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Optimal Trajectories of Air and Space Vehicles 

Summary 
 

The author has developed a theory on optimal trajectories for air vehicles with variable wing areas and with 

conventional wings.  He applied a new theory of singular optimal solutions and obtained in many cases the 

optimal flight. The wing drag of a variable area wing does not depend on air speed and air density.  At first 

glance the results may seem strange, however, this is the case and this chapter will show how the new theory 

may be used.  The equations that follow enable computations of the optimal control and optimal trajectories of 

subsonic aircraft with pistons, jets, and rocket engines, supersonic aircraft, winged bombs with and without 

engines, hypersonic warheads, and missiles with wings.  

    The main idea of the research is to use the vehicle’s kinetic energy to increase the range of missiles and 

projectiles. 

    The author shows that the range of a ballistic warhead can be increased 3–4 times if an optimal wing is added 

to it, especially a wing with variable area. If we do not need increased range, the warhead mass can be 

increased. The range of large gun shells can also be increased 3–9 times. The range of an aircraft may be 

improved by 3–15% or more. 

    The results can be used for the design of aircraft, missiles, flying bombs and shells for large guns. 

 

Nomenclature (in metric system) 

 
a – the speed of sound, m/s,  

a1, b1, a2, b2 – coefficients of  exponential atmosphere,  

CL – lift coefficient,  

CD – drag coefficient,   

CDo – drag coefficient for CL = 0,  

CDW  – wave wing drag coefficient when   = 0,  

CDb  – body drag coefficient,  

c – relative thickness of a wing,  

cb – relative thickness of a body, 

c1 – relative thickness of a vehicle body, 

cs – fuel consumption, kg/s/ kg thrust,  

D  – drag of vehicle, N, 

D – drag of vehicle without , N, 

D0W – wave wing drag when  = 0, N, 

D0b – drag of a vehicle body, N, 

H – Hamiltonian, 

h – altitude, m, 

K = CL/CD  – the wing efficiency coefficient, 

 k1, k2, k3 – vehicle average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively, 



 L – range,   

M = V/a  – Mach number, 

m – mass of vehicle, kg, 

p = m/S  –  load on a square meter of wing,  

q=V
2
/2  – a dynamic air pressure,  

R – aircraft range or R = distance from flight vehicle to Earth center;  

R = Ro + h, where Ro = 6378 km is Earth radius,   

t– time,  

T = eV  – thrust,  N, 

V – vehicle speed, m/s, 

Ve – speed of throw back mass (air for propeller engine, jet for jet and rocket engine), m/s, 

S – wing area, m
2
, 

s – length of trajectory, 

T – engine thrust, N,  

Y – lift force, N, 

 – wing attack angle,  

 – fuel consumption,  

  – angle between the vehicle velocity and the horizon,  

  – thrust angle between thrust and velocity,  

E – Earth angle speed, 

E – lesser angle between the Earth’s Polar axis and a perpendicular to a flight plate,  

 – air density. kg/m
3
. 

Introduction 
 

The topic of the optimal flight of air vehicles is very important. There are numerous articles and books about the 

optimal trajectories of rockets, missiles, and aircraft. The classical research of this topic is by Miele
1
. 

Unfortunately, the optimal theory of this problem is very complex. In most cases, the researchers obtained 

complex equations, that allow one to compute a single optimal trajectory for a given aircraft and for given 

conditions, but the structure of optimal flight is not clear and simple formulas of optimal control (which depend 

only on flight conditions) are absent.  

    The author’s new theory of singular optimal solutions, developed earlier
2–14

, does not contain unknown 

coefficients or variables as previous theories have. He found that the optimal flight path depends only on the 

flight conditions and the addition of certain variable wing structures.  

    In conclusion, the author applies his solution to ballistic missiles, warheads, flying bombs, large gun shells, 

and subsonic, supersonic, and hypersonic aircraft with rocket, turbo-jet, and propeller engines. He shows that 

the range of these air vehicles can be increased 3–9 times. 

 

1. General equations  

 

Let us consider the movement of an air vehicle given the following conditions: (1) The vehicle moves in a plane 

containing the Earth’s center. (2) The vehicle design allows the wing area to be changed (this will prove 

important in the remainder of this chapter). (3) We ignore the centrifugal force from the Earth’s rotation (it is 

less then 1%). (4) Earth has a curvature.  

  Then the equations for flying vehicle (in a system of coordinates where the center of the system is located at 

the center of gravity of the flying vehicle, the x-axis is in the direction of flight, the y-axis is perpendicular to 

the x- axis, Fig. A4.1) are 



                                                     
Fig. A4.1 Vehicle forces and coordinate system. 
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    All values are in the metric system and all angles are taken to be in radians. 

Flight with a small change of vehicle mass and flight path angle  

 

 Most air vehicles fly at an angle  in the range 15
o
 (  =   0.2618 rad), with the engine located along the 

velocity vector. This means  

sin  = ,    cos  = 1 ,  = 0 ,    (A4.6) – (A4.8) 

because sin15
o = 0.25882, cos15

o = 0.9659. 

