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Abstract: Although the Wu-Yang derivation of theaD Quantization condition (DQC) leads
mathematically to fractional charge solutions, aefal study of these fractional solutions using
Dirac strings on a closed surface in SO(3) showecizely why these fractional charges cannot
occur without giving rise to observable singula#iwhich of course are not permitted, and why
only the standard DQC is permitted. However, SQ¢3hnultivalued and so is not an exact
representation of the operative symmetries. Whencarefully analyze simply-connected,
single-valued covering groups for which the generagre the generalized"™oots of the 2x2
identity matrix I, which covering groups do exaatiypresent the operative symmetries, we find
that there is no such restriction and well-defifeattional charges are topologically permitted
without ambiguity.

PACS: 11.15.-q; 14.80.Hv
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1. Introduction

In 1931 Dirac [1] discovered th#t magnetic chargeg: were to hypothetically exist,
thenthis would imply that the electric chargemust be quantized. The relationship he found,
often written asey = 277n wheren is a positive or negative integer or zero, camieetknown as
the Dirac Quantization Condition (DQC). Dirac’srigation employed what he called a “nodal
line,” in modern language referred to as a “Dirddng,” which Dirac introduced as “an
exceptional case . . . occurring when the wavetfonoranishes, since then its phase does not
have a meaning.” This string is often visualizedaasemi-infinite solenoid of singularly-thin
width which shunts magnetic field lines to and frgpatial infinity, and it is not and cannot be
physical observable.

But as stated rather bluntly at 447 of [2]:

“The Dirac string is a considerable embarrassmenmonopole theory. It is
disconcerting to find that the vector potentialtttiescribes a Dirac monopole has
a string singularity along which the magnetic fiefd formally infinite, even
though we can argue that the string is undetectaDlee is therefore encouraged
to discover that it is possible to eliminate thangt”

To remedy the need to resort to the fiction ofhsatrings, Wu and Yang in the mid-
1970s [3], [4] developed an approach which doesahatl make use of these strings. Its results
are completely equivalent to Dirac's, with the odifference being that it is cast in the more-
modern language of fiber bundles. In the Wu Yapgreach, one uses gauge theory and
particularly north and south gauge field patches dbtain the differential equation

e""de" =(igu/2m) d where A is the gauge (phase) angle apdis the geometric azimuth

about the z-axis in the three dimensional physspalce of the rotation group SO(3). If we
define a “reduced azimuth® = ¢/ 2/ merely for notational convenience, it is readies that

this equation is solved bgxp(iA) = expliess ).

Moreover, as Dirac observes and as is well knowhe ‘value of [the phase] at a
particular point has no physical meaning and ohly difference between the values of [the
phase] at two different points is of any importaihceéSso once we start to consider specific

azimuth angles, firsgg. =0, we may useexp(iA) = 1= ex{i 2n) to deduce thaf\ = 27m with

integern will be quantized in units o2/7. If we employ a reduced gauge angie=A\/2/7=n,
then this is a quantum number representing the summb“windings” through the gauge space.

Then, usingg =1 and requiring thaexp(ies4) = 1 becausep = 277 has the same orientation as
¢ =0, we obtain A =eu =2mn. Finally, however, if we wind one or more addiid times
around the z-axis, then the generalized relatignskikp(ies)=1= exdi 2m) vyields

eu= 27T( n/41) , Which is suggestive of fractionalized chargewal.

Now, making the Dirac string unobservable is egl@nt to the requirement that the fiber
bundle be well-defined. So the question is whethere are fiber bundles which can be well-
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defined even forg. >1, and specifically whether the mathematically-péieali fractional charge
solutions ¢ =2,3,4,5.. in e,u:27T(n/41) can be given an unambiguous topological meaning,
or whether the only well-defined solution is tige=1 solution ey = 2774 of the standard Dirac
condition. In other words, are we required to didc these mathematical solutions
eu =2mN /¢ with ¢ =2,3,4,5.. of Wu and Yang'sexp(iA) = exg(ies4) which solves their
differential equatione™ dé&" = igz dp- as beingill-defined and unphysical Or, are there

topological mapping under which these solutionsvez# defined and physically acceptable and
do not lead to physically observable singularities?

Clearly, when we utilize the rotation group SOi@}alk about magnetic flux in or out of
a closed two-dimensional surface, and when weirstl an azimuth ovef < ¢ < 27 and then

begin additional cycles over whicl > 27, we are covering SO(3) more than once. So the
answer to these questions will have to emerge faarareful analysis of various covering groups
G which may project onto SO(3) with a many-to-ongesitive homomorphismz: G - SQ3),
which we shall refer to generally astuple covering groups of the physical space of 3O(
rotations. As we shall see, although these fraatichargesu = 277( n/ n’) with m=2,3,4,5..

do appear to be forbidden when analyzed using Ridegs in SO(3) which is multivalued and
not simply connected, these fractional charges lokaio a clear, well-defined, unambiguous
topological meaning, when we consider single-valwauply-connected covering groups which

we shall denote asné which project onto SO(3) viar: mé - SQ3) for which the kernel

kern:{iﬁ} represents am'" root of unity.

We begin by carefully reviewing magnetic fluxesand out of closed SO(3) spatial
surfaces using Dirac strings and Dirac’s originppr@ach from [1], but making use of the
language and apparatus of differential forms. Them show how these same results may be

topologically approached usirigarn:{%} single-valued covering groupﬁré projecting onto

SO(3) viarr: mé - SQ3), such that the fractional charge solutic®wn/m= eu of the Wu-
Yang equation exp(iA) = expliesp) originating in e dé" = iqwdg may indeed be

topologically well-defined and unambiguous. Throogt this discussion we shall employ
natural units in whichth =c=1.

2. Differential Forms Review of Dirac’s Original Monopole Derivation

To approach Dirac’s original derivation in [1] ogi differential forms, we begin by
considering a gauge transformati@A . eA= eA @ on the differential one-form gauge

potential A=A dX', which we rewrite aseA- eA= eA @& to be consistent with the

oppositely-signed convention implicitly employed Byrac. Taking a derivative we obtain
edA- edA= edA dd and via F =dA this becomeseF = eF- dd\. In this expression,
ddA =0 is a closed form which is locally exact, but nated be globally exact. Applying

Gauss’ / Stokes’ theorem enables us to write mbj'ﬁF' = eﬂ F—(ﬁ d\, or:
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$dn=-¢[[ F+d[ F. (2.1)

In the foregoing,dA is the non-integrable (locally not globally exasivefunction phase one-
form which may have its key relationships summatimsing the notation of Dirac’s equations
(3), (4) and (6) by the differential one-forrr =dS = eA= d\ with the electric and magnetic

fields in turn related to this byIxx =eH and U, -0,k =eE as in Dirac’'s equation (7), or
more simply consolidatedeF = d« which reiteratesF =dA. When we consider the three-
dimensional space onI)e” F corresponds WitI’B”H [dS which appears in Dirac’s equation

(8) and its unnumbered antecedent on Dirac’s pdge Lﬁkewise,cﬁd/\ corresponds to what
Dirac regularly refers to as a “change in phas@addsmall or otherwise] closed curves.”

Now, at page 66, Dirac first notes “how the notegmable derivativess [=eA| of the

phase of the wave function receive a natural imétgtion in terms of the potentials of the
electromagnetic field” and that this “gives us nothnew.” Thus, “[tlhe condition for an
unambiguous physical interpretatiari the theory was that the change in phase roucidsed
curve should be the same for all wave function$There is, however, one further fact which
must now be taken into account, namely, that aglisalways undetermined to the extent of an
arbitrary integral multiple osz. . . . Evidently,” Dirac concludes, “these conalits must now
be relaxed. The change in phase round a closec auay be different for different wave
functions by arbitrary multiples o277 and is thus not sufficiently definite to be intex{ed
immediately in terms of the electromagnetic field.”

“To examine this question,” Dirac says, we “consitlest a very small closed curve.”
Because “the wave equation requires the wave fomeét be continuous . . . the change in phase
round a small closed curve must be small [and] aanow be different by multiples dtrr for
different wave functions. It must have one definiue and may therefore be interpreted
without ambiguity in terms of the flux of the 6-tecE, H [here, bivector in the two form

F =F,dx“dX] through the small closed curve, which flux musbée small.”

