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Abstract

Withinclusion of the virtual proper time inthe metric of the physical Minkowski
space we pass to the four-dimensional bimetric space-time. Now a complete description
of the occurring physical processes includes both physical (observable) and virtual
(unobservable) objects that enter inthe physical expressions. In classical € ectrodynamics
this conversion leads to the appearance of the virtual scalar-electric field that complements
the physical electromagnetic field and isamassive in the presence of sources. This allows
to eliminate theinfrared catastrophe and to proof thefield origin of the virtual (bare)
electron mass and self-energy. With inclusion of thevirtual proper time intheclassica
guantum theory we obtain the single-particle wave Dirac equation for which the electron
wave function retains the simple probabilistic interpretation. In the single-particle Dirac
theory thevirtual scalar-electric field shiftsthe physical energy levels for the hydrogen
atom inan external field and thisleads to two additional amendments.
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Introduction

In Minkowski space with the metric ds® = c?dt?- dx* the propertimet is
determined by the equality ds®= c?dt ?.

For amoving particle the proper timet ismeasured by the clock which move with
thisparticle and at rest relative toit[1]. Therefore, in amoving inertia reference system
(further, i.r.s.) theproper timet isnot measured directly by theclock of timet.

We consider the system of two expressions ds® given above for theinvariant interval
S. Thereby, wepass from the Minkowski space to the four-dimensional space-time with
the double metric.

Now moving i.r.s. includes theclock of virtual proper timet that isseparated from
the clock of physical time t. Inour context thevirtual proper timet is the unobservable
(immeasurable) time inamoving i.r.s. In i.rs. a rest theclocks of timet and t are
synchronized by definition .

Thus, wedeal with thefour-dimensiona bimetric space-time inwhich all variables

depend not only on the physical coordinates t,x, Yy, z, but aso on thevirtua proper time

t . Now acomplete description of the occurring physical processes include both physical
(observable) and virtual (unobservable) objects entering into the physical expressions
through the operations that are similar to the algebraic operations withreal and imaginary
numbers. So, the multiplicative operation with two virtual objects is aphysical object.
Thus, under the action of a suitable virtual operator on thevirtual (bare) electron mass we
get the physical mass and on the physical electron charge we get thevirtua (bare) charge.

Introduction of virtual objects supplementing physical objects ensures the completeness of
description of the occurring physical processes and allows to consider the problems that
do not have solutions only in the set of physical objects. Thisissimilar to how some

algebraic real equations do not have solutions only inthe set of real numbers.



For example, the classical problem of the nature of the electron mass and self-energy
has asolution only for the virtual (bare) electron mass taking into account the physical
electromagnetic and virtual scalar-electric fields.

In thisarticle we will try tofind thejustification of theforegoing hypothesis on the
inclusion of thevirtual proper timein space-time metric through the study of some known

problems in classical electrodynamics and quantum theory.

We use the following abbreviations:

the i.r.s. - theinertial reference system,
the t-clock - theclock of timet,
SEM - scalar-electromagnetic,

SE - scalar-electric.

We assume that the indices

I,], k takeon thevalues 1, 2, 3;

a,B,y takeon thevaues 0, 1, 2, 3;

u,v, A takeon thevalues 0, 1, 2, 3, 5.

|. 4-dimensional bimetric pseudo-euclidean space-time Vg

1. 4-dimensional bimetric pseudo-euclidean space of 5-vectors Vg

1) Space V,

V, - 4-dimensional pseudo-euclidean linear space consisting of 4-vectors X* = (X°, X')
with the metric (ds?),, = (dx°)"- (dx')".

2) Space V,

V, - 1-dimensional linear space consisting of 1-vectors (scalars) X° with the metric

(ds?),,= (dx®)”.



3) Space V,

V, - 5-dimensional pseudo-euclidean linear space consisting of 5-vectors

x* = (x*, x°) = (X% x', x*)  with the metric (dSZ)Vsz (dxo)z- (dxi)2+ (dx5)2.
4) Space Vg

A) V,, - 4-dimensional linear space consisting of 5-vectors x* = (x“, x°) T V; such
that x°x, = (x°)" and that later wewill call 4[5-vectors.

B) V,s - pseudo-euclidean space with the double metric (bimetric) which isthe system

(657), 6= ()" ()= (ds7),,

vap

(ds?),,. = (dx°)"= (ds?),, , or

V45

(ds?),. -

(05),. = 2 4" (o) (0x7) '} =

N |

(05, = (d¢)°= (¢57),,

V45
Itisthelatter form of the double metric wecall the canonical form of the metric in Vg
since V; includes thespace V,; .