    Let as substitute (A4.6) – (A4.8) into (A4.1) – (A4.5) 
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where 



max  .      (A4.14) 

    Many air vehicles fly with a low angular speed of d/dt. The change of mass is also low in flight. This means 

m = const, dm/dt  0. 

    d/dt   0,   dm/dt  = 0 .   (A4.15) – (A4.16) 

Let us take a new independent variable s = length of trajectory  

dt = ds/V,               (A4.17) 

and substitute  (A4.14)-(A4.17) in (A4.9)-(A4.13). Then system (A4.9)-(A4.13) takes the form 
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Let us re-write equation (A4.21) in the form 
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If we ignore the last element, equation (A4.22) takes the form  
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    If V is not very large (V <  3 km/s), the two last elements in equation (A4.21) are small and they may be 

ignored. Equations (A4.22) and (A4.22)’ can be used for deleting  from D . 

    Note the new drag without  is 

D=D(h,V).            (A4.23) 

If we substitute  from (A4.22) into equation (A4.20) the equation system take the form 
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      (A4.24) – (A4.26) 

Here the variable  is new control limited by 

     max  .      (A4.27) 

 

                                                          Statement of the problem 

 

 Consider the problem: finding the maximum range of an air vehicle described by equations (A4.24) – (A4.26) 

for the limitation (A4.27). This problem may be solved using conventional methods. However, it is a non-linear 

problem but contains the linear control, which means the problem has a singular solution. To find this singular 

solution, we will use methods developed previously
2, 4

. 

    Write the Hamiltonian (for purpose – minimum of time): 
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where )(),( 21 ss  are unknown multipliers. Application of the conventional method gives 
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Where '''' ,,, vhvh TTDD  denote the first partial derivatives of D, T by h, V respectively.  

    The last equation shows that the control  can have only two values max. We consider the singular case 

when  

       A = 021 
V

g
 .     (A4.32) 

This equation has two unknown variables 1 and 2 and does not contain information about the control .    Let 

us to differentiate equation (A4.32) for the independent variable s. After substitution the equations (A4.26), 

(A4.29), (A4.30), and (A4.32) into the result of differentiation , we obtain the relation for 1  0, 2 0 

   VVhh DTgDTV       (A4.33) 

    This equation does not contain  either, but it contains the important relation between the variables V and h 

on the optimal trajectory.  

If we have the formulas (or graphs) 

D = D(h,V),       (A5.34) 

T = T(h,V),       (A4.35) 

we could find the relation 

h = h(V)       (A4.36) 

and the optimal trajectory for a given air vehicle. 

    This also gives important information about the structure of the optimal solution. Investigation of  equation 

(A4.33) shows that the equation has one solution in each of the subsonic, supersonic, and hypersonic fields. The 

equation can have two solutions for a transonic field.  

 

    This means the optimal trajectory in most cases has three parts (see Fig. A4.2): 

 

a) When climbing and in flight a vehicle moves from the initial point A with the angle  max up to the 

optimal curve (A4.36), then continues along the optimal curve (A4.36) and moves with at an angle 

max  to point B.    

b) When descending and in flight (Fig. A4.3) a vehicle moves from the initial point A with the angle  max

(up or down) to the optimal curve (A4.36), then continues down the optimal curve (A4.36), and moves 

at an angle  max (up or down) to the point B.   

 

 

 

 

 

                                                                           

 

 

 

 

 



 

 

 

Fig. A4.2.. Optimal trajectory for air vehicle climb and flight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A4.3. Optimal trajectory for air vehicle descent and flight. 

 

    The selection of direction (up or down, with max  or  – max respectively) depends only on the position of the 

initial and end points A and B.                      

    For air vehicles with rocket engines T = const, equation (A4.33) has a very simple form 

     Vh DgDV   .      (A4.37) 

    The same form (same curve) also applies for a ballistic warhead, which does not have engine thrust (after its 

short initial burn)  (T = 0). 

If we want to find an equation for the control , we continue to differentiate equation (A4.33) with the 

independent variable s, and substitute into the equations (A4.25), (A4.26), (A4.29), (A4.30), (A4.32), and 

(A4.33). We obtain the relation for   if 1  0, 2 0 
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    If the thrust does not depend on h, V  (T = const) or no engine (T = 0), the equation for   becames simpler 

.
)([

)]()[(
2

hhhVV

hVhVV

DVDDggm

DTDVDDg




      (A4.42) 

    In accordance with other publications
2–8

 (e,g, equation (4.2)
4
) the necessary condition for optimal trajectory is 
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where k = 1. 



    To obtain results for different forms of the drags and thrusts, we must take formulas (or graphs) for subsonic, 

transonic, supersonic, or hypersonic speed, and specific formulas for the thrust  

and substitute them in the equation (A4.33) and (A4.38). Consider two cases: subsonic and hypersonic speeds. 