However, he continues, “there is an exceptionaeca. . occurring when the wave
function vanishes, since then its phase does ne¢ bameaning. As the wave function is
complex, its vanishing will require two conditionsy that in general the points at which it
vanishes will lie along a line.” He called “suchliae a nodal ling” which in modern
terminology is the Dirac string. “If,” Dirac s&t, “we now take a wave function having a nodal
line passing through our small closed curve, casitibns of continuity will no longer enable us
to infer that the change in phase round the snhdadled curve must be small. All we shall be
able to say is that the change in phase will beecto 27m wheren is some integer, positive or
negative. This integer will be a characteristicted nodal line.” Specifically, “[tlhe difference
between the change in phase round the small close@d and the neare@&m must . . . be
interpreted in terms of the flux of the 6-vectae[j the bivector ifF] through the closed curve.”

In the language of differential forms, Dirac’s fgoéng statement is thaﬁs dA-2m= e” F, or
rearranged:
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$dA=2m+¢[ F. (2.2)

This is simply a restatement using differentialnier and with#z=c=1 of the unnumbered
equation in the middle of Dirac’s page 67, wh&mn is unchanged, where/hc.j(H,dS) is

represented WitheJ'J' F, and Wheregg dA more formally represents the “change in phas&]
round the small closed curvecﬁ[].” It will be seen that (2.2) above is a variaot
$dA=~¢f[ F+¢[ Fin(2.1) rooted in the gauge transformatioh - eA= eA @, in which
—e” F' is replaced by2rm.

Then, as Dirac states, “[we] can now treat a laiigsed curve by dividing it up into a
network of small closed curves lying in a surfadeose boundary is the large closed curve. The
total change in phase round the large closed ocuityequal the sum of all the changes round the
small closed curves and will therefore be”:

qu/\:27TZn+ eﬂ F, (2.3)

which restates Dirac’s equation (8) in differentiatms language. Hereﬁ dA is simply the

change in phase rourghy curve large or smallbuilt up from the “network of small closed
curves.” In general, for any particular “small s#al curve” in this network, if theiie a nodal
line passing through the small closed curve, ti#R)(will apply. If thereis nota nodal line
passing through, them=0 for that particular small closed curve and so )(2d2 that curve

simply becomesaﬁd/\ :ejj F. For such a non-nodal small closed curve, “caersitions of
continuity” tell us that “the change in phase rotinel small closed@ dA ] curve must be small”

commensurate with the smaéﬂ F to which this is equal, and will approach zeratss small

closed curve reduces in area to an infinitesimahtpio the calculus sense of a very smak
approaching an infinitesimatix. Specifically, if we take a given small closedwaito be a
circle circumference, then this curve will encl@ssmall finite surface areAA = 7ir> which in
the calculus sense approaches the infinitesimal dd#e= 277rdr for a geometric point as - 0.

In (2.2) and (2.3) abovq',j F applies to any surface, open or closed. Letes imagine

as illustrated in Figure 1 below that we have diapaurface which is a two-dimensional sphere
bounding a three-dimensional volume. We furthemgme that starting from the north pole and
working southward, we have built up a “network ofadl closed curves” with localized parts of

the field strengthF flowing therethrough via”F such that this network covers the entire
surface of the spherexcept fora very small but finite opening which encircles $outh pole

and is bounded by one final “small closed curveddexrl to complete the coverage of the entire
surface. We regard this final “small closed cur¢®CC) as a very small circle bounding a very
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small surface aredA=7rr* which passes a very small fluﬂ Fscc. We imagine that one or

more of these small closed curves in ﬁ@ network do haven # 0 nodal lines passing through

them such that they are governed by (2.2). THte total change in phase . . . will equal the
sum ofall the changes round the small closed curves” in gteark with “the integration being
taken over the surface and the summation overodkhinines that pass through it, the proper sign

being given to each term in the sum.” This enfif@ network will therefore be governed by

(2.3). And we also imagine that this final smadised curve may or may not have its own nodal
line passing through. If it does not, thennts O and its (2.2) i&ﬁ dA = e” F. Ifit does, and if

the “characteristic’ of that nodal line is desigrtht by n,..#0, then its (2.2) is
qu/\:Znnscc+ eﬂ F.

——
-

network of small closed curves

P T

——T1
[ IIe
small surface area AA = 7r* final "small closed curve"
with small flux ”FSCC with phase change (ﬁd/\

Total surface flux ﬂ) F= H F+ H Fyce

Figure 1: The Dirac Network of “Small Closed Curves”

As we build up this network from north to southrthare times when the closed curve is
a large closed curve (for example, near the eqgydiat by the time we approach the south pole
the large closed curve has reduced down once &gairsmall closed curve. However, the total
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surface ”F to the north which this small closed curve now rmgi with the characteristic
2r1zn includes the entire sphere except for the veryllsm@a immediately about the south pole.
In other words, this final small closed curve bosiiathd joins two surfaces: a very large surface
to the north with larger quxﬂF , and a very small remaining surface to the south wery
small balance of quxﬂ Fsce- (Indeed, any latitudinal line bounds and joinsaath surface

above and a south surface below.) The large sunfacth of the final small closed curve is
almost closedbut remains open solely by virtue of this ond lasy small opening about the

south pole. This means thffF Of F to a very close approximation, and that theseedliff
only by the very small field qu>ﬂ Fscc through the boundary of this small closed curveradhe
small remaining surface to the south. More prégjsee may Write<ﬂ> F :ﬂ F +” Fs.c Which

patches the north and south surfaces togethethatoomplete closed surface, whtﬁefscc 0o
is very small. We may then use this notation write (2.3) as:

$dn=2mzn+ | F=2mz v p F ¢ E, (2.4)

This represents in precise terms, exactly whaeisghdepicted in Figure 1 above.

Now, in the calculus sense, let us take the limiwhich we this final small closed curve

(presumed to be a circle of radi)sbecomes smaller and smaller such that finite &ka 7rr?
bounded by this curve now becomes the infinitesianabh dA=27rrdr — 0 asr — 0. As this

area approaches zero, so too the ﬂ:li?scc _. 0 approaches zero, thl#F S # F. Likewise,

the change in phase round the small closed crfmle\ - 0 as well, because the calculus has

now changed the small circle into a single infigiteal point. If the small closed curve
contained a nodal line withy.. # 0, then 277Zn — 27(En+ n.) in (2.4). If not, we may still

replace 277En — 271(En+ ny..)in (2.4), simply keeping in mind that..=0. Accounting for
all of this, once these calculus limits are taK@) becomes:

0=dA =27(zn+ )+ efp F=27(Z v ned)+ e@ﬁ o ¢,

=271(Zn+nyec) + g

(2.5)

where we also now usé :(,U/47T)d cosddg for the field strength two-form represented in
spherical coordinates. The final step in whegh appears, occurs by evaluating the integral:

T 2 T m
fpF :@%Td cosﬁd¢=%7f0 d cod|_ d¢=4ﬁ” codl; ¢|," = u. (2.6)
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This integral is evaluated under the suppositiat thy =0 so thaty is constant-valued over

the entire surface of integration, as can be seenub4mr having been moved outside the

integral after the second equal sign in (2.6). M&ke special note of the fact that this includes
2

the integraljoﬂd¢ = ¢|§” = 2T taken over the range< ¢ < 277. Were we to evaluate this over a

larger domain, then we would start to cover thidasie more than once.

Now, (2.5) readily restructures into:
ey =-2m(En+ ne.). (2.7)

But of course,n+n,.. is itself an integer which is positive or negatimezero. So if we
simply rename this integer vi@n+ n,.. — —n, then we obtain:

eu =2mn, (2.8)
which is the Dirac Quantization Condition.

Ordinarily, one stops right here at (2.8) and doasconsider the possibility of covering
the flux surface# F more than a single time. That is, ordinarily, st@ps at the upper domain

of 0<¢ <27 in (2.6), recognizing that once we reagh- 277 we have returned to the same
geometric orientation with which we startedgat 0, and that for any periodic function such as
expi¢g there is a one-to-many (really, one-to-infinite3adete mapping from the range to the
domain. For example, the range value Expig = 1 maps into the infinite set of domain values
@ =2mm, or ¢ =¢/2r=m, for all integersn.