Definition

For the 4/5-vector X" = (X, x°) the 4-vector X" iscaled thebasepart and is

denoted x* = x* the 1-vector (scalar) X° iscaled theownpart and isdenoted

base 1
X® = X" un - Thus, the 4/5-vector X" = (X%, X°) = (X" s X" gun) -
2. 4-dimensional bimetric pseudo-euclidean space-time V,,

1) Thedouble metricin V,g



Let the4-vector x* =(x° x') =(ct, x)T V, , where V, - 4-dimensiona basic space-
time (Minkowski space) with themetric ds* = dx“dx, = cdt®- dx®. At each point
A(t,x) in vV, wedea only with physically measurable (observable) coordinates t and X.

Let the 1-vector (scalar) x> =ct 1V, , wheret is the proper time. That is, the metric
inV,: ds®=c’dt °. Then the5vector x* = (x*, x°) = (ct, x,ct) 1T Vy, where
V, =V, AV, -5dimensional space-time with the metric
(ds?),, = 2ds? = dx*dx, = c’dt?- dx*+ c’dt °.

Definition
4-dimensional bimetric pseudo-euclidean space-time V,, is thelinear space consisting

of 4|5-vectors X", for which

a) the double metric in the projective
ds? = dx"dx, = c’dt?- dx?,

ds® = dx°dx,

c’dt ?;

b) the double metric in the canonical form

2ds® = dx*dx, = cdt®- dx*+c*dt *,

ds? = dx°dx, = c’dt *.

2) Inertial reference system in the space-time V,q

Postulate
Ineach movingi.r.s. thereis theclock of virtua proper timet (thet -clock) that is
separated from theclock of physical timet. Therate and direction of time coincide for

thet - and t-clocks ineach i.r.s. where the t -clock at rest.



Corollaries

a) Since the space-time V,, isfour-dimensional, then thevirtual propertimet isnot
observable (immeasurable) inamovingi.r.s..

B) S=|x°|= % ct. Here and elsewhere thesign * corresponds to the forward \
backward direction of thevirtua propertime t .

y) If Dt 1 0, then theinterval DS isaways timelike, thatis, DS* > 0.

o) Theevent in V,, isdefined by thepoint A(t,X,t). Thus, inthemoving i.rs. S
not all components of A (t,x,t) corresponding totheevent are physical (observable).

Remark

We assume that theresults of multiplicative operations with the physical and virtual
objects are similar to the ones with rea and imaginary numbers. Therefore, X° =ct is
virtual, but S* isphysical.

3) Transformation group in Vg

In the space-time V,,; isomorphic to Minkowski space V, as a continuous transformation

group of components X“ of the 4/5-vector X" = (X“, X5) we examine the Poincare

group or, in aspecia case, the 6-parametric Lorentz group. The virtual component
X°>=ct is Lorentzinvariant.

Remarks
o) Thelast statement about transformation of components X* remains valid also for

any 4j5-vector @" = (@%, @°) such tha a‘a, =a;’. Thebasepat a",,= a“, ad

theownpart a*,,,= a°.



B) For any 4-vector a* thereis thecouple 4/5-vectors a*, = (a“, +a°) such that
aa, = (+ a;)” and conversely. On physical reasons thesigns of a° and a°® must be

coincident. Thus, thereis aone-to-one correspondence between a* and a* = (a“, a5).

3. Invariant systems for 4|5-vectors in the space-time Vg
Respect to transformations of the Lorentz group we have the invariant expressions
written below in theform of systems:
1) the 4j5-vector x* = (x*, x°) = (ct, x, ct)
X*X, =inv,
X°Xs =inv, Qe XMX, = 2%
2) the 4[5-vector of velocity U" (the 4[5-velocity)

gt = d;(“ - (u“, US) = + S’-’e% u, gl v 19, Here, u® is virtual,
S € Ceg

ds = |dx?| =+ cdt =+cedt, virtud & = 1- (v/c)®, physical v = ?j)t(

Then u“u, =1, uu, =1, ie U'u,=2.
Corollary
If virtual a° 0, then a* =a°u* is the 4|5-vector @" = (a*, a°), suchthat
a'a,=a;" or a'a, =2a;.
3) the momentum 4[|5-vector (the 4|5-momentum) of amassive point particle

+ p* = meu* = £ (p*, p°) = % Eﬂmc)

€ €

papa = m-c’, p5p5 = mZCZ, ie pu pu — 2m2C2



Here, m is thevirtua mass of amoving particle. By value m coincides with the
physical mass m, of aparticleat rest. Hence, p” is physica, but p°® is virtual.
4) the energy-momentum + p*c = mc’u* = + (E, pc,E) .

Here, E =1 mc?, p = my , E=mc? are respectively: the physical energy,
€ €

3-momentum, the virtual self-energy of amassive moving particle. By value the virtual
sdlf-energy E = mc? coincides with the physical self-energy E, =m,c? of a massive
particle at rest.