Subsonic speed (V < 270 m/s) and different engines.  

Lift, drag, and derivative equations for subsonic speed are 
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a) Aircraft with rocket engine. For this aircraft the thrust T is constant or 0. Equation (A4.33) has form 

(A4.37). Find the partial derivatives 
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    Substituting (A4.44) to (A4.46) in (A4.37) we obtain the relation between air density , altitude h, and 

aircraft speed V: 
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where p = m/S  is the load on a square meter of wing. For a diapason of h = 0–11 km the coefficients a1 = 1.225, 

b1 = 9086.  

    Results of this computation are presented in Fig. A4.4. 

b) Aircraft with turbo-jet engine. The thrust for this engine is  
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We can then find , h from (A4.49) 

.ln,
)2(

2
,

2 1
1

0
0

1

2

0

0
2

2

2 




a
bh

m

T
T

gbV

Tp
CAwhere

AV

pg
Do 


  (A4.50) 

Results of computation for the different p, T = 0.8 N/kg, a1 = 1.225, b1 = 9086 are presented in Fig. A4.5. 



 
Fig. A4.4. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m

2
 and a rocket engine. 

 
Fig. A4.5. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m

2
, turbo-jet engine, and 

relative thrust 0.8 N/kg vehicle. 

 

c) Piston and turbo engines with propeller. All current propeller engines have propellers with variable 

pitch. The propeller coefficient efficiency, , approximately is constant. The thrust of this engine is 
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where N0 = Ne,   Ne  is engine power at h = 0. 

    Substituting (A4.44) in (A4.33). We obtain the equation for thrust  
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Substitute (A4.44) and (A4.51) in (A4.33). We obtain 
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We can then find , h from (A4.52) 
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Results of computation for CDo = 0.025,  = 10, for different values of p, N are presented in Fig. A4.6.  

 

 
Fig. A4.6. Air vehicle range versus speed for wing load p = 250, 300, 350, 400 kg/m

2
, piston (propeller) engine, 

and relative engine power 100 W/kg vehicle. 

 

Hypersonic speed (1 km/s < V < 7 km/s). 

 

The lift and drag forces in hypersonic flight are approximately (see (A4.22)’) 
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The derivatives of D by V, h are 
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a) Rocket engine or hypersonic glider. The derivatives from T = const and T = 0 are 

.0,0  hV TT       (A4.57) 

Substituting (A4.55) in (A4.56), and expressions (A4.56) and (A4.57) in (A4.37) to find , h, we obtain for h  > 

11,000 m 
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where a2  =  0.365, b2  =  6997 are coefficients of the exponent atmosphere for the stratosphere at 11 to 60 km. 
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In the limit as R  in (2-54), we find 
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    Here optDoC  /  is an optimal (maximum CL/CD) wing attack angle of the horizontal flight.  

Results of the computation in (A4.58) are presented in Fig. A4.7. 

 
Fig. A4.7. Optimal vehicle altitude versus speed for specific body load Pb = 3, 5, 7, 10 ton/m

2
, body drag 

coefficient Cb = 0.02, wing drag coefficient Cd  =  0.025, wing load p = 600 kg/m
2
. 

 

b) Ramjet engine. The thrust of the jet engine is approximately (M < 4) 
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where  is a numerical coefficient, 2 is the air density at the lower end of the selected atmospheric diapason (in 

our case 11 km). 

    Substituting (A4.60) and (A4.56) in our main equation (A4.33), by repeat reasoning we can obtain the 

equation for the given engine 
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where T0 is taken at the lower end of the exponent atmospheric diapason (in our case 11 km). The curve of air 

density versus altitude h is computed similarly to (A4.58).  

Optimal wing area 

The lift force and drag of any wing may be written as 

),,(,),,( 2 SqDDSqYmgY   .    (A4.62) 

Substituting  (A4.62) in (A4.28) and finding the minimum H versus S, we obtain the equation 
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where  is the value found from the first equation (A4.62). Equation (A4.63) is the general equation for the 

optimal wing area and optimal specific load p = m/S on a wing area. 

a) Subsonic speed.   Lift force and drag of the subsonic wing are 
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where q = V
2
/2 is a dynamic air pressure for subsonic speed.   

    Substituting the last equation in (A4.62) into the first equation in (A4.63), we obtain the optimal specific load 

on the wing area 
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Substituting  from (A4.62)’ into the last equation in (A4.62)’ and dividing both sides by vehicle mass m, we 

obtain 
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Here D/m is specific drag (drag per unit weight for the vehicle). Substituting (A4.63)’ into (A4.64). We abtain 

the minimum drag for a variable wing 
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 where the term on the right is wing drag for the lift of one unit of weight for the vehicle. We discover the 

important fact than the optimal wing drag of a variable wing does not depend on air speed, it depends only on 

the geometry of the wing.  This may look wrong, but consider the following example. Wing drag is D = mg/K, 

where K = CL/CD  is the wing efficiency coefficient. The value D/m does not depend on speed.  

