence 

 

Sn is the sequence of the numbers of the form (n*(n + 1))/2 = 1 + 2 + 3 + ... + n 

(A000217 in OEIS): 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 

171, 190, 210, 231, 253, 276, 300 (...) and is characterised by a Coman constant with nine 

digits, the number 136163199. 
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(4) The centered square numbers sequence 

 

Sn is the sequence of the numbers of the form m = 2*n*(n + 1) + 1 (A001844 in OEIS): 

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613 (...) and is 

characterised by a Coman constant with nine digits, the number 154757451. 

 

(5) The centered triangular numbers sequence 

 

Sn is the sequence of the numbers of the form m = 3*n*(n + 1)/ 2 + 1 (A005448 in 

OEIS): 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460 (...) 

and is characterised by a Coman constant with three digits, the number 141. 

 

(6) The Devlali numbers sequence 

 

Sn is the sequence of the Devlali numbers (defined by the Indian mathematician D.R. 

Kaprekar, born in Devlali), which are the numbers that can not be expressed like n + 

S(n), where n is integer and S(n) is the sum of the digits of n. The sequence of these 

numbers is (A003052 in OEIS): 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 

132, 143, 154, 165, 176, 187, 198 (...). 

 

This sequence is characterized by a Coman constant with 9 digits, the number 

135792468.  

 

(7) The Demlo numbers sequence 

 

Sn is the sequence of the Demlo numbers (defined by the Indian mathematician D.R. 

Kaprekar and named by him after a train station near Bombay), which are the numbers of 

the form (10^n – 1)/9)^2. The sequence of these numbers is (A002477 in OEIS): 1, 121, 

12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 

12345678987654321, 1234567900987654321 (...). 

 

This sequence is characterized by a Coman constant with 9 digits, the number 

149779419.  

 

Comment: 

 

I conjecture that any sequence of polygonal numbers, i.e. numbers with generic formula 

((k^2*(n – 2) – k*(n – 4))/2, is characterized by a Coman constant: 

 

: The sequence of pentagonal numbers, numbers of the form n*(3*n – 1)/2, i.e. 1, 5, 

12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 

...(A000326) is characterized by the Coman constant 153486729; 

: The sequence of hexagonal numbers, numbers of the form n*(2*n – 1), i.e. 1, 6, 15, 

28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 

...(A000326) is characterized by the Coman constant 166193139 etc. 

 

Conclusion: 

We found so far eight Coman constants, six with nine digits, i.e. the numbers 149779419, 

136163199, 154757451, 135792468, 153486729, 166193139 and two with three digits, 

i.e. the numbers 189 and 141. 
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36. Two classes of numbers which not seem to be characterized by a Coman 

constant 
 

 

Abstract. In a previous paper I defined the notion of “Coman constant”, based on the 

digital root of a number and useful to highlight the periodicity of some infinite sequences 

of non-null positive integers. In this paper I present two sequences that, in spite the fact 

that their terms can have only few values for digital root, don’t seem to have a 

periodicity, in other words don’t seem to be characterized by a Coman constant.  

 

 

Note:  

 

There are some known sequences of integers that, in spite the fact that their terms can 

have only few values for digital root, don’t seem to have a periodicity, in other words 

don’t seem to be characterized by a Coman constant. Such sequences are: 

 

(1) The EPRN numbers sequence 

 

Sn is the sequence of the EPRN numbers (defined by the Indian mathematician Shyam 

Sunder Gupta), which are the numbers that can be expressed in at least two different 

ways as the product of a number and its reversal (for instance, such a number is 2520 = 

120*021 = 210*012). The sequence of these numbers is (A066531 in OEIS): 2520, 4030, 

5740, 7360, 7650, 9760, 10080, 12070, 13000, 14580, 14620, 16120, 17290, 18550, 

19440 (...). Though the value of digital root for the terms of this sequence can only be 1, 

4, 7 or 9, the sequence of the values of digital root (9, 7, 7, 7, 9, 4, 9, 1, 4, 9, 4, 1, 1, 1, 9, 

...) don’t seem to have a periodicity. 