EZ2. p2c?= mZ*

E 2= m%?*, ie E?- p%c?+E?=2m%*.
Remark
n
The 5-acceleration w" = d: = (W“, W5) , W>=0, and the 5-force
S
fr= ddi =(f* f°), f°=0, are not 4J5-vectors, since, ingeneral case,
S

ww, 1 0 and f*f 1 o0.
4. The mass current 4|5-vector and the energy-momentum 4/5-tensor of a particle

in the space-time V,,
The mass current 4|5-vector of a moving particle
b= pncut = mc 3 (x*- x*(3)) e(@)u*(I)dI , where
5 (x*- x*(3)) = 8*(x*- x*(3)) 8(x*- x°(3)) , P*(x*- x*(3)) dx* =1,

Pm = Me §(X - X(1)) 3(t - t (t)) is thephysical massdensity,

A8 (x- x(1)) 3(t - t (t)) dx = 1.



Let the energy-momentum 4|5-tensor of a massive particle Th = jEcu’.
Trace of TA: T =2T¢=2p,c T¥=(T® Tx), where T =- L, = p,C’.
To® = jwcu®=jic, forwhich the conservation equation ,T5° =0 and 7,T,,° =0.

Thevalue TH° = jhcu® =T2u® or T =2 jE =p _c’u* isnot the 4[5-vector

[ Ne)

and is usualy caled the momentum density of a particle. The moment 4|5-vector of

aparticle P* = = §T*°d*x = mcu* = p* iscaled the 4|5-momentum.

O |lr

For the symmetric energy-momentum 4|5-tensor of amassive particle
TW = (TR, TW ) thebasepart TN, =T% = j%cuP is thesymmetric 4-tensor,
theown part Tk, = (Trﬁ‘f, Tr?]“) are two equal 4|5-vectors.

By analogy with the 4[5-vector X" for the 4|5-vector T} = (T,?f, T,?f’) there are
theinvariant equalitiess T, T* =T, T, T" =2T,’.
Respectively, for the 4|5-tensor T.' there are theinvariant equalities:
T T =T,T%, a<p,
T, T =2TT"”  a<v.

5. Thechargecurrent 4|5-vector of a massive particle

The charge current 4|5-vector of a massive particle with the physical charge e and

jr =% 715 where

thevirtual massm j& = peCuU" may be written as 4 =2 Lo
m mc

thevirtual chargedensity p, =— pp, -

3o

If we assume the positive direction of timet and t, then thecharge current 4/5-

vector of apaticle j* = pcu* = (j% j°) = (pc. ], pc), where p is thevirtua
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charge density, f = P is thephysical charge density, j = pcu = pv. Here,
€
L it= Q¢ or pet- = pict.

The equation of current continuity 1, j*=19,j*=0. Thatis, 1.j° =T _

it
Then thephysical charge Q = 3p dv = pdv, dv = edV = d°x.

I1. The scalar-electromagnetic field in the space-time V

1. 5-potential of the SEM-field

Let the scalar-electromagnetic potential A" (x") = (A%, A®) = (¢, A, d) is the
5-vector x*1 V;, V=V, AV,, butnot 4/5-vector X'T V,c. Thatis, thescalar
potential ¢ isvirtua and respect to thetransformations of the Lorentz group (of boosts
and spatial rotations) takesplace theinequaity A*A, 1 A% or @?- A® 1 ¢2.

In the case of amassive SEM-field with sources the 4-potential A*(X") depends
explicitly on thevirtual proper timet , i.e. 1, A" 0. Thus, the massive SEM-field with
the 5-potential A" (X") isconsidered in V,;, where the 4/5-vector X' = (X“, X5) ,
X*X, = X52. Thetheory of amassive SEM-field isnot gauge invariant.

In the case of amassless SEM-field without sources the 5-potential A" does not
depend explicitly onthevirtual proper timet , thatis, 1, A* =0. Thus, the massless
SEM-field isconsidered actualy inV, and isgivenby the5-potential A*(x“), x*T V,.

Thetheory of amassless SEM-field isinvariant respect to gauge transformations of

the potential A,: A, ® A=A - 1, f, where f:q, 1"f = 0.
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Inwhat follows wewill use mainly the Heaviside-Lorentz system of units, where
e =4no, h=c=1.

2. 5-tensor of the SEM-field strengths

®0 E E E C5b
g -
& Ex “H, H, -3:
Fo=TA, - 1,A, = (E,H,C,-2) = g E, H, -Hy -3y, where
S-E, -H, H, 0 -3,7%
é- C 9% 9 9, 05

the physical electricfield E =- grad ¢ - % , thephysical magneticfield H =rotA,
T

thevirtual scalar field C =% - Je , thevirtua eectricfield 9 =- grad ¢ - el

fit it

base

For the antisymmetric 5-tensor F,, = (F =%,

Fo") thebasepart F2*=F =(E,H)
is the antisymmetric 4-tensor of the physical EM-field, theownpart F}" = (Fu5, FSH) ,
where F, =(C,-9,0)=- F,,, are two opposite5-vectors of thevirtual SE-field
which isnot observable directly inamovingi.r.s.