    If the air vehicle has a body, the minimum drag is 
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Full vehicle drag depends on speed because the body drag depends on V. 

Substituting the (A4.63)’ term for  into (A4.62)’, we obtain the optimal attack angle 


 DW

opt

C
 .      (A4.66) 

This is the angle of optimal efficiency, but CDW is the wing drag coefficient only when  = 0 (not the full 

vehicle as in  conventional aerodynamics). The coefficient of flight efficiency 
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b) Hypersonic speed. The equations of wing lift force and wing air drag for hypersonic speed are as follows: 
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Substituting  from (A4.68) into D , we obtain 

 
qS

qS

RVgm
CD DW






















 


2
2 /


 .     (A4.68)’  

Substituting the wing load p = m/S into (A4.68)’, we obtain 

qp
q

RVg

p
C

m

D
DW






















 


2
2 /1


 .     (A4.69) 

To find the minimum the air drag D for p, we take the derivatives and set them equal to zero, then we obtain 
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Substituting (A4.70) into (A4.69), we find the minimum wing drag 
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The sum of the minimum vehicle drag plus body drag is 
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Substituting (A4.70) into the term for  in (A4.65), we find the optimal attack angle of a vehicle without a body 
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The coefficient of flight efficiency k = Y/D is 
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For hypersonic speed the coefficients are approximately   
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    In numerical computation the angle  can be found from (A4.25) as   = h/Rg. 

For the rocket engine or gliding flight we find the following relation: when S is optimum (variable), the partial 

derivatives from (A4.71) are 
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    Substituting these into (A4.37), we find the relationship between speed, altitude, and optimal wing load for a 

hypersonic vehicle with a rocket engine and variable optimal wing: 
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For  = 4,  = 2  equation (A4.73)’ has the form 
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    Results of computation using (A4.74)’ for  = 4,  = 2, a2 = 0.365, b2 = 6997 and different pb are presented in 

Fig. A4.7 (dashed lines). As you see, the variable area wing saves kinetic energy, because its curve is located 

over an invariable (fixed) wing. This is advantageous only at orbital speed (7.9 km/s) because no lift force is 

necessary. 

 



Estimation of flight range 

Air and space vehicles without thrust 
 

The aircraft range can be found from equation (A4.26)  
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Consider a missile with the optimal variable wing in a descent trajectory with thrust T = 0.  

a) Make the simplest estimation using equations for kinetic energy from classical mechanics. Separate the flight 

into two stages: hypersonic and subsonic. If we have the ratio of vehicle efficiency DLDL CCkCCk /,/ 21  , 

where k1, k2 are the ratios of flight efficiency for the hypersonic and subsonic stages respectively, we find the 

following equations for a range in each region:      
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where R1 is the hypersonic part of the range, R2 is the subsonic part of the range, V1 is the initial (maximum) 

vehicle hypersonic speed, V2 is a final hypersonic speed, and h is the altitude at the initial stage of the subsonic 

part of the trajectory. 

b) To be more precise. Assume in (A4.75)  = const (taking average air density).  

1. For the hypersonic part of the trajectory: substitute (A4.71) into (A4.76). We then have  
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2. For the subsonic part of the trajectory: substitute (A4.65) into (A4.75). We then have  
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where the values for C1, C2 are 
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The trajectory (without the rocket part of the trajectory) is 

211111 RRRRorRRR SHgSH  .  (A4.80) 

where R2 = k2h computed for altitude h at the end of the kinetic part of the subsonic trajectory. 

3. The ballistic trajectory of a wingless missile without atmosphere drag is 
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where h is the initial altitude, V1 is the initial horizontal speed of the wingless missile at altitude h, Vy is  initial 

(shot) vertical speed at h = 0, Vi is the full initial (shot) speed at h = 0 . 

    For the hypersonic interval 5 < V < 7.5 km/s, we can use the more exact equation 
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where R = 6378 km is the radius of Earth. The full range of a ballistic rocket plus the range of a winged missile 

is  

 Rf = Rb + Ra + Rg,      (A4.83) 

where Rg = kh is the vehicles gliding range from the final altitude h2  (see Fig. A4.11) with aerodynamic 

efficiency k. 

The classical method finding of the optimal shot ballistic range for spherical Earth without atmosphere is  
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where opt is the optimal shot angle, VA is the shot projectile speed, and Vc is an orbital speed for a circular orbit 

at a given altitude. 

4. Cannon projectile. We divide the distance into three sub-distances: 1) 1.2M < M, 2) 0.9M < M < 1.2M, 3) 0 

< M < 0.9M.  The range of the wing cannon projectile may be estimated using the equation 
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where k1, k2, k3 are the average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively. Conventionally, 

these coefficients have the following values: subsonic k3 = 8–15, near sonic k2 = 2–3, supersonic and hypersonic 

k1 =  4–9. If  V  >  600 m/s, the first term in (A4.85) has the greatest value and we can use the more simple 

equation for range estimation: 
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    At the top of its trajectory, a modern projectile can have an additional impulse from small rocket engines. 