 

(2) The congrua numbers sequence 

 

Sn is the sequence of the congrua numbers n, numbers which are the possible solutions to 

the congruum problem (n = x^2 – y^2 = z^2 – x^2). The sequence of these numbers is 

(A057102 in OEIS): 24, 96, 120, 240, 336, 384, 480, 720, 840, 960, 1320, 1344, 1536, 

1920, 1944, 2016, 2184, 2520, 2880, 3360 (...). Though the value of digital root for the 

terms of this sequence can only be 3, 6 or 9, the sequence of the values of digital root (6, 

6, 3, 6, 3, 6, 3, 9, 3, 6, 6, 3, 6, 3, 9, 9, 6, 9, ...) don’t seem to have a periodicity. 
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37. The Smarandache concatenated sequences and the definition of 

Smarandache-Coman constants 
 

 

Abstract. In two previous papers I presented the notion of “Mar constant” and showed 

how could highlight the periodicity of some infinite sequences of integers. In this paper I 

present the notion of “Smarandache-Coman constant”, useful in Diophantine analysis of 

Smarandache concatenated sequences. 

 

 

Definition:  

 

We understand by “Smarandache-Coman constants” the numbers with n digits obtained 

by concatenation from the digital root of the first n terms of a Smarandache concatenated 

sequence, if the digital root of the terms of such a sequence form themselves a periodic 

sequence, with a periodicity equal to n. Note that not every Smarandache concatenated 

sequence is characterized by a Smarandache-Coman constant, just some of them; it is 

interesting to study what are the properties these sequences have in common; it is also 

interesting that sometimes more such sequences have the same value of Smarandache-

Coman constant and also to study what these have in common. 

 

Example: 

 

The values of the digital root of the terms of the Smarandache consecutive sequence (12, 

123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 

1234567891011, ...) are: 1, 3, 6, 1, 6, 3, 1, 9, 9, 1, 3, 6, 1, 6, 3, 1, 9, 9 (...) so these values 

form a sequence with a periodicity equal to nine, the terms 1, 3, 6, 1, 6, 3, 1, 9, 9 

repeating infinitely. Concatenating these nine values is obtained a Smarandache-Coman 

constant, i.e. the number 136163199.  

 

Let’s take the following Smarandache concatenated sequences: 

 

(1) The Smarandache consecutive numbers sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n positive 

integers. The first ten terms of the sequence (A007908 in OEIS) are 12, 123, 1234, 

12345, 123456, 1234567, 12345678, 123456789, 12345678910. 

 

This sequence is characterized by a Smarandache-Coman constant with 9 digits, the 

number 136163199. Note that, obviously, the same constant will be obtained from the 

Smarandache reverse sequence (A000422), defined as the sequence obtained through the 

concatenation of the first n positive integers, in reverse order.  

 

(2) The Smarandache concatenated odd sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n odd 

numbers (the n-th term of the sequence is formed through the concatenation of the odd 

numbers from 1 to 2*n – 1). The first ten terms of the sequence (A019519 in OEIS) are 1, 

13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 

135791113151719. 
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This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 149779419.  

 

(3) The Smarandache concatenated even sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n even 

numbers (the n-th term of the sequence is formed through the concatenation of the even 

numbers from 1 to 2*n). The first ten terms of the sequence (A019520 in OEIS) are 2, 24, 

246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 

2468101214161820. 

 

This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 263236299.  

 

(4) The concatenated cubic sequence 

 

Sn is defined as the sequence obtained through the concatenation of the first n cubes: 

1(2^3)(3^3)...(n^3). The first ten terms of the sequence (A019522 in OEIS) are 1, 18, 

1827, 182764, 182764125, 182764125216, 182764125216343, 182764125216343512, 

182764125216343512729, 1827641252163435127291000. 

 

This sequence is characterized by a Smarandache-Coman constant with three digits, the 

number 199.  

 

(5) The antysimmetric numbers sequence 

 

Sn is defined as the sequence obtained through the concatenation in the following way: 

12...(n)12...(n). The first ten terms of the sequence (A019524 in OEIS) are 11, 1212, 

123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 

123456789123456789. 

 

This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 26323629. Note that the same Smarandache-Coman constant characterizes the 

Smarandache concatenated even sequence. 