By analogy with the 4[5-vector A", for the 4[5-tensor F, wehave theinequalities:
FysF @1 FF™, a<p, ie H?*-E?’! C*-9?

FoF® 1 2FF™, a<v.

Inthe general case, F;F™ 1 F,?, ie. C?- 2?1 0. Theequality takes place in

the special case for aplane SEM-wave.
3. Transformation of thevirtual SE-field strengths

The physicdl EM- and virtual SE- fields transform independently under the Lorentz

group. Asaresult of boosts thevirtual SE-field transformsas the 4-vector F * = (C,3):
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Ce==(C+V3), 3¢:3+X(V3+C)’ where & =\/1- VZ, V=]V,

€ € \e+1l

4. Thefirst union of the SEM-field equations

ﬂ“va + ﬂvau + ﬂ}LFw =0, i.e.

the physical equations. rotE = - % , divH =0,
il

thevirtual eguations. rotd = - A , grad SRR
qit Tt

Remark
Physical equations consist only of physical terms. Virtual equations consist only of
virtual terms.

5. Thechargecurrent 5-vector
i*=(i%i®)=(p.j.p), wherep isvirtud, but j* 1 pu*. Thus, j* is not
the 4[5-vector. From this, j, j*® j&& or p2- j21 p2.

6. ThelLagrangian of amassive SEM-field with sources

Itis the system of two Lagrangians: the full Lagrangian L =L +L,,,

where L, =L, = - %FWF”V + u?A AN =

(Ez_ H2+9D2- Cz) +M2((|)2-A2+(1)2), Lint: -Auj“,

N e

m - thevirtual mass of quantum SE-field, and the own part of Lagrangians L and L; :

- — — 1 w1 2 a —
Lown_Lown_LSE__;FasF +;MAaA -

N |

(32- ¢?) +§M2((|)2- A?).

The interaction term does not appear inown part of the Lagrangian L. Hence

Ly =Lgt Lo, T M°A% and Ly ! L, . Thebasepart of theLagrangian L,

1 1
= - SFGFP + = mPA A =
4 2

N |-

(E2- H?) +%M2((p2- A?).
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7. The second union of equations of amassive SEM-field with sources.
Elimination of theinfrared divergences

Proca equations for amassive SEM-field with sources are obtained from the

Lagrangians L and L, as thesystem

ﬂVFVH+2M2AH:jP—’ ﬂ5F5a +M2Aa:0, or

the physical equations: diVE + 2x%p = p + 12, rotH + 2m2A = + % + 12
fit fit

E=qu) . B = 2. From this, divE = p - 7€ rotH =] +IE_DD

it qit it T 1

or divE +m%@ =p, rotH +m°A = +%.

Thevirtual equation: divd + 2u%p =p - % :
1
Corollary

Asfollows from the equations of amassive SEM-field, thevirtual SE-field varies
intimet and, therefore, is massive inthe presence of field sources. The small virtual
mass m of aquantum SE-field protects from theinfrared catastrophe in QED [2]. The
physicad EM-field (the observable base part of SEM-field) is massless and long-range.
The EM-field isresponsible for the space-time propagation. The massive virtual SE-field
(the unobservable own part of SEM-field) may be related to the Coulomb interaction.

8. Waveequations for amassive SEM-field with sources

Using the Stéickelberg Lagrangians with the interaction term

— 1 v 1 2 .
L=- ZF”VFH ) E(ﬂuAu) +M2AHAH_ AHJH’

1 1 2 1
Lown = - = FoF® - Z(1.A%) + = A A",
2 a5 2(“5 ) o

own
2

we obtain the system of SEM-field equations
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T,F™ +202Ar = j¥,
T,F* + m*A*=0, with thecondition 1,A" =0.
That isequivalent tothe system of wave equations for the 5-potentia A*
(0 - 2m?)A* =-j*, where 1 =- 971",
(1> +m*)A"=0, with the condition .A°=0.

Then the system of wave equations for the SEM-field strengths
(0 - 2x®)F™ =- 30", where J%=q"j"- 1'j*,
(1° +m?)F¥ =0, or
(W - w2)Fw == gw, where W =- .97,
(1° +m?)F¥ =0.
From here wefind the system of virtual wave equations for the strengths 9 and C

(W- u2)2 =gradp+ 1,
It

(1> +m%)3=0,

(1 +m?)C=0.
9. Theequation of current continuity. Conserved charges

From the SEM-field equations it follows the equation of current continuity ‘nuj =0
together with the condition 1.j°=0. Therefore, in V,s thephysical charge

Q, = Qi°(x") d®x = gp d°x, thevirtual charge Q, = i°(x") d°x = gp d°x, where

|Q,1>1Qs ]|, since pp = P are conserved intime: %QO =0, dd_Qs =0.
€ t
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10. The canonical energy-momentum tensor of amassive SEM-field

From thefull Lagrangian L; of amassive SEM-field we can obtain the energy-

momentum tensor T = (T/e, Thvy) » OF in the matrix form

Vv
&® T®g it gA 3
— - = gS -0 h
gTSu T55f2) (g‘ +
v R ug

All equalities below are given with an accuracy to terms that disappear upon
integration over d°X in V.