However, as summarized in the introduction, the Yémg differential equation
e dé¢" = iz g has the general solutioaxp(iA) = explies¢) which in turn is solved by
2rm = eug with ¢ =m=0,1,2,3... This of course becomes the standard D&G 277n in the
specialization for whichg =1, and corresponds to evaluating (2.6) over the dor@a ¢ < 27
of a single complete closed cover of the surfdgeferring to (2.5) and (2.6), this means that the
standard DQC (2.8) is really the solution fosiagle closed covering‘;ﬁlF of the flux surface,

which we represent by the subscripted “1” nexhi ¢losed double integral. But the general set
of Wu-Yang solution®2/m = eug with ¢ = m represents am-tuple closed covering of the flux

surface which we denote generally tﬁll F with 1<i<m, and for which the domain of Figure

2 is now taken to b@< ¢ < 27im. The specific question we must then consideshsther these
multiple-covering solutions are allowable, whichassay, topologically speaking, whether there
are covering groups with a many-to-one surjectisenbmorphism onto the SO(3) sphere of
Figure 1 which permit a well-defined, unambiguonizipretation of27m = eug for ¢ =m>1
and do not contain physical singularities which idoarise were a Dirac string to become
physically observable. These solutions — were tbdye so-permitted — are readily restructured
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into e=(n/¢.)(27/ ), and so for complete multiple closed cov#zi;F of the field strength

bivector in F = F,, dx“dxX’, would be fractional charge solutions.

3. The Dirac Derivation Extended to Multiple Coverson SO(3), and how
Semi-Infinite Dirac Strings Preclude Fractional Chages when Analyzed
without Simply-Connected, Single-Valued Covering Goups

Because the physical space that we directly egpeeiis that of the rotation group SO(3)
with fluxes as shown in Figure 1, let us now extdmeloriginal Dirac derivation reviewed in the
last section to multiple complete closed coveriragg] see what transpires on SO(3).

First as already mentioned, we generalize the m{jﬁi F with 1<i<m to represent

such anm-tuple covering over the azimuth domafx ¢ < 27mm, i.e., 0<¢ <m wherem

represents the quantized number of complete covEinss means the integral in (2.6) will now
be given by:

YL F =X, dcosdg =y [Td cod T dp = cod[ g = . @)

But if we are now takingg over the domain0< ¢ < 27m then we also need to pay close
attention to the closed curves (small and othemaseund which we are measuring a change in
phase, that is, we need to carefully attenc:f)tb’\.

To do this, let us return to Figure 1 and imadhe we have now developed the network
of small closed curves such each open surface ssttlby each small closed curve has been
replicatedm times, once on each covering surface. We canepeh coveC a numbel such
that1<i <m, and then designate that coverGs To any individual small closed curve on one
of thesem closed surface£, , we can relate another small closed curve on fardiit one of
thesem closed surfaces. To each of the “related” smaBied curves on th& surfacel<i<m,
we can assign the characteristic quantum nunmperlf n =0 then there is no string passing
through the surface bounded by that small closedeculf there is a string passing through, then
the characteristic number will bg #0. Roughly speaking, when we say thatsmall closed

curves on then different surfaces are “related,” we are envisignthat each of they with
1<i<m are radially oriented relative to a “center” (ﬁ) F at substantially similar spatial
I

anglesg and @, and that we network the small closed curves ntt on any given covecC, ,

but as between one cover and the next. More gigcisowever, what we have in mind that that
if a (non-observable) string passes through, ssy/fitst surface with characteristig, then by

considerations of continuity we will want to traitee passage of that string (or its non-passage
should it terminate between two surfaces) througtelated” locale on the second surface with
characteristicn,, and likewise for related closed curves on theaiammg surfaces. So if we

8
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have, say, 1000 small closed curves set ugarthen we will have 1000 small closed curves set
up on each of the remaining with i >1, and will relate curves from one surface to thet n&a
1000 different sets ofi with 1<i<m.

In view of this network of relationships among dben-element sets of small closed
curves from one cover to the next, equation (202)af single set of small closed curvesrmn
covers now becomes:

>npan=2myln+3 " e F, (32)

Specifically, Zi":]leﬂ_ F tells us that we have am-tuple of layers of small open surfaces
bounded by small closed curves and that we will galthe field flux through eacrizlry tells

us to also sum up the string characteristics passing through these easfaandzzlcﬁ_d/\

tells us to add up the changes in phase about@adtiese small closed curves on each of these
small open surfaces.

Now, as we did for Figure 1, we build up a netwofksmall closed curves all the way
from the north pole to the south pole, stopping giort of the south pole, leaving open a final
mtuplet of small closed curves near the south p&éorking with (2.3) and (2.4) but for more

than one cover, this means that wi[fsz = ”mF +”mFSCC , (3.2) now becomes:

ELfan=2ry(Ehn )+ X, P (X 2 S0 F &0 B @)

Now, as in (2.5) we take the limit as— O for the finalm-tuplet of small closed curves
near the south pole. But, for thetuple covering, we have final ng..;, 1<i<m, each of

which is positive or negative or zero. Now, insthgalculus limit, znjlcjy dA - 0 and
1=LJdm

221,[,'-, Feee — 0, SO that (3.3) becomes:

0=3" ¢ dn =273 (3" (0 + neo )|+ " F= 27X (X0 0+ veo )+ me. 39)

This readily restructures into:

eH=- : 2772(2;('] + N )) ’ (3.5)

m

Now we reach the non-trivial of exactly how onewnavorks with the sums
Z(Zzl(q + Nyeg )) Of course, there is nothing special about thg., over and above the
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other n ; this was just a mathematical device to allowaisake a calculus limit and so we can
merge these together to redefine+ n,., - n so that the new includes theny.,. And the
minus sign is just a matter of convention so weftprthat. Then (3.5) is simply:

eu:%ZHZ(ZLn). (3.6)

The real, non-trivial question arises as ii@ependence or lack of independend¢dhe
n in any given set of “relatedh from one cover to the next. If wassumethese to be

independenti.e., that for “related” small closed curves affedent coversC, the characteristic
n can have different values so that, for example might have am, # n, even though these

are “related,” then we can assert tlﬁt(zinllr\) is just a sum oindependenintegers, and thus

may itself be any integer whatsoever. If we doteen as we did from (2.7) to (2.8) we may
redefineZ(ZZlni) — n, in which case (3.6) above becomes:

eu:er%; n=123...; m=123; (3.7)

and we have the exact same fractional charge sol@wn = e with ¢ =m=0,1, 2,3.. which
descends from Wu and Yangexp(iA) = explies¢) which in turn solves their differential

equatione™ de¢" = iqz dg.. But can we do this? Is it appropriate to ri}d}si(ziﬂlni) -n
to be any integer whatsoever, or are there sontectems that we must impose?

Let us now postulate a single semi-infinite Ditawobservable string that passes from
inside the first cover through atl covers and terminates at spatial infinity. Bytwér of this, the
small closed curves on each surface through winishinvisible string passes are what we have
called “related.” Let us suppose that at its pgeshrough a small closed curve on the first
cover this string has a non-zero characterigficwhich is acharacteristicof the string itself

Then, when this string passes through the relatesd| £losed curve on the second cover it must
also have the same characteristic, wihe n,. And due to the postulated passage of this string

from inside the first cover out to spatial infinigach of the related for this same string must
all have the same value from one cover to the.n&« thesen, arenot independentrom one

cover to the next; they are all the same. Theeefioe sum in (3.6) must bEZlni =mn.

As a consequence, if all of the strings are seiffimite and pass through all the covers as
postulated, (3.6) will reduce to:

eﬂ:%Z”Z(ZLﬂ):%]Z”Z mp= 27y n= 271, (3.8)

10
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with a final trivial redefinitionZn, - n. In this situation the apparent fractional denwatorm

in (3.5) through (3.7) is cancelled bizlr} =mn deriving from the hypothesized semi-infinite

string viam/ m=1, and we arrive at the “ordinary” DQC ej = 2/7n, notwithstanding that we
have employed multiple closed covers. So if al $lrings are semi-infinite passing from inside
the first cover out to spatial infinity, and if thiast word” is an analysis in the physical spate o
the SO(3) rotation group which is not simply corteddut rather is multi-valued, then no matter
how many covers we employ, the DQC will always eyedo beeu =277n, and there will be no
charge fractionalization, at least as a resultich®s monopole analysis.