Their weight is 10–15% of the full mass of the projectile and increases the maximum range by 7–14 km. In this 

case we must substitute V = V1 + dV  into (A4.84)’, where dV is the additional impulse (150–270 m/s). 

Subsonic aircraft with thrust. Horizontal flight 

 The optimal climb and descent of a subsonic aircraft with a constant mass and fixed wing is described by 

equations (A4.50) and (A4.47). Any given point in a climb curve may be used for horizontal flight (with 

different efficiency). We consider in more detail the horizontal flight when the aircraft mass decreases because 

the fuel is spent. This consumption may reach 40% of the initial aircraft mass. The optimal horizontal flight 

range may be computed in the following way: 
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where m is fuel mass, cs is fuel consumption, kg/s/ kg thrust. 

a) For a fixed wing, we have (from (A4.44)) 
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    Substituting (A4.87) into (A4.86), we obtain 
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b) For a variable wing we have (from (A4.65) 
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Results of the computation are presented in Fig. A4.8. The aircraft have the following parameters: CDW = 0.02; 

CDb = 0.08; b1 = 9086; S = 120 m
2
; m = 100 tons, mk = 80 tons, cs =  0.00019 kg/s/kg thrust; wing ratio  = 10. 

    As you see, the specific fuel consumption does not depend on speed and altitude, a good aircraft design 

reaches the maximum range only at one point, in one flight regime: when the aircraft flies at the maximum 

speed possible for the critical Mach number, at the maximum altitude possible for that  engine. The deviation 

from this point decreases in the range in 5–10–15 percent or more. The variable wing increases efficiency of the 

other regime, which that approximately reduces the losses by a half.   

    The coefficient of flight efficiency may be computed using equation k = g/(D/m), where the values 
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apply for fixed and variable wings respectively. Results of computation are presented in Fig. A4.9. The curve of 

the variable wing is the round curve of the fixed wing.  

 

 

Fig. A4.8.  Aircraft range for altitude H = 6, 8, 10, 11, 12 km; maximum range Rm = 4361 km; relative fuel 

mass Mr = 0.2; body drag coefficient Cb = 0.08; wing drag coefficient Cd = 0.02.  



 

Fig.  A4.9.  Aerodynamic efficiency of non-variable and variable wings for wing load p = 400, 600, 800, 1000 

kg/m
2
, wing drag CD = 0.02, body drag CDb = 0.08, wing ratio 10.    

 

Optimal engine control for constant flight pass angle  

 
    Let us to consider equations (A4.1) – (A4.5) for a constant angle of trajectory,  = const. Substituting   =  

constant, thrust T = Ve , and a new independent variable s = Vt (where s is the length of the trajectory) into the 

equation system (A4.1) – (A4.5). We obtain the following equations 
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   (A4.91) – (A4.96) 

Equation (A4.95) is used to substitute for  in equation (A4.93) and for a change of air drag 

     ),,( hVD  = D(V, h).    (A4.97) 

    We find a non-linear system with a linear fuel control . This means the system can have a singular solution.  

Solution 

Consider the maximum range for vehicles described by equation (A4.91) – (A4.96). 

Let us write the Hamiltonian H  
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where )(),(),( 321 sss  are unknown multipliers. Application of conventional methods gives 
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Where 
VD  is the first partial derivate of D by V.  

    The last equation shows that the fuel control  can have only two values, max. We consider the singular 

case when  

       A = 032  mVe  .     (A4.102) 

    This equation has two unknown variables, 2 and 3, and does not contain information about fuel control .  

    The first two equations (A4.91) – (A4.92) do not depend on variabls and can be integrated  

L = s cos ,       (A4.103) 

H = s sin .         (A4.104) 

In accordance with the References
2
 let us differentiate equation (A4.102) by the independent variable s. After 

substitution into equations (A4.93) – (A4.95), (A4.97), (A4.99), (A4.100), (A4.102), and (A4.104) we obtain 

the relation for 2  0, 3   0: 
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    This equation also does not contain , however it does contain an important relation between variables m, h 

and V, on an optimal trajectory. This is a 3-dimentional surface. If we know  

D = D(h,V) ,      (A4.106) 

Ve = Ve(h,V) ,      (A4.107) 

The mass of our apparatus m, and its altitude h, we can find the optimal flight speed. This means we can 

calculate the necessary thrust and the fuel consumption for every point m, h, V  (Fig. A4.10).  

    If we want to find an equation for the fuel control , we continue to differentiate equation (A4.105) to find 

the independent variable s and substitute in equations (A4.91) – (A4.104). If we calculate the relation for , if 

2  0, 3   0, Ve = const, then 
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Fig. A4.10. Optimal fuel consumption of flight vehicles. 

