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  Abstract 

    With inclusion of  the virtual proper time  in the metric of  the physical  Minkowski  

space  we pass  to  the four-dimensional bimetric space-time.  Now a complete description   

of  the occurring  physical  processes  includes  both  physical  (observable)  and  virtual 

(unobservable) objects  that enter  in the physical expressions.  In classical electrodynamics  

this conversion leads to the appearance of the virtual scalar-electric field  that complements 

the physical electromagnetic field  and  is a massive  in the presence of sources. This allows  

to eliminate  the infrared catastrophe  and  to proof  the field origin of  the virtual (bare) 

electron mass  and  self-energy.  With inclusion  of  the virtual proper time   in the classical 

quantum theory we obtain  the single-particle wave Dirac equation  for which  the electron 

wave function retains the simple probabilistic interpretation. In the single-particle Dirac 

theory  the virtual scalar-electric field  shifts the physical energy levels  for the hydrogen  

atom  in an external field  and  this leads  to two additional amendments. 

 Keywords: Virtual proper time – Virtual scalar-electric field - Elimination of  the infrared 

catastrophe - Field origin of  the electron mass - Single-particle wave Dirac equation.    
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Introduction 

    In Minkowski space  with  the metric  2 2 2 2d c d ds t −= x    the  proper time τ   is  

determined  by  the equality  2 2 2d c ds τ= .  

    For  a moving particle  the proper time τ  is measured  by  the clock  which  move  with  

this particle  and  at rest  relative  to it [1].  Therefore, in a moving  inertial reference system  

(further, i.r.s.)  the proper time τ   is not measured  directly by  the clock of  time t . 

    We consider  the system  of  two expressions 2ds   given above  for  the invariant  interval 

s .  Thereby,  we pass  from  the Minkowski space  to  the four-dimensional space-time  with 

the double metric.   

    Now  moving  i.r.s.  includes  the clock  of  virtual proper time τ   that  is separated  from  

the clock  of physical time t .  In our context  the virtual proper time τ   is  the unobservable  

(immeasurable) time  in a moving  i.r.s.  In  i.r.s.  at  rest  the clocks  of  time τ   and  t   are  

synchronized  by definition . 

    Thus,  we deal  with  the four-dimensional  bimetric space-time  in which  all  variables  

depend  not only on the physical coordinates  t , x , y , z ,  but  also on the virtual proper time 

τ .  Now  a complete description of  the occurring physical processes  include  both  physical 

(observable)  and  virtual (unobservable) objects  entering  into the  physical expressions  

through the operations  that are similar  to the algebraic operations  with real  and  imaginary 

numbers.  So, the multiplicative operation  with  two virtual objects  is  a physical object. 

Thus, under  the action  of a suitable virtual operator  on  the virtual (bare) electron mass  we 

get  the physical mass  and  on  the physical electron charge  we get  the virtual (bare) charge. 

    Introduction of virtual objects supplementing physical objects ensures the completeness  of  

description of  the occurring physical processes  and  allows  to consider  the problems that  

do not  have solutions only in the set of  physical objects.  This is similar  to how some 

algebraic real equations do not  have solutions only  in the set of  real numbers.  
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    For example, the classical problem of  the nature of  the electron mass  and  self-energy  

has  a solution only  for the virtual (bare) electron mass  taking  into account  the physical  

electromagnetic  and  virtual scalar-electric fields. 

    In this article  we  will try  to find  the justification  of  the foregoing hypothesis  on the 

inclusion  of  the virtual proper time in space-time metric  through the study of  some known 

problems  in classical electrodynamics  and quantum theory.  

  

    We use the following abbreviations: 

the  i.r.s. - the inertial reference system ,  

the t -clock  - the clock of  time t , 

SEM - scalar-electromagnetic, 

SE - scalar-electric. 

    We assume that the indices 

i , j , k   take on  the values  1, 2, 3; 

α ,β , γ   take on  the values  0, 1, 2, 3;       

μ , ν , λ   take on  the values  0, 1, 2, 3, 5.  

 

I. 4-dimensional bimetric pseudo-euclidean space-time 4|5V   

1. 4-dimensional  bimetric  pseudo-euclidean  space  of  5-vectors 4|5V  

1)  Space 4V  

4V  - 4-dimensional  pseudo-euclidean  linear space  consisting  of  4-vectors  ( )0α , ix x x=

with  the metric  ( ) ( ) ( )2 22 0
4V

id dx dxs = − . 

2)  Space 1V   

1V  - 1-dimensional  linear space  consisting  of  1-vectors  (scalars) 5x  with  the metric 

( ) ( ) 22 5
1Vd dxs = .        
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3)  Space 5V  

5V  - 5-dimensional  pseudo-euclidean  linear space  consisting  of  5-vectors 

( ) ( )5 0 5μ α , , ,ix x x x x x= =     with  the metric   ( ) ( ) ( ) ( )2 2 22 0 5
5V

id dx dx dxs = − + .     

4)  Space 4|5V  

А)  4|5V  - 4-dimensional  linear space  consisting  of  5-vectors  ( )5
5

μ α V,x x x ∈=   such 

that  ( )25α
αx x x=   and  that later  we will call  4|5–vectors . 