The base part of the energy-momentum tensor T/, =T% has the physical
components. theenergy density (C=1)

W=T®==(E2+H?- 2%- C?) - m?(@?- A%+ ?) = T - TL - m?A A",

N |

g - the momentum density 3-vector, cg :{TOi} =[EH]- C3 = {TOi}EM - {TOi}SE,
S- the energy flux density 3-vector (the Poynting vector), = S ={1"} = [EH]- Co,
C

thestress 3-tensor - 6 ={T'}.

Trace of thebasepart of the energy-momentum tensor
Te=Te+T=-(3-C’) =-2Lgt0

Trace of thefull energy-momentum tensor

TESTE+T2= - é(Ez- H?+3%- C°) - m*(@”- A*+ %) =- Lg, 1 0.

Theown part of the energy-momentum tensor T, = (T “5,T5“) has the components:

own

U=T®=- Z(E*- H>- D+ C?)- M*(@”- A+ (?) =Lg- Ly, - M*°AA" L0,

N |-

vitud: v=T®=3E, ch={T"®}=[3H]+CE, ZR={T%}=[3H] +CE.
Cc
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Corollary

Thevirtual SE-field bringsin the negative contribution to the physical total energy and
momentum of SEM-field. Thus, for hydrogen atom in an externa field the virtual SE-field
shifts the observable energy levels and thisleads to two additional amendments (seelll.8).
11. Theorigin of an eectron virtual mass

The consideration of only the physical EM-field cannot explain the origin of mass, self-
energy and momentum of an electron. The stability of an electron cannot be achieved
only through physical electromagnetic forces[3,4]. It should also take into account the
massive virtual SE-field.

In the space-time V,, thevirtual mass m of anelectron has theorigin of amassive

SEM-field and isexplained by the presence of thevirtual self-SEM-field of an electron.

The latter corresponds to the nonzero base part of the energy-momentum 5-vector of a
massive SEM-fidd, i.e., The, =TT 0.

Since the momentum density of thevirtua self-SEM-field of an electron

h :E{Tif’} =1 ([3H] + CE) , where =1, then the 3-momentum
C Cc

M =phd’ == ([PH] +CE) d®.

o |lr

In i.r.s., where theedectron atrest, C¢=0, H¢=0. From thetransformation of

the SEM-field strengths (see 11.3) it follows that C =2 v, H =2[VE].
c c
Then, U = iz V PE d°x =mV , where thevirtual mass of an electron
c

m =i2 OIE d°x, T®=DE . Thus, thevirtua self-energy mc? = (PE d°x .
c
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Also, we have proved the equality = Of “d*x = §jmdx , where j; - thevirtual
Cc

mass current 4-vector (seel.4).
12. Definition of thecurrent 5-vector

For the base part of the energy-momentum 5-vector of aSEM-field T/S, =T *
we have thefollowing: T®1 0 b m ! 0, andconversdy, T=0 U m =0, where
m - thevirtual mass of aquantum SE-field.

We accept the following statement: the masscurrent 5-vector j} has a SEM-origin
if the SEM-field ismassive. This statement about the SEM-origin of the mass current is

expressed through the equality j* =T* , which takesplace if the mass current 4-vector

ju=T*1 0. Then thechargecurrent 5-vector j! = j*=—=T",

e
m

Corollaries

o) Thesource (the charge current) creates only the massive SEM-field since

j“*t0p M*0 o prouUjrtop m10, whee p =

”m o

B) Themassless SEM-field is free of the charge current, thatis, » =0b j*=0 or
mM=0p p=0Uj=0.
Remark
In the space-timeV, the physical EM-field is massless and long-range. But in the
space-timeV,,; thevirtual SE-field is massive in the presence of field sources and,

therefore, is not long-range (seell.7, Corollary). Inthe absence of field sources the virtual

SE-field may be massless and long-range.



18

13. Theequation of motion of thecharged particle in an external massive SEM-field
fr=j,F* - m*1*(AA"), where j'- thechargecurrent S-vector, f* -the 5
force acting on the particle with the physical charge e and thevirtual mass m.