In order for these fractionalized charges to eamsi be topologically well-defined, there
are two approaches one might consider. First, whatented these fractionalized charges via
the m/ m=1 cancellation in (3.8) was the postulate that tiradstrings were semi-infinite and
passed through all the covers. If we relax thistylate and permit fanite Dirac string to start
inside the first cover but terminate before it gasgrough all of the covers and reaches spatial
infinity, then we can allow the within a “related” set of small closed curves ®ibdependent

of one another and can thereby readmit the fraatioharges. But this creates other problems,
because a string that does not reach all the wagpatial infinity cannot be made to have a

wavefunction formally equal to zera//(r):o, but can only have a small but finite

wavefunctiong/(r) 00. As will be discussed in more detail toward thel ef the next section,
this necessarily leads to physically observablgudarities, which are unacceptable. So if one is

looking to find some physical meaning in thesetfoaal Wu-Yang charges, this is not the way
to do so.

The second approach which appears far more visbk® recognize that the entire
analysis so far has been conducted in the physpate of the SO(3) rotation group which,
again, is not simply connected but rather is mudtised. So the removal of these fractions in
(3.8) may not be a problem having to do with fraicéil charges themselves, but rather, one due
to the projective representation of SO(3). Thaasspointed out by [5] at page 4:

“[O]ne way of getting around the multi-valuedne$pimjective representations is
to view this as a problem not with the represeotatbut rather with the
underlying group. From this standpoint, the trumsyetry at work is not exactly

G but something closely related to it, the covergrgup G. Technically, we

require a homomorphisi® — G which is onto and many-to-one, but in just such
a way that the multi-valued or projective repreataohs of G descend from

genuine, single-valued representation&af

This is the approach upon which we shall now embarkli as we shall demonstrate,

when projections are developed onto SO(3) from &erkil which represent thel" roots of
unity “without strings,” well-defined fractional elnges with the denominatan and the
fractional DQC eu =27rn/ mof (3.7) can indeed be unambiguously included, dred ¢ >1

solutions of Wu-Yang need no longer be discardeadhasysical.

11



Jay R. Yablon

4. Roots of Unity, the Complete Symmetries of Ro&overing groups, and
the Missing Fractional Symmetries of SO(3) and SO(3)

Once we add imaginary and complex numbers to et of real numbers, the taking
of square, cubic, quartic and any other roots aequsome very deep complexities that reach
into many arenas of advanced mathematics and Ehysior, if we take note of the fact that the

range number 1 can be readily represented in theplex plane byl=exp(i 2m) for the
domain of the infinite set of integemsthen them™ root of 1 is given by the Euler relation:

m m

Qﬁ:expiﬂ: exp{i 27%)2 coEs fzﬂjﬂ s(n 72—n) (4.2)

For any integem there thus exists a set of distinct m™ roots with 0< n< m-1 which then
recycle themselves fom< n<2m-1 and so on. Fom=0 or for n/ m= k being itself an

integerk, this yields the trivial roof/1=1. But otherwise these roots have a rich and nieiztr
multivalued structure as complex numbexs bi defined on the unit sphere in an imaginary
plane, at evenly-spaced angular dispositi@rs27m / m.

Why is this of interest here? Because when weestile Wu-Yang differential equation
e dé" = igu dp we obtainexp(iA) = exp{ies) which in turn is solved by/m = eug with
$=m=0,1,2,3... which is a fractional variantey =27n/ m of the Dirac Quantization
condition, and because this fractional Wu-Yang tean =277n/ m is identical to this angle

F=2mm/m in the Euler relation for the throot of unity. So if we connect this Wu-Yang
solution with (4.1) by setting = e = 277n/ m, then (4.1) becomes:

Qﬁ:expiﬂ:ex;{i Zr%j: co% ﬁTr:JH s(n iianJ: efpu)= dex)+i ). (4.2)

In the situation where1=1= exp(i Zzn) which is the trivial root of unity, (4.2) resulta

eu = 2rrn which is the standard DQC. But for the other trwial roots, the result is something

other than the standard DQC, and the Wu-Yang traatidenominatom becomes associated
directly with them™ roots of unity.

This is important because as just noted from [H)e “multi-valuedness of projective
representations is . . . a problem not with thee®sgntation but rather with the underlying group.
From this standpoint, the true symmetry at womkasexactlyG but something closely related to

it, the covering group5.” Specifically, if we are projecting a coveringogp 77:G — SQQJ)
and this projection has the kernkérz=1 in (4.2), then what will be missing from the

symmetries of SO(3) but included in the symmettess, are precisely thenultivalued non-
trivial roots of unitywhich in (4.2) are connected with Wu-Yang fractiboharges except in the
special case whera/ m= k is itself an integek. So while the analysis of the last section
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appeared to preclude fractional charges when aedlym terms of SO(3) because of the
m/ m=1 cancellation in (3.8), the missing SO(3) symmestuidich are supplied and made exact

by G appear to provide the precise means to trumptéhia cancellation via the multivalued

roots of unity belonging t& and thus to project fractional charges onto SO{®)is occurs in
very much the same way that: SL(2,C) -~ S{1,3) projects spin % fermions and all related

physics into SO(1,3) in the Dirac theory of thecteien, even though all of this physics is not
apparent if — as did Schrédinger and Klein-Gordothe early 1920 — we only considg0(1, 3)

alone without the view of the underlying Cliffortgabra SL(2, C) which projects ont&sQ(1, 3).
Let us now take a few moments to examine all thidatail.

From the time of Pythagoras through when Dirad¢6ih [7] developed the first-order
wave equation(id—-m)y =0, one always calculated squares of lengths orviaker and then

took a square root to find an invariant physiaidth or interval at first order. Pythagoras
taught that a radial distana€ =x*+y*+ z*, so to find the radius itself one would take the

square rootr =+.x*+y?+2z*> which in the sense of (4.1) and (4.2) can be amiths

r =exp(i7n)+/x*+y?+2z*. Minkowski [8] had established that when spacd &me were
taken together, the intervatls’ = df - d¥- dy—- dZ between two events was Lorentz-
invariant, which Einstein [9] thereafter generalizdrom Minkowski spacetime with
diag(nw) = (1,— 1- 17 ). into non-Euclidean Riemannian spacetimg - g, and formalized

into the metric equationds’ = g, dX dk. Here too, one may take the square root
ds==,/ g, dX dk, orin the sense of (4.1) and (4.2)s=exp( irrn),/ g, dX dk .

So to linearize the Klein-Gordon wave equation Wwhig also known as the relativistic
Schrodinger equation, what Dirac did was to decansty,, into a set of 4x4 matriceg”
satisfying the anticommutator relationship*” :%{y",y"}, which represented a more

sophisticated way of taking square roots of idgntiatricesl or of negative identity matrices, -

given that 7 was now the square of* but with these)y” anti-commuted with suitable
indexing. This is the most important example d@ldford Algebra. In so doing, Dirac made
use of the non-commuting quaternioifs= j? =k ?=ijk =—1 first developed by Hamilton in

1843 which by 1925 had been represented in therspiniceso; =o; =0 =-icgg,=1 of
Pauli which are summarized in index notation {aﬁ,a].} =9 and ig, 0, :%[ai,aj], by
embedding these; in the space components gf.

Indeed, what Pauli had effectively done followingrhilton’s lead, was to go from using
1= (—1)2 = exp(inn)2 = exfi 2m) to describe the square root of the real numbés Gising the

three distincto. matrices inl =¢? =0’ =0? to describe the square roots of the 2x2 identity
matrix I. With these fundamental steps by Pauli and Dithe, second-order relativistic
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relationship between mass and energy-momenttihp,, p, - n? =0 which is directly tied to the

metric equation gwdx“d%—dézo could be written in first order, not as the

i\//mzo square root of a regular number, but rather(JafSpﬂ—m) u=0, where
y*p,—m now operates on a complex spinorwhich defines the eigenstates of the energy-
momentum operatorp = y*p, corresponding to the mass eigenvaloes With these steps,
§1=exp(im) =+ 1, which is (4.1) fom=2, and which applies to regular numbers, becarae th

kernel of these generator matrices and y* which could be squared intoor —I identity or
negative identity matrices.