 

    The necessary condition of the optimal trajectory as it is shown in the References
2– 8

 (see for example, 

equation (4.2)
4
) is 
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where k = 1. 

    If the flight is horizontal ( = 0), the expression (A4.108) is very simply 

eV

D
  .     (A4.111) 

This means the thrust equals the drag, a fact that is well known in aerodynamic science.  

 

    To obtain the specific equations for different forms of drag and thrust, we must take formulas (or graphs) for  

subsonic, transonic, supersonic and hypersonic speed for  thrust and substitute them into the equations (A4.105) 

and (A4.108).   

 

Simultaneous optimization of the path angle and fuel consumption 

 
Consider the case where the path angle and the fuel consumption are simultaneously optimized. 

In this case the general equations (A4.1) – (A4.5) have the form: 
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     (A4.112) – (A4.116) 

Let us write the Hamiltonian 
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The necessary conditions of optima give 
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The lambda equations are  

.

,
1)()(

,

2

'

23

2322

''

,

22

''

,

21

Vm

mDDV

m

H

VV

g

mV

DVVDV

V

H

mV

DV

h

H

me

eVVe

hhe
























































  (A4.120) – (A4.122) 

If we differentiate A (A4.118), from dA/ds = 0, we find the optimal fuel consumption 
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Then we differentiate B (A4.119), from dB/ds = 0 we find the optimal path angle 
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    We have used the conventional forms for the partial derivatives in (A4.120)–(A4.124) as in the earlier 

sections of the chapter (see for example (A4.51)). 

    If we know from analytical formulas or graphical functions Ve, D, Y we can find the optimal trajectory of the 

air vehicle.  

    In the general case, this trajectory includes four parts: 

1. Moving between limitations  and . 

2. Moving between one limitation  or  and one optimal control  or . 

3. Moving simultaneously with both optimal controls  and . 

4. Moving at a given point along one limitation and/or both limitations 

. 

Application to aircraft, rocket missiles, and cannon projectiles 

A) Application to rocket vehicles and missiles.  

Let us apply the previous results to typical current middle- and long-distance rockets with warheads. We will 

show: if the warhead has wings and uses the optimal trajectory, the range of the warhead (or its useful load) is 

increased dramatically in most cases. We will compute the optimal trajectories for a  rocket-launched warhead 

at a particular altitude (20–60 km) and speed (1–7.5 km/s). Point B is located on the curve (A4.58) for a fixed 

wing and on curve (A4.73)’ for a variable wing (Fig. A4.11). Further, the winged warhead flies (descends) 

along the optimal trajectory BD (Fig. A4.58) according to equations (A4.58) (fixed wing) or equations (A4.73)’ 

(variable wing) respectively. When the speed is reduced by a small amount (for example, 1 km/s) (point D in 

Fig. A4.11), the winged warhead glides (distance DE in Fig. A4.11). 

 

                                 

Fig. A4.11. Trajectory of flying vehicles. 

 

The following equations are used for computation: 

1. The optimal trajectory for a fixed wing space vehicle.  

a) Equation (A4.58) is used to calculate h = h(V) to find the optimal trajectory of a warhead with a non- 

variable fixed wing in the speed interval 1 < V < 7.5 km/s. The result is presented in Fig. A4.7. 

b)  Equation (A4.54) gives the magnitude (D/m).  

c) The equation (A4.75) in the form 
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is used for computation in the intervals Ra, Rg (Fig. A4.11). Here Rg is the range of a gliding vehicle.  

d) Equation (A4.75) is used to calculate Rb in the launch interval AB (Fig. A4.11). 



e) The full range, R, of a warhead with a fixed wing and the full ballistic warhead range, Rw,  are  

bwgab RRRRRR 2,  .    (A4.126) 

f) Equation (A4.84) is used to calculate the optimal ballistic trajectory of a shot without air drag (a vehicle 

without wings). The range of this trajectory, as it is known, may be significantly more than the range in 

the atmosphere.  

 

Fig. A4.12. Range of NON-VARIABLE wing vehicle for body drag coefficient Cb = 0.02, wing drag coefficient 

Cd = 0.025, wing load p = 600 kg/m
2
. 

 
Fig. A4.12. The relative range of a non-variable wing vehicle for the body drag coefficient Cb = 0.02,  wing 

drag coefficient Cd = 0.025, wing load p = 600 kg/m
2
, body load Pb = 3–10 ton/m

2
. 

 

    The results are presented in Fig. A4.12. Computation of the relative range (for different pb) using the formula  

b

f

r
R

R
R        (A4.127) 

is presented in Fig. A4.12. The optimal range of the winged vehicle is approximately 4.5 times that of the ideal 

ballistic rocket computed without air drag. In the atmosphere this difference will be significantly more.  



2. Rockets, missiles and space vehicles with variable wings  

The computation is the same. For computing , h, D/m we can use equations (A4.73)’ and (A4.71) respectively. 