 

(6) The “n concatenated n times” sequence 

 

Sn is defined as the sequence of the numbers obtained concatenating n times the number 

n. The first ten terms of the sequence (A000461 in OEIS) are 1, 22, 333, 4444, 55555, 

666666, 7777777, 88888888, 999999999, 10101010101010101010. 

 

This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 149779419. Note that the same Smarandache-Coman constant characterizes the 

Smarandache concatenated odd sequence. 

 

(7) The permutation sequence 

 

Sn is defined as the sequence of numbers obtained through concatenation and permutation 

in the following way: 13...(2*n – 3)(2*n – 1)(2*n)(2*n – 2)(2*n – 4)...42. The first seven 
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terms of the sequence (A007943 in OEIS) are 12, 1342, 135642, 13578642, 

13579108642, 135791112108642, 1357911131412108642, 13579111315161412108642. 

 

This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 313916619.  

 

(8) The Smarandache n2*n sequence 

 

Sn is defined as the sequence for which the n-th term a(n) is obtained concatenating the 

numbers n and 2*n. The first twelve terms of the sequence (A019550 in OEIS) are 12, 

24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224. 

 

This sequence is characterized by a Smarandache-Coman constant with three digits, the 

number 369.  

 

(9) The Smarandache nn^2 sequence 

 

Sn is defined as the sequence for which the n-th term a(n) is obtained concatenating the 

numbers n and n^2. The first fifteen terms of the sequence (A053061 in OEIS) are 11, 24, 

39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, 13169, 14196, 15225. 

 

This sequence is characterized by a Smarandache-Coman constant with nine digits, the 

number 26323629. Note that the same Smarandache-Coman constant characterizes the 

Smarandache concatenated even sequence and the Smarandache antysimmetric numbers 

sequence. 

 

(10) The Smarandache power stack sequence for k = 2 

 

Sn(k) is the sequence for which the n-th term is defined as the positive integer obtained 

by concatenating all the powers of k from k^0 to k^n. The first ten terms of the sequence 

are 1, 12, 124, 1248, 12416, 1241632, 124163264, 124163264128, 124163264128256, 

124163264128256512. 

This sequence is characterized by a Smarandache-Coman constant with six digits, the 

number 137649. 

 

Comments: 

 

(1) I conjecture that any sequence of the type nk*n is characterized by a Smarandache-

Coman constant: 

 

:  for k = 3 the sequence 13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236 

is characterized by the Smarandache-Coman constant 483726159; 

: for k = 4 the sequence 14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 

1248 is characterized by the Smarandache-Coman constant 516273849 etc. 

 

(2) I conjecture that any sequence of the type nn^k is characterized by a Smarandache-

Coman constant: 

 

:  for k = 3 the sequence 11, 28, 327, 464, 5125, 6216, 7343, 8512, 9729, 101000, 

111331 is characterized by the Smarandache-Coman constant 213546879 etc. 
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(3) Not any power stack sequence is characterized by a Smarandache-Coman constant: 

 

:  for k = 3 the Smarandache sequence is 1, 13, 139, 13927, 1392781, 1392781243, 

1392781243729, 13927812437292187 and the values of Mar function for the 

terms of the sequence are 1, 4, 4, 4 (...), the digit 4 repeating infinitely so is not a 

sequence characterized by a Smarandache-Coman constant. 

 

(4) I conjecture that not any sequence with the general term of the form 1(2^k)(3^k)...(n^k) is 

characterized by a Smarandache-Coman constant: 

 

:  the values of digital root for the terms of the concatenated square sequence 1, 14, 

149, 14916, 1491625, 149162536, 14916253649, 1491625364964, 

149162536496481, 149162536496481100, ... (A019521 in OEIS) are 1, 5, 5, 3, 1, 

1, 5, 6, 6, 7, 2, 2 (...) and so far has not been shown any periodicity. 

 

Conclusion: 

 

We found so far 10 Smarandache-Coman constants, 7 with nine digits, i.e. the numbers 

136163199, 149779419, 26323629, 313916619, 483726159, 516273849, 213546879, 

two with three digits, i.e. the numbers 199 and 369, and one with six digits, the number 

137649. 
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Part Four. 