At a superficial level, one might have taken thewithat this was simply a clever
mathematical exercise in taking roots of unity —-this case, square roots of unity — with no
meaning beyond the mathematics. But as its tuoogdthese generator matrices themselves, be

they Pauli’'s o, or Dirac's y* and its Clifford algebra, revealed a new, deepsongetric
structurein the natural world itselfwhich could not be seen, for example, by mereliting

+. /0" O s P nt =0 but could very well be seen by writir(g/” P, - m) u=0. Or, going back
to Pythagoras, these revealed a deeper structurehwdould not been seen by writing

i\/XZ +y*+Z-r>=0 but could have been seen by using the Pauli reatrio write
(Jyx" - r)u =0. Most importantlyjt turned out that all these new features of clgvéaking

mathematical roots of identity matrices appearhe teal, observable physical worldlhey do

so in the form of the spin %2 of fermions, the eetisie of positrons and other antimatter, chirality
and parity, fine splitting in atomic spectra, andny other phenomena which nine decades later
have been as firmly established as any connectawden physical theory and empirical

observation. So although we live in the seconaomhysical space ok’ + y*+ zZ2— r*=0
characterized asSQ(3) which leavesr® unchanged under rotations mixing tkey and z
coordinates, as well as in the second order physpcetime ofg,, dx’ dX - dé =0 which is

tangentially that of Minkowski characterized I80(1,3) which leavesds’ unchanged under

rotations and Lorentz transformations, there algst én nature, certain “root spaces” that we do
not directly experience, but which nonetheless jgoi3 77 real observable physics onto these
spaces in which we do live.

So, for example/jr: SU(2) - SA3) projects the two-component spinors of Pauli which
are the eigenstates ofU(2)onto the SQ3) physical space in which we live, while
T:SL(2,C) -~ S1,3) projects the four-component Dirac spinor eigeestaif SL(2, C) onto
the spacetime theater &Q(1, 3) in which we directly experience nature. What heypin these

root spaces doesot stay in these root spaces; to use a pun, theses@ae not Las Vegas.
Everything that happen in these (square) root spdoes get projected out on®0(3) and

S, 3) and manifests itself in the physics we observevien these spaces/en though none of
this is apparent unless and until we become awéend formally develop these root spaces and
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their projections into SO(1,3) and its spatial subseSQ3). Spin ¥ and all the other
consequences of Dirac’s equation do not originatehe real spacetime o8Q(1,3) which

preservesds’ = g, dX dk as an invariant. Nor do these originate in thal gpace of
Pythagoras which preservas =x°+y?+z* as an invariant. Rather, they originate in the
complex Hilbert space o8L(2, C) in which (y" P, = m) u=0 and makesn an eigenvalue for

the spinorsu of the operatorp=y*p,. These features of the Clifford algebra$@1,3) are
then projected out ont&Q(1, 3).

So now, let us go back to (4.2) which does embedfridictional ez =277n/ m of Wu-

Yang. To use the language of kerne®s)3) is the Pythagorean space 1Gf= x>+ y*+ z* for
which no roots have been taken and onto which ojegiions have been made, which is to say,
it is the space for whictker7z:¥1=41= 1 with m=1 and 77: SO(3) -~ S@3). It is just SO(3)
being itself with no further analysis. Via (4.2x1 means thaeu = 277n which is the standard
DQC, even though (4.2) embedg/ =277n/ m. Why is this important? Because in (3.8) of

section 3 and Figure 1, the entire analysis wasethout using Dirac strings in SO(3) with no
resort to any square, cubic or other root spaak wanfound out that for any semi-infinite strings
penetrating all of coverings, we are indeed restti¢o the conventionady =277n. But it is not
that nature forbids the fractional chargesepf=277n/ m; it is just that the SO(3) topology is not
simply connected and does not contain enough ofrithmess of nature’s root subspaces to
project out a fractional charge onto SO(3). Tkisimilar to how if we analyze spin in SO(3)
alone, we will never be able to explain spin ¥ fiems and all the attendant phenomena and will
only see whole-unit spins. But of course the radtworld exhibits more. The limitation is
simply that SO(3) and SO(1,3), by themselves, #&8 the richness to reveal the spin %
fermions and all else with which these are conmkaad that we cannot see this without going
into a root space and projecting SU(2) - SQ3) or 7: SL(2,C) - SL,3).

Indeed, the derivation of the standard D@£Z=2/7n and theapparentcancellation of

fractional charges in (3.8) notwithstanding mukigloverings can be further understood if now
take any and aln™ roots as they appear in (4.2), but consider ondsem" roots for which

1= exp(i 2m /m) = 1 That is, let us now consider (4.2) for all rodisit only in the special

case of the trivial root of unitW’izl. In order to ensure thdfl=1 we must haven = mk
wherek is an integer, whereby (4.2) becomes:

1=U1=expd = ex;{i z%jz ein E%(Jz ep R)= efipy). (4.3)

This too is the standard DQC, naw =4 = 277k. And here, the fractionah in the denominator

is cancelled out byn=mk in the numerator via the exact samme m=1 cancellation that we
saw in (3.8). So now we have a question: Aredhdentical resultsey = =2k derived

through an identical cancellatiom/ m=1 somehow linked, whereby (4.3) is somehow a
topological restatement of the string analysis Whexl to (3.8)?
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In section 3 we considerad coverings generally of SO(3), but when we mandéted
all strings pass through all covers and terminaspatial infinity, we found that for a string with

characteristicn, passing through all of the covers it was requiteat zi":‘lni =mn. This is

what offset what otherwise had been a fractional¥sung charge. Above, the correspondence

to havingm coverings generally is having kernels whbrr=%1, and the correspondence to a
string running through all covers to spatial infyncorresponds to only taking the trivial roots for

which kerr=%1= 1as we did in (4.3).

Of course, the Dirac string is a fictive entity, let's explore exactly what this fiction
entails: First, by using Dirac strings we are meally changing the effective aterminal
configuration of magnetic fields. We are simplyspgating a solenoid which is infinitely thin,
so that at one mouth of the solenoid postulatedbdoin a region of space that is finitely
accessible, it will be impossible to ascribe a ispatientation to the solenoid, and therefore the
magnetic field lines will emanate from the solenaith a complete rotational symmetry, that is,
they will be mono-polar field lines. Any finiterstg thickness would destroy the mono-polar
character of the field lines because it would dithla physically-detectable direction for the
solenoid. Of course, we are simultaneously pating that the field lines are infinitely dense
inside this solenoid because of its infinitesimaltv, which is another aspect of the fiction.

Second, we are postulating that the other endeostthenoid accumulates or deposits the
field lines at spatial infinity. “Sweeping unddéretrug” at infinity is a genuine and apt metaphor
for this. But, there is good reason for this: of¢he benefits of using spatial infinity in physic
is that we can make any field formally vanish dtnity. This includes a wavefunction field

which can formally be made to haye(r) - 0 asr — «. Were we to situate the other end of
the string at anywhere other than spatial infimityg, could not make this field formally equal to
zero. We could only make it very, very small binité, l//(l‘) [JO. Since the Dirac string is

constructed for the “exceptional case . . . ocogrivhen the wave function vanishes,” we need
to first situate one end of the string at a losalhere the wavefunction can truly be equal to zero,

and that locale igy()=0. Then we can run an infinitely-thin string fromfinity with

vanishing wavefunctiony(r)=0 continuing unabated toward a finitely-accessit#igion of

space, without creating any observable singulawtyich continued “vanishing will require two
conditions, so that in general the points at wihiictanishes will lie along a line.”

Were we to put the far end of the strisgywhere but at spatial infinityve could could
have al//(r) [JO which is exceedingly small, but this could neverformally equal to zero.
Therefore, the string itself would become a solénafi finite width defined about some line
where gll(r) 1O is sufficiently close to zero within some bounbst is not formally equal to

zero. Because of the small albeit finite solenwidth the string singularity would become
observable which is unphysical and impermissitfferther, the magnetic monopoles would no
longer be monopoles but just the regular magnetlds emanating from a very long, very thin
solenoid which approach a monopole configuratiothasolenoid becomes longer and thinner.
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Now, as we saw in (3.8), then/ m=1 offset which resulted in the standard DQC
ey = 27rn without charge fractionsy = 277n/ m was a direct result of postulating that the Dirac

strings are semi-infinite and thus passed throlighecovers. But as we have now explained in
detail, if we allow the strings to be anything athban semi-infinite to avert then/ m=1
cancellation of (3.8), we introduce other seriot@bfems which are unacceptable.