The results for different body loads are presented in Fig. A4.7.  The optimal trajectories of vehicles with 

variable wing areas have less slope. This means the vehicle loses less energy when it moves.  It travels above 

the optimal trajectory of a vehicle with fixed wings, which means it needs a lot more time (10–20) and more 

wing area than a fixed wing space vehicle (Fig. A4.14). The computation of the optimal variable wing area is 

presented in Fig. A4.15. The relative range (equation (A4.127)) is presented in Fig. A4.16. 

 

Fig. A4.14. Optimal wing load versus speed for specific body load Pb = 3, 5, 7, 10 ton/m
2
, body drag coefficient 

Cb = 0.02, wing drag coefficient Cd = 0.025, wing load p = 600 kg/m
2
. 

 

 
Fig. A4.15. Range of a variable wing vehicle for the body drag coefficient Cb = 0.02, the wing drag coefficient 

Cd = 0.025, the wing load p = 600 kg/m
2
. 



 
Fig. A4.16. Relative range of variable wing vehicle for the body drag coefficient Cb = 0.02, the wing drag coefficient Cd = 

0.025, the wing load p = 600 kg/m
2
, the body load Pb = 3–10 ton/m

2
. 

 

 
Fig. A4.17. Vehicle efficiency coefficient versus speed for specific body load Pb  = 3, 5, 7, 10 ton/m

2
, body drag 

coefficient Cb = 0.02, wing drag coefficient Cd = 0.025, wing load p = 600 kg/m
2
. 

 

      The aerodynamic efficiency of vehicles with fixed (for different pb bodies) and optimal variable wings 

computed using equations (A4.125) and (A4.67) respectively is presented in Fig. A4.12. The difference 

between vehicles with fixed and variable wings reaches 0.2–0.6 . The slope of the trajectory to horizontal is 

small (Fig. A4.18).  

The range of the fixed wing vehicle computed using equation (A4.125) is presented in Fig. A4.12. The 

range of the variable wing vehicle computed using equation (A4.126) is presented in Fig. A4.15. The curve is 

practically the same (see Figs. A4.12 and A4.15). 

3. Increasing the rocket payload for the same range.  If we do not need to increase the range, the winged 

vehicle can be used to increase the payload, or to save rocket fuel. We can change the mass of the fuel or the 

payload. The additional payload may be estimated by the following equation  

e
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
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1 ,     (A4.128) 



where  = m/mb is relative mass (the ratio of rocket mass of the winged vehicle to the ballistic rocket), V = 

Vb–V  is the difference between the optimal ballistic rocket speed  (equation (A4.84)) and the rocket with a 

winged vehicle (equation (A4.126)) for given range (see Fig. A4.12). Results of computation are presented in 

Fig. A4.19. The mass of the rocket with a winged vehicle may be only 20–35% of the optimal ballistic rocket 

flown without air drag. 

 

Fig. A4.18.  Trajectory angle versus speed for body drag coefficient Cb = 0.02, wing drag coefficient Cd = 

0.025. 

 

 

Fig. A4.19.  Ratio of mass of winged rocket to ballistic rocket for specific engine run-out gas speed Ve = 1.8, 2, 

2.2, 2.4, 2.6 and 2.8  km/s. 

 

Conclusion: The winged air-space vehicle has a range that is greater by a minimum of 4.5–5 times than an 

optimal shot ballistic space vehicle.  The variable wing improves the aerodynamic efficiency by 3–10% and 

also improves the range. An optimal variable wing requires a large wing area. If you do not need to increase the 

range, you may instead increase payload. 



B) Application to cannon wing projectiles   

Properties of a typical current cannons are shown in Table A4.1. 

Table A4.1. Properties of current typical Cannons.  

------------------------------------------------------------------------------------------------------------------       

Name   caliber, Nozzle speed,  Mass of projectile, Range,  RAP,  

  mm  m/s   kg   km  km 

------------------------------------------------------------------------------------------------------------------  

M107  175  509–912  67   15–33 

SD-203 203  960   110   37.5 

2S19  155  810   43.6   24.7 

2S1  122  690–740  21.6   - 

S-23  180  -   -   30.4  43.8 

2A36  152  -   -   17.1  24 

D-20  152  600–670  43.5–48.8  20 

---------------------------------------------------------------------------------------------------------------   

Issue: Jane’s 

  The computations using equation (A4.84)’ for different k and RAP with dV = 270 m/s are presented in Figs. 

A4.20 and A4.21.  

 

Fig. A4.20. Cannon winged projectile range for average aerodynamic efficiency k = 3, 5, 7, 9. 



 
Fig. A4.21. Cannon winged projectile relative range for average aerodynamic efficiency k = 3, 5, 7, 9. 