The notion of Smarandache-Coman sequences  
 

 

 

38. Fourteen Smarandache-Coman sequences of primes 
 

 

Abstract. In this paper I define the “Smarandache-Coman sequences” as “all the 

sequences of primes obtained from the Smarandache concatenated sequences using basic 

arithmetical operations between the terms of such a sequence, like for instance the sum or 

the difference between two consecutive terms plus or minus a fixed positive integer, the 

partial sums, any other possible basic operations between terms like a(n) + a(n+2) – 

a(n+1), or on a term like a(n) + S(a(n)), where S(a(n)) is the sum of the digits of the term 

a(n) etc.”, and I also present few such sequences. 

 

 

Definition:  

 

We name “Smarandache-Coman sequences” all the sequences of primes obtained from 

the Smarandache concatenated sequences using basic arithmetical operations between the 

terms of such a sequence, like for instance the sum or the difference between two 

consecutive terms plus or minus a fixed positive integer, the partial sums, any other 

possible basic operations between terms like a(n) + a(n+2) – a(n+1), or on a term like 

a(n) + S(a(n)), where S(a(n)) is the sum of the digits of the term a(n) etc. 

 

Note:  The Smarandache concatenated sequences are well known for the very 

few terms which are primes; on the contrary, many Smarandache-Coman 

sequences can be constructed that probably have an infinity of terms 

(primes, by definition). 

 

Note:  I shall use the notation a(n) for a term of a Smarandache concatenated 

sequence and b(n) for a term of a Smarandache-Coman sequence. 

 

SEQUENCE I 

 

Starting from the Smarandache consecutive numbers sequence (defined as the sequence 

obtained through the concatenation of the first n positive integers, see A007908 in OEIS), 

we define the following Smarandache-Coman sequence: b(n) = a(n+1) – a(n) – 2 if the 

last digit of the term a(n+1) is even and b(n) = a(n+1) - a(n) + 2 if the last digit of the 

term a(n+1) is odd. 

 

 We have: 

 

: 123 – 12 + 2 = 113, prime; 

: 1234 – 123 – 2 = 1109, prime; 

: 12345 – 1234 + 2 = 11113, prime; 

: 123456 – 12345 – 2 = 111109, prime;  

: 12345789 – 12345678 + 2 = 111111113, prime; 
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: 12345678910 – 123456789 – 2 = 12222222119, prime; 

: 123456789101112 – 1234567891011 – 2 = 122222221210099, prime (...) 

 

The SEQUENCE I contains the following terms:  

113, 1109, 11113, 111109, 111111113, 12222222119, 122222221210099 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE II 

 

Starting from the Smarandache concatenated odd sequence (defined as the sequence 

obtained through the concatenation of the first n odd numbers, see A019519 in OEIS), we 

define the following Smarandache-Coman sequence: b(n) = a(n+1) + a(n) – S(a(n+1)) – 

S(a(n)) + 2, where S(a(n)) is the sum of the digits of the term a(n). 

 

 We have: 

 

: 1 + 13 – 1 – 4 + 2 = 11, prime; 

: 13 + 135 – 4 – 9 + 2 = 137, prime; 

: 1357 + 13579 – 16 – 25 + 2 = 14897, prime; 

: 13579 + 1357911 – 25 – 36 + 2 = 1371431, prime; 

: 135791113 + 13579111315 – 49 – 64 + 2 =  13714902317, prime (...) 

 

Note the interesting fact that 135 + 1357 – 9 – 16 + 2 = 1469 = 13*113 (a semiprime with 

the property that 113 – 13 + 1 = 101, prime) and 1357911 + 135791113 – 36 – 49 + 2 = 

137148941 = 431*318211 (a semiprime with the property that 318211 + 431 – 1 = 

318641, prime). 

 

The SEQUENCE II contains the following terms:  

11, 137, 14897, 1371431, 13714902317 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE III 

 

Starting from the Smarandache concatenated even sequence (defined as the sequence 

obtained through the concatenation of the first n even numbers, see A019520 in OEIS), 

we define the following Smarandache-Coman sequence: b(n) = a(n+1) + a(n) – S(a(n+1)) 

– S(a(n)) + 1, where S(a(n)) is the sum of the consecutive even numbers which form the 

term a(n); for instance, S(246810) = 2 + 4 + 6 + 8 + 10 = 30. 