All of the above is very true. But what is eqyadfue is that all of this describes a picture
in the three-dimensional® = x* + y?+ z* space of SO(3) which is not simply connected. Whe

we start to consider root spaces, this same sgtafmstances are described byiﬁ. That is,
an SO(3) space withn covers and fictive strings which are all semisiteé and infinitely thin

yields the same result as projecting onto SO(Infeocovering groups using the projection
7:G - SQQ) with a kernelker7="11 restricted to the trivial root of unitj(:’{}’_l. But here is

the pivotal difference that emerges from conductinganalysis using rather than SO(3):

When we ask in the context of SO(3) if there immeowvay to restore the fractional Wu-
Yang chargesu = 277n/ m which were offset byzzlni =mn, the answer is that we must have
the string pass through only some of the coversslwyields an unacceptable, singular result for
the reasons just outlined. But when we ask thisesguestion in the context af: G — SQQ3)
with ker7=%1, we come to understand that what we need to fiodsa non-trivial G which is
a sophisticatech™ root 5/SQ3) , in exactly the same spirit that Dirac soughtital fa square root
of the Klein-Gordon equation whereb$L(2,C) is non-trivial square root%/m of
Minkowski’'s SQ(1,3), or Pauli following Hamilton definedsU(2) which is a similar square
root ¥SQ(3) of the Pythagorea®Q(3). And then, we must lift all restriction froker 7= 41,

and consideall of the non-trivial roots of unity, and not jusettrivial 1= 1.

Can this sort of approach be made to work? Astpdiout at the end of the last section
from [5], “the true symmetry at work is not exad®yhere, SO(3)] but something closely related
to it, the covering grougs.” So when we analyzed the fractional charge smuéy = 277n/ m
via an analysis using only SO(3), we were not faltgounting foall of the symmetrieat work.
We were only using an approximate symmetry. Thacegsymmetries are to be found in the

covering groupsG. So if we can develop what can informally be désc asy/SQ@3) and is
more formally described ag:G — SQ3) with kerz=%1, and if we can develop this fal of

the primitive roots¥1 and not only the trivial rool=1, and if the fractional charges
eu = 27rn/ m can be well-defined without ambiguity in this wdalyen the fractional charges can
become real, observable entities projected fromad space into SO(3), in the same way that
spin 1/2 is projected int8Q(1, 3) from SL(2, C).

Even more to the point: SO(3) which precludes fometl charges for the reasons laid out
in section 3 and in the above, is not an exact sgtryn Something is missing. What is missing
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is the exact symmetry of the covering groBp The symmetry that a covering groG with

kerrr=Y1 contains, which SO(3) does not contain, areliroots of unity which sit on the
unit circle in the complex plane at evenly-spacewjles of 4=2rm/m running from
0<d< 2 before recycling aty=2m. SO(3) only admits one root at=2/m. So the

symmetry missing from SO(3) which is not missingnfr groups withker7=41, is the very
symmetry which admits rather than precludes thetimal Wu-Yang chargegu =277n/ m.

Thus, even though SO(3) misses the fractional @sajgst asSO(1,3) alone missed spin Y,
there is nothing to prevent a covering groGp which has a more complete symmetry from
projecting these fractional charges onto SO(3) maye thanSL(2, C) can be prevented from
projecting spin %2 and all of its associated physit® SO(1, 3).

Even more concisely: if one is challenged to slodservable physics for spin %2 using
S, 3) alone, the answer is that this cannot be doneowithlso having access &L(2,C). If
one is likewise challenged to show observable @misydor fractional W-Yang charges
eu = 27rn/ m using Dirac strings in SO(3) alone, the answeth&t this also cannot be done,

here, without having access to some covering g@upith anm™ root kerm=11.

That is the theory; now we need to turn to the mes of this theory. For while it is
one thing to suggest constructing th@ groups informally, and to more formally suggest

constructing 77: G — SQ3) with kerz=Y1 with all roots trivial and non-trivial appearing

alike, it is another thing to demonstrate that sgcbups actually exist and can indeed be
unambiguously constructed. So now, we shall detnatesprecisely how to construct these
generalized root covering groups by consideringethgiest example of the cubed root covering

group °G defined with the projectionr: °G - SQ(3) with kerr=%1 and a DQCeu =2mn/ 3.
In the course of constructingG, it will become apparent how to generally construc

T:"G - SQ(3) which kerr=Y1 for a generalized fractional DQC with a D@ = 277n/ m,

notwithstanding the fact that SO(3) misses thismagtny. It is on this basis that the Wu-Yang
fractional charges ire = 277n/ m can lead to observable physics that is well-defiard non-

singular.

5. Roots of the Identity matrix, and their Relatiorship to the Spin Matrices
of SU(2)

As discussed in the last section, the Pauli's icegro; =0, =07=1 -effectively
represent squane=2 roots of unity for a 2x2 identity matrix. Usimgojective language, and
also using (4.1) witm=2, we may say that thege matrices are used to generate the projection:

%G =SU(2) -~ SA3):kerr=%1= expf = expi@n Ip= efpirn=¢ . (5.1)
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Here, the covering grou is SU(2). The fact that the generatosg = g2 =g =1 square to
the unit matrixl is tied to the kernel of this projection beikgrﬂ:\/_l:il, that is, to the fact
that (ﬂ)Z =1. The left superscript ifG is used to designate that the kernel isitt@ square
root of unity and the generators ane2 square roots of the identity matrix. Obvioygige of
these kernel roots is trivial, namely, the onevitiich 1 =+1. So corresponding to this trivial
root one has the “three” generatot§ =12=12=1 which are all unit matrices. The

o?=02=0?=1 are the non-trivial generators corresponding éortbn-trivial root3/1 = —1.
Now we wish to do is generalize (5.1) to any alhari roots of unity, that is, to:

m: ,G(2) ~ SO3):kerr=Y1= expi¥ = expi Zn h) (5.2)

for any and alm. Here, the left subscript inG(2) is used to designate that the kernel isrtfe
root of unity generally. We add the parentheti@! to G(2) to designate that the generators of
~G(2), which we shall designate as, must be 2x2 matrices just like th® generators of

SU(2). As we shall see, for a givem this will lead to there being a total wfsets of these; ,

each set corresponding to one of tiéroots, and each set containing precisely threergéors
r, with i=1,2,3. For any givenm, these generators must be constructed such that

r,"=r,"=r,"=1 to mirror the kerneker77=Y1. Out of thesem-1 sets of these, generators
are non-trivial, while the final set contains thévial 7, =1, which yield 1" =1."=1."=I

corresponding to the trivial kernel for whid = +1.

Were we to use the Wu-Yang solution to sget=27n/ m above, then as we saw in
(4.3), the standard DQ@u = 277n would result from the trivial generators =1, through the
m/ m=1 cancellation which appeared in both (3.8) and)(4But for all of the non-trivialr,,

this cancellation would not occur, and it would pessible to then project these fractional
charges ontoSQ(3) by taking advantage of the multiple roots which afgpear in the exact

symmetry of the, G(2) level, but do not appear in the close-but-inesgatmetry of theSQ(3).

So, our goal is to be able to use the Wu-Yang swiugw = 277n/ m to extend (5.2) by setting
d =eu =2mn/ m and thus writing:

T .G(2) - SOEB):kerr=Y1= expi¥ = expi &n h)= expig:). (5.3)

But to be able to support this proposed extensiq.8) to admit Wu-Yang fractional charges,
we must show that these roots groyp(2) do exist for any and ath, can be given definite,
and unambiguous representations, and can be unaouisiy projected ont&Q(3). Again from

[5], “[tlechnically, we require a homomorphis@ — G which is onto and many-to-one, but in
just such a way that the multi-valued or projectigpresentations db descend from genuine,
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single-valued representations &f.” Each single valued representation @f needs to be a
matrix setr; which corresponds to one of the roots of unityer7=Y1 such that," =1. So
let us see how to form these root generatré general for anyn, and let's see the way in
which ,G(2) = SU(2) contains the simplest special case of tresehich for SU(2) are equal to
the Pauli matricew; .