    

 Conclusion. As you see (Figs. A4.20, A4.21), the winged projectile increase its range 3–9 times (from 35 up to 

360 km, k = 9). The projectile with RAP increases its range 5–14 (from 40 up to 620 km, k = 9) . Winged shells 

have another important advantage: they do not need to rotate. We can use a barrel with a smooth internal 

channel. This allows for an increase in projectile nozzle speed of up to 2 km/s and in shell range of up to 1000 

km (k = 5).  

 C) Application to current aircraft.  

    We can use equations (A4.88) and (A4.89) for computations for typical passenger airplanes (Figs. A4.22, 

A4.23, A4.24, and A4.8), where all values are divided by the maximum range Rm = 4381 km (for a fuel mass 

that is 20% of to vehicle mass) at a speed of V = 240 m/s, and altitude H = 12 km. The speed is limited by the 

critical Mach number (V < M = 0.82), and the altitude is limited by the engine trust, when engine stability is 

such that it works in a cruise regime. Fig. A4.22 shows the typical long-range trajectory of aircraft. 

  Conclusion: The best flight regime for a given air vehicle (closed to Boeing 737) is altitude H = 12 km, speed 

V = 240 m/s, specific fuel consumption Cs = 0.00019 kg fuel/s/kg thrust. Any deviation from this flight regime 

significantly reduces the maximum range (by up to 10–50%). The vehicle with a variable wing area loses 50% 

less range than a vehicle with a fixed wing 

 

.  

                      

Fig. A4.22. Optimal trajectory of aircraft. 



 
Fig. A4.23. Relative aircraft range for altitude H = 6, 8, 10, 11 and 12 km, maximum range Rm = 4381 km, relative fuel 

mass Mr = 0.2, body drag coefficient Cb = 0.08, wing drag coefficient Cd = 0.02. 

 

 
Fig. A4.23. Relative aircraft range for speed V = 240 m/s, maximum range Rm = 4381 km, relative fuel mass Mr = 0.2, 

body drag coefficient Cb = 0.08, wing drag coefficient Cd = 0.02. 

 

 General discussion and conclusion  

a) The current space missiles were designed 30–40 years ago. In the past we did not have navigation 

satellites that allowed one to locate a missile (warhead) as close as 1 m to a target.  Missile designers used 

inertial navigation systems for ballistic trajectories only. At the present time, we have a satellite navigation 

system and cheap devices, that enable aircraft, sea ships, cars, vehicles, and people to be located. If we 

exchange the conventional warhead for a warhead with a simple fixed wing with having a control and 

navigation system, we can increase the range of our old rockets 4.5–5 times (Fig. A4.13) or significantly 

increase the useful warhead weight (Fig. A4.19). We can also notably improve the precision of our aiming. 

b) Current artillery projectiles for big guns and cannons were created many years ago. The designers 

assumed that the observer could see an aim point and correct the artillery. Now we have a satellite navigation 

system that allows one to determine the exact coordinates of targets and we have cheap and light navigation 

and control devices that can be placed in the cannon projectiles. If we replace our cannon ballistic projectiles 

with projectiles with a fixed wing, and a control and navigation system, we increase the range 3–9 times 

(from 35 km up to 360 km, see Fig. A4.20, A4.21). We can use a smooth barrel to increase the nozzle shell 



speed up to 2000 m/s and range up to 1000 km. These systems can guide the winged projectiles and 

significantly improving their aim.  We can reach this result because we use all the kinetic energy of the 

projectile. A conventional projectile cannot remain in the atmosphere and drops at a very high speed. Most of 

its kinetic energy is wasted. In our case 70–85% of the projectile’s kinetic energy is used for support of the 

moving projectile. This way the projectile range increases 3–9 times or more. 

a) All aircraft are designed for only one optimal flight regime (speed, altitude, and fuel consumption). Any 

deviation from this regime decreases the aircraft range. For aircraft like to the Boeing 747 this regime is: 

altitude H = 12 km, speed V = 240 m/s, specific fuel consumption Cs = 0.00019 kgf/s/kg thrust.  If the speed 

is reduced from 240 m/s to 200 m/s, the range decreases by15% (Fig. A4.23).  Application of the variable 

wing area reduces this loss from 15% to 10%.  If the aircraft reduces its altitude from 12 km to 9 km, it loses 

12% of its maximum range (Fig. A4.24).  If it has a variable wing area, it loses only 7.5% of its maximum 

range.  Civil air vehicles are forced to deviate from the optimal conditions by weather or a given flight air 

corridor. Military air vehicles sometimes have to make a very large deviation from the optimal conditions (for 

example, when they fly at low altitude, below the enemy radar system). A variable wing area may be very 

useful for them because it decreases the loss by approximately 50%, improves supersonic flight and taking off 

and landing lengths.    

  The author offers some fixed and variable wing designs for air vehicles (Fig. A4.25). Variants a, b, c, and f 

are for missiles and warheads, variants d, and e are for shells. 

 

 

 

 

 

 

 

 

 

 
Fig. A4.25. Possible variants of variable wing designs: a, b, c, and f for aircraft; d and e for gun projectiles. 
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