 

 We have: 

 

: 2 + 24 – 2 – 6 + 2 = 19, prime; 

: 246 + 2468 – 12 – 20 + 1 = 2683, prime; 

: 2468 + 246810 – 20 – 30 + 1 = 249229, prime; 

: 24681012 + 2468101214 – 42 – 56 + 1 = 2492782129, prime (...) 
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The SEQUENCE III contains the following terms:  

19, 2683, 249229, 2492782129  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE IV 

 

Starting from the concatenated odd square sequence (defined as the sequence obtained 

through the concatenation of the first n odd squares, see A016754 in OEIS), we define 

first the following Smarandache type sequence: a(n) is obtained through the 

concatenation of two squares of consecutive odd integers (19, 925, 2549, 4981, 81121, 

121169, ...) and then the following Smarandache-Coman sequence: b(n) = a(n) – k, where 

k is equal to the even number between the two consecutive odd integers which squares 

form through concatenation the term a(n). Example: b(1) = 19 – 2 = 17. 

 

 We have: 

 

: 19 – 2 = 17, prime; 

: 2549 – 6 = 2543, prime; 

: 4981 – 8 = 4973, prime; 

: 121169 – 12 = 121157, prime; 

: 289361 – 18 = 289343, prime; 

: 361441 – 20 = 361421, prime; 

: 841961 – 30 = 841931, prime (...) 

 

The SEQUENCE IV contains the following terms:  

17, 2543, 4973, 121157, 289343, 361421, 841931  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE V 

 

Starting from the concatenated even square sequence (defined as the sequence obtained 

through the concatenation of the first n even squares, see A016742 in OEIS), we define 

first the following Smarandache type sequence: a(n) is obtained through the 

concatenation of two squares of consecutive even integers (416, 1636, 3664, 64100, 

100144, 144196, ...) and then the following Smarandache-Coman sequence: b(n) = a(n) + 

k, where k is equal to the odd number between the two consecutive even integers which 

squares form through concatenation the term a(n). Example: b(1) = 416 + 3 = 419. 

 

 We have: 

 

: 416 + 3 = 419, prime; 

: 3664 + 7 = 3671, prime; 

: 64100 + 9 = 64109, prime; 

: 196256 + 15 = 196271, prime; 

: 324400 + 19 = 324419, prime (...) 
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The SEQUENCE V contains the following terms:  

419, 3671, 64109, 196271, 324419  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE VI 

 

Starting from the “n concatenated n times” sequence (defined as the sequence obtained 

concatenating n times the number n, see A000461 in OEIS), we define the following 

Smarandache-Coman sequence: b(n) = a(n) + a(m) + 333, where a(n) and a(m) are two 

even (not necessarily distinct) terms of the “n concatenated n times” sequence. 

 

 We have: 

 

: 22 + 4444 + 333 = 4799, prime; 

: 4444 + 4444 + 333 = 9221, prime; 

: 22 + 666666 + 333 = 667021, prime; 

: 4444 + 666666 + 333 = 671443, prime; 

: 666666 + 88888888 + 333 = 89555887, prime (...) 

 

The SEQUENCE VI contains the following terms:  

4799, 9221, 667021, 671443, 89555887 (...) 

 

Note: The sequence b(n) = a(n) + a(m) – 333, in the same conditions, also can be 

considered (e.g. 22 + 4444 – 333 = 4133, prime, or 4444 + 666666 – 333 

= 670777, prime). Also a(n) + a(m) – a(k), where a(k) is an odd term of 

the “n concatenated n times” sequence. 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE VII 

 

Starting from the back concatenated odd sequence (A038395 in OEIS), we define the 

following Smarandache-Coman sequence: b(n) = 2*a(n) – 1. 

 

 We have: 

 

: 2*31 – 1 = 61, prime; 

: 2*531 – 1 = 1061, prime; 

: 2*7531 – 1 = 15061, prime; 

: 2*131197531 – 1 = 262395061, prime (...) 

 

The SEQUENCE VII contains the following terms:  

61, 1061, 15061, 262395061 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 
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SEQUENCE VIII 

 

Starting from the back concatenated even sequence (A038396 in OEIS), we define the 

following Smarandache-Coman sequence: b(n) = a(n) – 1. 