This particle moves in an external massive SEM-field in the forward direction of time't

0
and timet. Other hand, f* :diT#f =p ddL , Where p,, - the physical mass density
S S

| m

of aparticle (seel.4) and T} - the momentum density 4[5-vector of aparticle.
Hence, the physical equations:

f°=jE+pC- M21°(AA), f,=pPE- p3+ [jH] - #>N(AA),
the virtual equation: f,>=j3- pC - #*1°(A/A"). However, f°=p — =0.

Therefore, 0=}, F¥ - u?1°(A,A") . Wecansee that 1,(AA") =0.

Then, j,F*¥=j2-pC=0, ie pPC=jd o C=VI.
On the other hand, the 5-force acting on amoving charge from an external massive

SEM-field with the energy-momentum tensor T*, isequal f* =9, T".
From theequality f* = f* follows that f° = f°=0. Thatis, 1,T>=0.
Therefore, in V,, thevalues P® = 3T (x*) d°x and P> = §T*(x*) d°x

are conserved intime: %PSO =0, dd—P55 =0.
t

14. Equations of thevirtual SE-waves. The plane SEM-wave
We can obtain the equations of SEM-waves from the equations for amassive

SEM-field, when |*=m =0. Inparticular, the equations of thevirtual SE-waves are

dva=-1 rt3=0, gadc=-1,
1t qt



19

Here below thedot above denotes the differentiation with respect totimet.

Let the propagation direction of a plane SEM-wave n//Ox. Wecan find i.r.s.
in which A°=¢@=const! 0. Then E=- A, H =rotA.

Thus, E=[HN], H=[nE], |E|=|H|, NE=0, NnH =0, EH =0.

That is, the physical EM-waves are transverse.

Further, 2 = - grad(b:n&), Cz(fs.

Thus, 3=NnC, C=n3, 3//n, |C|=|3|, 3E=0, 3H =0.
That is, thevirtual SE-waves are longitudinal.

Since H*=E?, C?=27?, then T,=0 and the energy density of aplane SEM-wave
T =E?- D%, ThePoyntingvector S=[EH]- C3 =S, - S.=n(E*- 3°)=nT, .
Thatis, T,,=NS.

[11. The single-particle wave Dirac equation in the space-time V g

1. ThelLagrangian for thesingle-particle wave Dirac equation

Let ¥, (X) - the wavefunction of aparticle with thevirtual mass nm and spin L
2

Thevaluen =+ 1 corresponds to theforward / backward direction of timet and t,

to thesign of aparticlemass + m and, therefore, tothesign of an energy-momentum.
For the case of aplanewave v, (X) =u, (p) exp (- inp*x,), where
p*=(E,p, Ey) , X" =(t, X, 1)1 V.

Thefull Lagrangian of aparticle inthe absence of an external SEM-field has the form

L, :I_Z(‘_Pnyu'"u% - 1,9, 7", ) - My, (1+ny°)y, . theown part of Lagrangian

wn — I . 1 - . - .
L. = (¢ny5ﬂ5¢n - ﬂ5¢n75¢n) - MMy, vy, . Here, y* - the Dirac matrices inthe
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standard representation, satisfying the condition y"y" + y'y* =2g", where g*' - the
metric coefficients in Vs , y°=iy%yy%y®. Hence, (v°)°=1, (y')’=-1, (y°)*=1.
Remark
To harmonize the following wetake that the matrices y* are virtual, y° isphysical .

2. Thesingle-particle wave Dirac equation in the absence of an external SEM-field

From thesystem of Lagrangians L, and L ;’W” we obtain the system of two equations

&b, - (L+ 1) migy, (9 =0, @

v (Ps- nm)yp, () =0, @)

where }f)uziﬂH , or in thedifference of theequations (1) and (2)

(v*Pu - M)v, 0 =0, )

v°(Ps- nm)y, () = 0. (2
The equation (3) is theclassical wave Dirac equation in the space-time V,. Solutions

of theequation (3) are the particle states ¢, (X) with twovalues n =% 1. Thatis, the

classical wave Dirac equation is the two-particle equation [5].

However, { (1),(2)} and {(3),(2)} are thesingle-particle systems. That is, their
solutions are the particle states ¢, (X) that correspond to the definitevalue n in the

operator part. The system {(1),(2)} we will call the single-particle wave Dirac equation
for aparticle with themass nm and spin 1 in theabsence of an external SEM-field
2

in the space-time V.
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3. Second-order equations

The squares of operators of thesystem {(1),(2)} lead to thesystem {(4),(5)} for

which the solutions are also thesingle-particle states ¢, (X) with adefinite value n
P, v, =2(1+ny°) m*y, , (4)
Ps PPy, =My, . (5)

Half of thesum of operators of theequation (4) for twovalues n=+1 and

n=-1 leads tothesystem
Py P*y, =2m°y,
Ps PP, =My,
from which in thedifference of equations we obtain the system
A Ao — 2
pa P l‘])r] =m l‘])r] ’
Ps P° Y, =My, .
Thelatter two systems are two-particle systems. That is, their solutions are the states

with twovalues n =% 1 corresponding to two signs of an energy-momentum.