We start with the Pauli matrices; themselves, posit three associated andglesn
physical space, and form the unitary matridés= exp(iaiﬂl) for SO(3) rotations through
respective angleg =6,,6,,6, about each of the x, y, z axes. It is well-knawaw to use the
series€” =1+ ix-4 X — iz X+ X'... together with the fact that*" =1 and ;"' = g, to find
these unitary matrices, namely:

cos@ i sind
U, =exp(io,g,) =( ' 1}

ising, coY,
cosd, sirﬂzj
-sing, coY,
cosd, +i sing, 0 j

U, =exp(io,b,) =( (5.4)

Us =exp(iody) Z( 0 cosd, -i sird
3 3

Now, it happens that with a judicious choice af #nglesg we can cause each of these
U, to be identical to the correspondiag up to an overall constant factor. Specificalfywe
choose each of these angles such thatrz/ 2, we readily see that:

D T o L

2) \isin(m/2) codm /2

o4 1 B 1 ) OB
ﬂj_(cos(ﬂlz)ﬂsir(ﬂ/é) 0 j _(1 Oj=i03

U3=exp(|035 - 0 coy(rr /d~i sifm 12 o -1

Consolidating, in general we see that=exp(ic; 77 / 2) =ig;, which we rewrite as:

_ . T
o = |exp(|ai 2). (5.6)
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We then square this to write’ = I, =(-i)*exp(i g, 77) and deliberately daot turn (~i)* - -1

because when we later take square roots of thisywar to recover i-and not extraneously
introduce a two-valuedti. Of course, the identity matrix to any integemeon is still the

identity matrix I." =1, so that all of this finally yields:

I,=1"=(4)"expliom). (5.7)

Now, we may again us# =2rm/m thus#/2=rm/m from the Euler relation (4.1) to
write them™ root of these 2x2 identity matrices (5.7) as:

= ()Renie 3 <(4)7 | eofr 34 sita | |
:(_i)ZT: exp(iain%j:(—i)zr:{co{aﬁ%jﬂ sirEUinTnnﬂ

. . . .\2n/ . .
In this form we see an overall coefﬂme(‘nﬂ) "™ that we need to write in a more generally

(5.8)

usable form. So we turn again to the Euler exjwass the form-i = exp(i 37/3 to write:
20 N
(=i)m = exp(l 37—}, (5.9)
m

which we then place into (5.8) to obtain:

NAETIE exp(i 37%) ex;Ei o gj = exé 3%} e><ﬁi)aiﬂ7nnj = e{pﬂ—?n(ai + )} (5.10)

In the final expression we see what is effectivelgrmo, +3l, , which does have a trace, so this
uses the generators of U(2), not of the specidhungroup SU(2). Above, because we will use
I, to generally designate thel" roots r{/l_ of the identity matrix, we have introduced a

notational aid to help keep track of any givendfet,. Specifically, we represent these as

T, where tham left subscript tells us the general rqyﬁt_i which ther, represent and theleft
superscript tells us thevalue 0< n< m of the particulam™ root being represented.

Now, to illustrate the use of (5.10) and to ch#wuk calculations which led to (5.10), let
us take thern=2 square root of the identity matrices We simply sem=2 in (5.10) to obtain:

nr =2/ = i E i 2 = i _n i _n
2ri—\/f exp(l 372j ex;Elai 2) exé EZJ e%)ainzj. (5.11)
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There are two solutions to this. Fo=0 we of course haver =\2/f =1, and & =0 which is
the trivial square root. Fan=1 this becomes:

a7 =3I, =i exp(iq%}z—i expﬁ ail—sz:q, (5.12)

which recovers (5.6) wit# = 7=180. These are the very two angl€s=0 and$ = which
we expect to have when we take a square root ubmdeuler relation, and confirms that the

covering group,G(2) = SU(2), where we now add a superscript to the lefGgR) to indicate
that this correspondence (5.12) occurs wireh andm=2. In general, this means that we shall
now represent the covering groupn%(Z).

Now, in (5.10), we have everything we need to galhecalculate all the non-trivial 2x2
root generator matricedr, for anym™ root of the 2x2 identity matrix, and have showmvtthis

works for the Pauli matrices themselves. Thése will become them sets ofi=1,2,3
generators for the covering groug‘é(Z) which we will then wish to project ont8 (3) via

m: "G(2) -~ SQB) with kerr=Y1. If we can create thesdG(2) and then carry out the
projection ontoSQ(3) without ambiguity, then therto-1 nature of this projection will validate
projecting fractional charges witby = 277n/ m onto SO(3), with the regular DQE€u = 277k
being then = mk solutions ofey = 277n/ m that were found in (3.8) and (4.3).

6. The Homomorphic Mapping of Root-of-Unity Coverirg Groups onto
the Rotation Group SO(3) through SU(2)

To establish an unambiguous the projectimnn’}G(Z) - SQO3) we start by finding a
general expression for the commutator of any twlr,, which we denote by

r:[ri,rj]: r:[r, I, -1, ri] with the n, m designations moved outside the commutator to avoid
visual clutter. Working from (5.10) we construct:

;[Twﬁ]:exl{i 67%]{ ex{iqﬂﬁj ’exé Uj”Tnnﬂ- (6.1)

To evaluate this, it helps to also construct thmrmmltators[ui,uj] of the unitary matrices
(5.4). This exercise is straightforward and yields
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[U,U,]=[exp(iog) .exdio £,)]=- R sib, siﬂ{(l) _OJ =-i2 sifi, sthg.

[U,.U,] =] exp(iog,) .exdic ;)| =- B si, siﬂ{cl) ;J:— i2 sifl, sihg .. (6.2)

U, U] =[exp(iogy) .exdiog)]=- b sib, siﬂ‘(? O'j:— i2 si6, sio,

In the circumstance whe®@= g, = 8, = 6, this consolidates to:
[U,U; ]=| exp(ig6) ,exifio; 6) |= - & sifég, q, . (6.3)

Thus, if we setd = 7m/ m (6.3) becomes:

{exp(iaiﬂﬂj ,exp{i o, ﬂﬂﬂ =-P Siﬁ(ﬂ—nj Ei O - (6.4)
m m m

Finally, inserting (6.4) into (6.1) and also applyii¢;, o, :%[O'i 0, ] , we finally obtain:

.1, ]=-2 exr{i Grﬂj siﬁ(nﬂjqjkak =- exéi fr—nj sﬁ{ﬂ—nn_ﬂ[di a; |. (6.5)
m m m m

Alternatively, isolatingo, with some simple re-indexing, this may be writéen

o :%i exp(—i 677%) csé(n%jguk r:[rj 7 |- (6.6)

This means that the Pauli spin matriags and thus their commutatc{rai,aj]: 2ig, 0, can

always be expressed as the commutagg)f: [ 7,5, ] of the root of identity matricegz, =11, ,
times an overall multiplying factor which is a defd function oh andm.

As a check we may set=2 andn=1 in (6.5) to find that:
:[ri,rj]=—exp(i ) s (77 130, 0,]=[a & ], (6.7)
which is similarly a consequence of and thus coibfgatwith the result;z, = g; from (5.12).

The result in (6.5) is very important in making theneral projectionr: rT?G(Z) - SQO3).
First, this is easily re-indexed into:
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1 n . . .
7 i m[rj ,rk] =-i exp(l GT%j sn?(n%}ai : (6.8)

Now, using the space coordinanés:(x, \ z) and formingo,x' we can use (6.8) to write:

= ”[rj,rk]xi:—iexp(i evﬂj sir’r(ﬂﬂjqxi:—i exéi ﬁr—nj si%(n—”rJ( - iy)(6-9)
4 m m m m X+1y —-Z

Therefore, restructuring to isolatex', and also making use of the spinor relationships:

x=3(&1-&2) y=4(&7+ &) =44, (6.10)
as well as the cross product:
KoL T T X =20 [rxT] i, (6.11)

E

we may alternatively represent (6.9) as:

S R N B A

x+ly -z & k) \% (6.12)
1. N n n i 1. : n nyn
:Zlexp(—l maj csé(nﬁjgijk m[rj 7 | =5 exéﬂ ﬁ—mj C§Eﬂ— Mrxr]