 

 We have: 

 

: 42 – 1 = 41, prime; 

: 642 – 1 = 641, prime; 

: 8642 – 1 = 8641, prime; 

: 18161412108642 – 1 = 18161412108641, prime (...) 

 

The SEQUENCE VIII contains the following terms:  

41, 641, 8641, 18161412108641 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE IX 

 

Starting from the back concatenated odd square sequence (defined as the sequence 

obtained through the back concatenation of the first n odd squares), we define first the 

following Smarandache type sequence: a(n) is obtained through the back concatenation 

of two squares of consecutive odd integers (91, 259, 4925, 8149, 12181, 169121, ...) and 

then the following Smarandache-Coman sequence: b(n) = a(n) – 2. 

 

 We have: 

 

: 91 – 2 = 89, prime; 

: 259 – 2 = 257, prime; 

: 8149 – 2 = 8147, prime; 

: 225169 – 2 = 225167, prime; 

: 441361 – 2 = 441359, prime; 

: 841729 – 2 = 841727, prime (...) 

 

The SEQUENCE IX contains the following terms:  

89, 257, 8147, 225167, 441359, 841727  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE X 

 

Starting from the back concatenated square sequence, we define first the following 

sequence: a(n) is obtained through the concatenation to the left of the square of the 

number 8 (i.e.  64) with a square of an odd number (164, 964, 2564, 4964, 8164, 12164, 

16964 ...) and then the following Smarandache-Coman sequence: b(n) = a(n)/4. 

 We have: 

 

: 164/4 = 41, prime; 
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: 964/4 = 241, prime; 

: 2564/4 = 641, prime; 

: 12164/4 = 3041, prime; 

: 16964/4 = 4241, prime; 

: 22564/4 = 5641, prime; 

: 36164/4 = 9041, prime; 

: 52964/4 = 13241, prime (...) 

 

The SEQUENCE X contains the following terms:  

41, 241, 641, 3041, 4241, 5641, 9041, 13241  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms (primes, by 

definition). 

 

SEQUENCE XI 

 

Starting from the Smarandache n2*n sequence (the n-th term of the sequence is obtained 

concatenating the numbers n and 2*n, see A019550 in OEIS), we define first the 

following sequence: a(n) is obtained through the concatenation of two consecutive terms 

of the sequence mentioned (1224, 2436, 3648, 48510, 510612 ...) and then the following 

Smarandache-Coman sequence: b(n) = a(n)- 1. 

 

 We have: 

 

: 1224 – 1 = 1223, prime; 

: 510612 – 1 = 510611, prime; 

: 612714 – 1 = 612713, prime; 

: 9181020 – 1 = 9181019, prime; 

: 14281530 – 1 = 14281529, prime (...) 

 

The SEQUENCE XI contains the following terms:  

1223, 510611, 612713, 9181019, 14281529  (...) 

 

Note:  I conjecture that this sequence has an infinity of terms. 

 

SEQUENCE XII 

 

Starting again from the Smarandache n2*n sequence, we define first the following 

sequence: a(n) is obtained through the concatenation of three consecutive terms of the 

sequence mentioned (122436, 243648, 3648510, 48510612, 510612714 ...) and then the 

following Smarandache-Coman sequence: b(n) = a(n)/6 + 1. 

 

 We have: 

 

: 122436/6 + 1 = 20407, prime; 

: 243648/6 + 1 = 40609, prime; 

: 612714816/6 + 1 = 102119137, prime (...) 

The SEQUENCE XII contains the following terms:  

20407, 40609, 102119137 (...) 
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Note:  I conjecture that this sequence has an infinity of terms. 

 

Comment: inspired by the sequence above I also conjecture that there exist an infinity of 

primes formed by concatenation in the following way: n0(n+2)0(n+5), where n is an even 

number; the sequence of these numbers is: 20407, 40609, 608011, 12014017, 16018021, 

24026029, 26028031, 28030033 (...) 

 

SEQUENCE XIII 

 

Starting from the Smarandache nn^2 sequence (the n-th term of the sequence is obtained 

concatenating the numbers n and n^2, see A053061 in OEIS), we define the following 

Smarandache-Coman sequence: b(n) = a(n) + n + 1. 