4. Theé€lectron-positron vacuum. Thesingle-particle wave Dirac equation in the

presence of an external massless SEM-field. The polarization of vacuum
The classical wave Dirac equation in the space-time V, is the two-particle equation. The

single particle equation obtained fromit isconsidered only inthe absence of an external
EM-field and with “ the Dirac vacuum “ inwhich al states with negative energies are
employed [5]. Dirac proposed thetheory of holes which describes particles of both signs
of charge inthe presence of an externa EM-field. Thistheory denotes the passage to

many-particle quantum field theory. Inthiscase, thesolution of thewave Dirac equation
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has no simple probabilistic interpretation, since it must describe the processes of creation
and annihilation of electron-positron pairs[6].

Thesingle-particle wave Dirac equation in the space-time V,; may be considered in

the presence of an external SEM-field and allows predict the phenomenon of vacuum
polarization. Inthiscase, thewavefunction of asingleparticle retains the simple
probabilistic interpretation.

Let usconsider the single-particle system { (1),(2)} for n =+1 corresponding to the

positive energy of aparticle. If weaccept that thissystem describes the vacuum of

electron /positron states, then inthe presence of an external massless SEM-field with

5-potential A" (X) thissystem may be written in the form:

V' P, - (te- e)A Y, =2(1+ny’)my,

@b, (+e- e)Afy, =2ny°my,

where * e - the electron/ positron charge. Inthe case of aplanewave

¥, (X) =u, (p) exp (- inp¥x,)=

=P expg i (- e)A X, g=v (X)) exp g i (+€e)A'X, g, Where
LX) =V, (X expg i(xe)A'x,g=u,(p) exp{- i gnpt+ (= e)A“gxu}.
Thus, the origina system {(1),(2)} on the onehand describes the € ectron\positron

vacuum, and on the other hand inthe presence of an externa SEM-field thisone isthe

sum of two single-particle systems. Inthiscase, ¥, (X) is thesolution of theorigina

system if andonly if L (X) are thesolutions of the single-particle systems with the

appropriate charge sign
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v 8P, - (£ e)AfvL = (1+ny°) myl, 6)°
v 8P (x ) A vl =ny myl, . (7)*
Each of thetwo systems{(6)*,(7)*} is thesingle-particle Dirac equation in the space-
time V,q, respectively for the electron\positron in the presence of an external SEM-field
with 5-potential A" (X). Thesign of the electron\positron energy isdetermined by the
vaue n. Thus, in the spacetime V,; anexternal SEM-field induces the appearance of
single-particle eectron\positron states in vacuum (vacuum polarization).
5. CM —symmetry of the single-particle Dirac equation
The single-particle Dirac equation as the system {(6)*,(7)*} possesses the property
of CM -symmetry relatively 2-operation:
1) C-inversion of thechargesign: +e® me,
2) M -inversion of themasssign: n=+1® M=m1l, ie. thesigninversion of the
energy-momentum.
6. The spin 5-tensor
Let in the standard representation of the Dirac matrices: y°=iy%yy%y°, (y°)°=1,

o = % . Inaddition, we define thefollowing matrices: 4 =iy%°=- yiy%°, (4)° =1,

B =y°y. Then thespin 5-tensor ¢ * ='Egy“, v'g in thematrix form

e 0 o, ia, o, ¥ o

g- la, O Gz - O, 'iﬁli
6“V=(ia,—6,&,—il3)=g-i(12 -6; 0 o, -iB,I, where

¢-iay o, -0, O - iBsT

€ -4 ip, ip, B O 5

the matrices a,6 are physical, ¥, are virtual.
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7. Theangular momentum 5-tensor

. 1 . .
LY = (x“ﬂv- xvﬂ“) +=c" or inthematrix form
2

a0 Ky Ky 3 (O]

g'Kl 0 -J 2 'Nlé
LW =-(K,J,0,-N)=-¢-K, J; 0 -J -N,*, where

K, -3, 3 0 -N,-

g-o N, N, N, 0 g

. Iy _ 0
K:|(r1+tN)-£|a, N=iF T+t N2-2ip,

Tt 2 8ﬂt

J=laNu+le o=1F L 10 14
ig d 2 i & tg 2

Here, the operators K , J arephysical, O, N arevirtua. T = 1& is the 1-dimensional
2

operator of thevirtual temporal spin of an electron, and that has the eigenvalues +1.
2

The nonzero components of the5-tensor L*: LY =L =- (K, J) -the4-tensor and

L, =(L*, L™*). Thebasepart of the5-vector L*° isthe4-vector L5, =L“= (O, N).

own —

8. Theequation of second order for an electron with the positive energy in an external

massless SEM-field
Theclassical wave Dirac equation in the space-time V, predicts the energy levels of

hydrogen atom in an externa EM-field without additional amendments on the Lamb
shift and hyperfine structure [5]. The single-particle wave Dirac equation in the space-
time V,, predicts two additional amendments for the energy levels of hydrogen atomin
an external SEM-field.