Of course, the determinanfo X|=x*+y’+ 7 =1* is the Pythagorean invariant of
rotation under SO(3) transformations, which areiegjant to an SU(2) transformation on the
transposed complex spinor doublgt = (¢, EZ)T. And we have already seen in (5.12) and (6.7)

that for the square roat=2 and the non-trivial solution=1, the covering grougG(2) = SU(2).
But we now see that for any higher raot> 2 there will be an additional projection onto SO(3)
which gets routed througiSU(2) = 2G(2), by virtue of (6.6) as exemplified in (6.12). &b
update (5.2) and characterize fully what is ocagrin (6.9) and (6.12), we now write:

m: "G(2) » J6(2)= SUR2) ~ SQB):kemr= 1= expf= expizn M. (6.13)

Additionally, (6.6) and (6.12) show us how to embbiis result into Dirac theory.
(iy"aﬂ —m)(// =0. Using the Dirac representation fgf and withd, :(at,u), and particularly

substitutingx — 0O in (6.12), and thus writing:
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1. . n N\n
o==i exp(—l 671—) csé(n—} [rx7]D, (6.14)
2 m m)™

we may represent Dirac’s equation to includerilﬁex r] cross product, via

- . at_m o wA
S g

S OSIN [E CL E I 1)

The projection for this is now characterized by:

(6.15)

T 1G(2) - JGL(2,C)= SL2,C)~ SAL3):kerr=Y E expl= expizn . (6.16)

Note that the covering group is still the sapi‘é(Z). But it is now projecting onto th8Q(1, 3)
of spacetime with rotation and boost, V& (2, C) which we have equated to what we have
denoted as;GL(2,C). This is because in (6.15) we have tak&(2) of (6.13), replicated it

twice for particle and antiparticle (C), and uskdttin the usual linear (L) combination with the
time-dependent termr°d, —m of Dirac’s equation.

7. Conclusion: Fractional Wu-Yang Charges Projecte@dnto SO(3) from
Root-of-Unity Covering Groups

Everything we have found leading to (6.13) andgpappears to provide a well-defined,
unambiguous projection for fractional charges d®@(3) and SO(1,3). Specifically, for amj

root of unity, there will be preciselyn different covering groupshTG(Z) with associated
generators, 7, as defined in (5.10), such thét n<m, which then will recycle starting with
n=m. Then=0 solutions are all trivial’r, = I,, but the remainingn-1 solutions each define a
unique, single-valued, simply-connected coverinngrrﬂG(Z). So, for example, fam=5 there

will be five ;7. generators and five associa@(Z)each of which isingle valued and simply

connected When projected onto SO(3) as in (6.13), thid pribvide a quintuple cover of SO(3).
In section 3 this meant that the azimuth domaif ¢ <1077 and there could be no fractional

charges because of the/ m=1 cancellation in (3.8). But all of this was dueS©®(3) being a
multi-valued representation which is not simply-geated.

Now, as summarized in (6.13), each of these j"@éZ) will map onto SO(3) via a five-

to-one surjective homomorphism, with the exact sytmyncarried by each single-valuéé(Z)
with 0<n<m, and with SO(3) being inexact to the extent it fzems inherent five-valued
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ambiguity. Put another way, from the viewpointtbé number 1, there are five distinct fifth

roots, and it is impossible to state that one erdther is the actual root from whence 1 was
obtained upon rising one of these roots to it fgbwer. But from the viewpoint of each of

these five roots, we can state very clearly whaheaaot is. But then, when we take each of
these five roots and raise them to the fifth powes,will map all five of these roots onto the

number 1, which is to say we will quintuple coverahd the number 1 will have no way of

knowing from which of the five roots it came. Armwng the question from whence came the 1,
from the viewpoint of 1, will be ambiguous anddifined.

But in the context of the many-to-one homomorghapping of (6.13), there is no longer
any m/m=1 cancellation, and we can retain the Wu-Yang feaetiization solution
d=eu=2mn/ m, see (5.3), in a well-defined and unambiguous reanrThis means that we

can now use?/ 2= m/m= eu /2 to update (5.10) for thﬁG(Z)generators and write this as:

N, — — ; ﬂ : é — . ﬂ - _n — . 3 .1
mri_'()/f exp(larmJ expﬁlaizj exé 3mj e><ﬁ1)a,ﬂmj e>Ep—2e/1j eEp—Zapyj.U.l)

It is of interest to note that the argumepwe naturally emerges to contain the half-spin
generators; ;7 for fermions multiplied by the electric and magoeharge producée .

Likewise, (6.5) and (6.6) which relate the Pauinsmatrices to these fractional charge
generators respectively become:

r:[ri,rj}:—Zi exp(i ) siﬁ(gja}jkak =-P exé ﬁﬂj sfr(n%js”kak

m , (7.2)
=-2i eXp(i @,u) Slﬁ(%uj ik I

1. : J n 1 A n n
o :Z|exp(—| ) cs&(zja‘ijk | zk]=2| EXE—I ﬁﬁj cé{nTan”k 7 7]

1 (7.3)
[a— 1 i eﬂ "
= exp(- Bu) CS&(_ZJEHK ml:rj I"]

This also means that (6.12) becomes:
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— i X= 1y _[ &4, _512 _ & _z\_ _zzt
oX=0x = (x+|y ., j—(éz —flfj_(fzj(fz &)=-&

exp(- 39) cs&( j & [7, 7 X ——| exp 3) céé j [rx7] X
p(—l E‘ﬂ—j CS&(”T?J% r:[rj zk]xi :%i exé—i ﬁ%)cs&(nﬂj;[mr]ﬂ(
(

(7.4)

m

n i 1 . n
_Z|exp - 2u) csé( j " m[rj zk]x' =5 exp-i &) CéEe_gjm[Txr]D(

|—\ -th -l>|l—‘

which can readily be adapted for use in the Digagagion as in (6.15).

Now, it is important to note that/ 2= m/m as used in (7.1) through (7.4) hasthing
to do with the Wu-Yang fractionalizatiofhis is entirely about the geometry,@(Z) and this

is all built up by identity from the Euler relatisiip expid = exdi 2n M) of (4.1). Then,
independently the Wu-Yang differential equatione™ dé&" = iz dp is solved by
exp(in) = exies) which in turn has the solutiorm = eug with ¢ =m=0,1,2,3.., which
may therefore be written asu =277n/ m. There is nothing which priori eliminates this as a

solution and requires us to sen=1, or, more precisely, to seh=mk such that
ey =2mn/ m=2mrmk/ n¥ 27 |, wherek is itself an integer. This only happens at (3yn

we consider Dirac strings in SO(3) which strings factive, and more importantly, which SO(3)
is multivalued and so only represents an approxamadt an exact symmetry. That is, like the
number 1, SO(3) has no idea from which roots ithesen projected.

But when we instead turn to™ root geometric spaces with generators defined by

o7, quf as them™ roots of 2x2 identity matrices, we find that thene a whole host of
generator relationships and homomorphic projectishkh contain the fractio#/2=m/m
based not on Wu-Yang, but based on the Euler oelaéixpid = exf{i 2n M). In the

geometries with covering group#?(Z) we start at the roots and then raise them tonthe

power to return to the identity matrix. From thew of n2‘(?(2) everything is well-defined and

single-valued, and there is nothing which require® be limited 1 or requires us to set mk
as we were required to do at (3.8). The geomatrytains all of these roots, well-defined,
naturally and unambiguously. As a result, we arabéed to connect the Wu-Yang solution to
the Euler relation via? =eu =27n/ m. Once this is done, (7.1) through (7.4) provideedl-

defined picture of how Wu-Yang fractional charges @and do find accommodation in SO(3)
and SO(1,3), and we find that the prodegt of the electric and magnetic charge strengths is

identical to the Euler angleg =eu. In all cases,’G(2) and 'r, then come to represent the
covering group and generators which projeet=an/ m fractional charge onto SO(3).

If we take the determinant of (7.4) and boil tHisdawn to its essence, we obtain:
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z X— iy
X+iy -z
This supersedes the result in (3.8) which precluidactional charges when the multi-valued
SO(3) was considered alone without projection farmy single-valued covering groups. But this

relationship (7.5) is now well-defined and unamioigsi and it preserves lengths under SO(3)
rotations. If this relationship is true, then tmeathematics of the Euler relationship

expid = exdi an m) will necessarily produce and permit well-defineactional charges with
d=eu=2mn/ m.

r2=x’+y*+z2’=|o¥| =

:‘% iexp(—i3u) csé(%ﬂjr:[rx 7] D(‘. (7.5)
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