 

 We have: 

 

: 11 + 1 + 1 = 13, prime; 

: 39 + 3 + 1 = 43, prime; 

: 416 + 4 + 1 = 421, prime; 

: 636 + 6 + 1 = 643, prime; 

: 749 + 7 + 1 = 757, prime; 

: 981 + 9 + 1 = 991, prime; 

: 10100 + 10 + 1 = 10111, prime; 

: 12144 + 12 + 1 = 12157, prime; 

: 15225 + 15 + 1 = 15241, prime; 

: 13169 + 13 + 1 = 13183, prime (...) 

 

The SEQUENCE XIII contains the following terms:  

13, 43, 421, 643, 757, 991, 10111, 12157, 15241, 13183 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms. 

 

SEQUENCE XIV 

 

Starting again from the Smarandache nn^2 sequence, we define the following 

Smarandache-Coman sequence: b(n) is obtained concatenating to the right the terms a(n) 

with the number 11. 

 

 We have: 

 

: 2411, 3911, 41611, 52511, 63611, 1419611, 1522511, 1728911 (...) are 

primes. 

 

The SEQUENCE XIV contains the following terms:  

2411, 3911, 41611, 52511, 63611, 1419611, 1522511,1728911 (...) 

 

Note:  I conjecture that this sequence has an infinity of terms. 
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Part Five. 

The Smarandache-Coman function 
 

 

 

39.  The Smarandache-Coman function and nine conjectures on it 
 

 

Abstract. The Smarandache-Coman function is the function defined on the set of non-

null positive integers with values in the set of non-null positive integers in the following 

way: SC(n) is the least number such that SC(n)! is divisible by n + r, where r is the digital 

root of the number n. In other words, SC(n) = S(n + r), where S is the Smarandache 

function. I also state, in this paper, nine conjectures on this function which seems to be 

particularly interesting: beside other characteristics, it seems to have as values all the 

prime numbers and, more than that, they seem to appear, leaving aside the non-prime 

values, in natural order. 

 

 

Definition:  

 

The Smarandache-Coman function is the function defined on the set of non-null positive 

integers with values in the set of non-null positive integers in the following way: SC(n) is 

the least number such that SC(n)! is divisible by n + r, where r is the digital root of the 

number n. In other words, SC(n) = S(n + r), where S is the Smarandache function. 

 

Note: The digital root of a number is obtained through the iterative operation of 

summation of the digits of a number until is obtained a single digit; examples: the digital 

root of the number 28 is 1 because 2 + 8 = 10 and 1 + 0 = 1; the digital root of the 

number 1729 is 1 because 1 + 7 + 2 + 9 = 19 and 1 + 9 = 10 and 1 + 0 = 1; the digital root 

of the number 561 is 3 because 5 + 6 + 1 = 12 and 1 + 2 = 3; so, the digital root of a 

number can only have one from the following nine values: 1, 2, 3, 4, 5, 6, 7, 8 or 9. In 

other words, r is obtained computing the sum of the digits of  n and again the sum of the 

digits of the resulted number and so on until one gets a result less than 10; for instance, 

for n = 895, we have 8 + 9 + 5 = 22 > 10, then again 2 + 2 = 4 < 10, so r = 4. 

 

The values of SC function are:  

 

:  2, 4, 3, 4, 5, 4, 7, 8, 6, 11, 13, 5, 17, 19, 7, 23, 10, 9, 5, 11, 6, 13, 7, 5, 8, 17, 6, 29, 

31, 11, 7, 37, 13, 41, 43, 6, 19, 5, 7, 11, 23, 6, 10, 13, 9, 47, 7, 17, 53, 11, 19, 59, 

61, 7, 7, 29, 5, 31, 8, 11, 17, 7, 6, 13, 67, 23, 71, 73, 10, 11, 79, 9, 37, 19, 13, 6, 

41, 7, 43, 11, 6, 83, 17, 29, 89, 13, 31, 19, 97 (...) 

 

Observation 1:  

 

Within the first 89 values of SC(n) are found all the first 25 primes from 2 to 97. More 

than that, they all appear for the first time in order: there is not a prime p3 > p2 between 

p1 and p2, where p1 < p2 and both p1 and p2 appear for the first time in Smarandache-

Coman sequence. 
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Observation 2:  

 

Note that, from the first 89 values of SC(n): 

: 69 are primes(25 of them distinct); 

: 3 are odd non-primes (all of them equal to 9); 

: 17 are even non-primes (4 of them distinct: 4, 6, 8, 10). 