We consider the system of equations { (6)*,(7)*} for an electron with the positive

energy, thatis, when n=+1
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g (b.- eA)- (1+v°)myy. =0, (6)'
v g Ps- €A;)- MYy =0. "
Applying the adjoint operator to each equation, we obtain the system

g(p“- eA”)(p“_ EA”)- ;eGHVFuV - 2(1+Y5) ngtPe:O, (8)

s - eA) (P~ eA”) - m*gp. =0. 9

In the difference of equations (8) and (9) weobtain the system

g(pa- eA) (p*- eA?)- ;eG”VFw - (1+2y9) ng% =0, (10)
gps - eA) (p°- eA’)- m*gy. =0. (9)
The system { (10),(9)} in the differential form (11)

i(% eq))z- (i%+eA)2- (1+2y°) m* +e[oH - ¢C- i(aE+B3)]§1pe:0,

4 ,.2 u
%‘“—-e@?-mwew- (12)
£ P 5

Inthe case of aplanewave: Y (X)=u(p)exp g i (p"+eA")x.f =

=u(p) exp{- i E +e@)t- (p+eA)x+(E,+ed)t g}.

The second and fourth physical terms in square brackets in the equation (11) appear
asaresult of interaction of the electron with the external virtual SE-field. It can suppose
that these terms correspond to two additional amendments for the energy levels of
hydrogen atom in an external SEM-field. The second term takes into account “the virtual

temporal spin” of an electron.
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9. Thecanonical energy-momentum tensor. Conservation equations. Charge and mass

current 5-vectors of an electron.

From theLagrangian L, for n =+1 weobtain the energy-momentum 5-tensor
Tw=l (Dy* Ty - 19 y*y) for which §,T* =0. From here it follows that in V,,
2

thevalues P*° = §T*(x*)d°x and P** = §T*(x*) d°x , where x*1V,, , are

conserved intime: EP“0 =0, OI—P“E’:O.
dt dt

From the equation (2) and conjugate equation we obtain the momentum density

-vector T == (Py* 1% - 1°% y*¢) = myy*y = ji, , where ji - themass current

!

2

5-vector. Then thecharge current 5-vector jh = Crw=g Yy*y and 1T =,
m

From this it follows that inV,, thevalues P® = §T*®(x*) d°x and

p%® = (‘)T55(xx) d3x areconserved intime %Po‘r’ =0, —P%=0.

From L " we obtain T =i—2(1_w5‘|15¢ - 1P yty) or TE=myyty =g

Thatis, T* is thescalar density of theparticlemass and 1. T*=0.

10. Thephysical and virtual electron charge and mass

The physical electron charge Q, = ()i (X") d°x = e vy p d°x =e,
and isconserved intimet: %QO =0.
Since jo =eyy Y is thepseudo-scaar, then thevirtual electron charge

Q, = edﬂ)y%‘ d®x , and isconserved intimet : %Qs =0. It canbe assumed
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that thevirtual electron charge Q. is the“bare’ charge e, of anelectron. That is,
Q; =€ and [Qs|>]Q,| [6].

Thevirtual electronmass M, = i (x*) d°x = m Qvy°y d®x =m isconserved
intimet: %MO = 0. Then the physica electronmass M, = mdf[)yf’q)\ d°x, and

isconserved intimet : dd_ M, =0. It canbeassumed that the virtual electron mass
t

M, =m is the“bare’” mass m, of anelectron. Thatis, M, =m, and |M.|>|M,].
Conclusion

Withinclusion of thevirtual proper time inthe metric of Minkowski space we passed
to thefour-dimensional bimetric space-time. Asaresult, we operated with physical
(observable) and virtual (unobservable) objects entering into the physical expressions
like how with real and imaginary numbers.

Introduction of virtual objects supplementing physical objects ensured the completeness
of description of the occurring physical processes and led us to the following results.

1. Theconsistent and closed electrodynamics was built for the scalar-electromagnetic
field (the SEM-field). The virtual scalar-electric field (the SE-field) is massive inthe
presence of field sources. The virtual mass protects from the infrared catastrophe in QED.
The physical EM-field is massless. It was shown that the mass, self-energy and current
for an electron have the origin of the massive SEM-field .

2. Inclassical quantum theory it wasfound aform of the single-particle wave Dirac
equation for which the electron wave function retains the simple probabilistic interpretation.
It was shown that in the single-particle Dirac theory the virtual scalar-electric field shifts
the physical energy levels and thisleads to two additional amendments for the hydrogen

atom in an externa field.
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