 

Observation 3:  

 

Up to n = 89, the longest chain of consecutive prime values of SC(n) is obtained for n 

from 46 to 58: 47, 7, 17, 53, 11, 19, 59, 61, 7, 7, 29, 5, 31. 

 

Conjecture 1:  

 

All the prime numbers appear as values in the SC sequence (the sequence of the values of 

SC function). 

 

Conjecture 2:  

 

All the prime numbers appear for the first time in natural order in SC sequence: : there is 

not a prime p3 > p2 between p1 and p2, where p1 < p2 and both p1 and p2 appear for the 

first time in SC sequence. 

 

Conjecture 3:  

 

All the even numbers appear as values in the SC sequence.  

 

Conjecture 4:  

 

There exist an infinity of primes p for which SC(p) = q, where q is prime. 

 

The sequence of the primes (p, q) is:  

 

:  (1, 2), (3, 3), (5, 5), (7, 7), (11, 13), (13, 17), (23, 7), (29, 31), (31, 7), (37, 19), 

(41, 23), (47, 7), (53, 61), (61, 17), (67, 71), (71, 79), (73, 37), (79, 43), (83, 17), 

(89, 97)... 

 

Conjecture 5:  

 

For all the pairs of twin primes (p, q), where p ≥ 11, is true that, if p appears for the first 

time in SC sequence as SC(n), then SC(n + 1) = q. 

 

Conjecture 6:  

 

There exist an infinity of numbers n such that SC(n) = m and SC(n + 1) = m + 1, where m 

+ 1 is prime. Such pairs of (m, m + 1) are: (10, 11), (28, 29), (46, 47), (82, 83)... 
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Conjecture 7:  

 

There exist an infinity of numbers n such that SC(n) = m and SC(n + 1) = m - 9, where m 

- 9 is prime. Such pairs of (m, m - 9) are: (20, 11), (22, 13), (26, 17)... 

 

 

Conjecture 8:  

 

There exist an infinity of values primes p of SC(n) for which the sum s of all the values 

of SC(n) up to and including SC(p) is prime. Such pairs of (p, s) are: (7, 29), (13, 67), 

(17, 89), (11, 173), (7, 199), (17, 229), (7, 313), (13, 547), (11, 691), (59, 769), (13, 971), 

(23, 1061), (17, 1597), (97, 1877)... 

 

Conjecture 9:  

 

There exist an infinity of pairs (p = S(n), r = S(n + 2)), both p and r primes which appear 

for the first time in SC sequence, with the property that r = p + 4, such that q = S(n + 1) is 

prime. Such triplets (p, q, r) are: (13, 5, 17), (19, 7, 23), (37, 13, 41), (67, 23, 71)... 

 

 
 



 

 

 

 

 

 

 

 

Part One of this book of collected papers brings together papers regarding conjectures on primes, twin 

primes,  squares of primes,  semiprimes, different types of pairs of primes,  recurrent sequences, other 

sequences of integers  related to primes created through concatenation  and in other ways. 

Part Two brings together several articles presenting the notions of c-primes, m-primes, c-composites and 

m-composites (c/m integers), also the notions of g-primes, s-primes, g-composites and s-composites  

(g/s integers) and show some of the applications of these notions. 

Part Three presents the notions of “Mar constants” and “Smarandache-Coman constants”, useful to 

highlight the periodicity of some infinite sequences of positive integers (sequences of squares, cubes, 

triangualar numbers) , respectively in the analysis of Smarandache concatenated sequences. 

Part Four presents the notion of Smarandache-Coman sequences, id est the sequences of primes formed 

through different arithmetical operations on the terms of Smarandache concatenated sequences. 

Part Five presents the notion of Smarandache-Coman function, a function based on the Smarandache 

function which seems to be particularly interesting: beside other notable characteristics, it seems to have 

as values all the prime numbers and, more than that, they seem to appear, leaving aside the non-prime 

values, in natural order. 

This book of collected papers seeks to expand the knowledge on some well known classes of numbers  and 

also to define new classes of primes or classes of integers directly related to primes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