B)  4|5V  - pseudo-euclidean  space  with  the double metric (bimetric)  which  is the system 

( ) ( ) ( ) ( )2 22 0 2
4|5 4V V

id dx dx ds s= − =
 
,      

 

( ) ( ) ( )22 5 2
4|5 1V Vd dx ds s= =

 
,                                                or

 

( ) ( ) ( ) ( ) ( )2 2 22 0 5 2
4|5 5V V

1 1

2 2
idx dx dxd ds s − + = =

 
,
 

( ) ( ) ( )22 5 2
4|5 1V Vd dx ds s= =

 
. 

 

It is the latter form  of  the double metric  we call  the canonical  form  of  the metric  in 4|5V  

since 5V   includes  the space 4|5V  .    

                                                                Definition                                                                                                                                 

    For  the  4|5–vector  ( )5μ α ,x x x=    the  4–vector  αx   is called   the base part  and  is 

denoted  α μ
basex x=  ,   the 1–vector  (scalar)  5x  is called   the own part   and  is denoted   

5 μ
ownx x= .  Thus,  the  4|5–vector  ( ) ( )5μ α μ μ

ownbase ,,x x x x x= = . 

2. 4-dimensional  bimetric  pseudo-euclidean  space-time 4|5V   

1)  The double metric in 4|5V  
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    Let  the 4-vector ( ) ( )0
4

α V, ,ix x x c t ∈= = x  , where 4V  - 4-dimensional  basic space-

time  (Minkowski space)  with  the metric  2 2 2 2α
αd dx dx c d ds t −= = x .  At each point 

( ),A t x  in 4V   we deal  only with physically  measurable (observable)  coordinates t  and x . 

    Let  the 1-vector (scalar) 5
1Vx cτ ∈=  ,  where τ   is  the proper time.  That is, the metric  

in 1V :  2 2 2d c ds τ= .  Then  the 5-vector  ( ) ( )5
5

μ α V, , ,x x x c ct τ ∈= = x  ,  where  

5 4 1V V V⊕=   - 5-dimensional  space-time  with  the metric  

( )2 2 2 2 2 2 2
5

μ
μV  2 dd d dx dx c d c ds s t τ− += = = x .  

Definition 

    4-dimensional  bimetric  pseudo-euclidean  space-time 4|5V   is  the linear space  consisting 

of  4|5-vectors μx ,  for which 

a)  the double metric in the projective  

2 2 2 2α
αd dx dx c d ds t −= = x , 

2 5 2 2
5d dx dx c ds τ= =  ;    

b)  the double metric  in the canonical form   

2 2 2 2 2 2μ
μ2 dd dx dx c d c ds t τ+−= = x  ,  

2 5 2 2
5d dx dx c ds τ= =  .   

2)  Inertial reference system  in  the space-time 4|5V   

Postulate 

    In each  moving i.r.s.  there is  the clock  of  virtual proper time τ  (the τ -clock)  that  is 

separated  from  the clock  of  physical time t .  The rate  and  direction  of  time  coincide  for  

the τ -  and  t -clocks  in each  i.r.s.  where  the t -clock  at rest.    
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Corollaries 

α )  Since  the space-time 4|5V  is four-dimensional,  then  the virtual proper time τ  is not 

observable (immeasurable)  in a moving i.r.s.. 

β )  5x cs τ±= = .  Here  and  elsewhere  the sign  ±   corresponds  to  the forward \ 

backward  direction  of  the virtual proper time  τ .                                                                                                                          

γ )   If  0τ∆ ≠  ,  then  the interval  s∆   is always  timelike,  that is, 2 > 0s∆ . 

δ )  The event  in 4|5V  is defined  by  the point  ( ), ,A t τx .  Thus,  in the moving  i.r.s. Σ   

 not  all components  of ( ), ,A t τx   corresponding  to the event  are  physical (observable).  

Remark 

    We assume  that  the results  of  multiplicative operations  with  the physical  and virtual  

objects  are  similar  to the ones  with  real  and  imaginary numbers.  Therefore, 5x cτ=   is 

virtual,  but 2s   is physical.  

3)  Transformation group  in 4|5V  

    In the space-time 4|5V  isomorphic to Minkowski space 4V   as a continuous transformation 

group  of  components  αx  of  the  4|5–vector ( )5μ α ,x x x=   we examine  the Poincare 

group  or,  in  a special case,  the  6-parametric  Lorentz group.  The virtual component 

5x cτ=   is  Lorentz invariant. 

Remarks 

α )  The last statement  about  transformation  of components  αx   remains  valid  also  for  

any  4|5–vector  ( )5μ α ,a a a=  
 
such  that  2

5
α

αa a a= .  The base part  μ α
basea a= ,  and  

the own part  5μ
owna a= .   
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β )  For  any  4-vector αa   there is  the couple  4|5-vectors  ( )5μ α ,a a a± ±=    such  that 

( ) 2
5

α
αa a a±=   and  conversely.  On physical reasons  the signs  of  0a  and  5a  must be 

coincident.  Thus,  there is  a one-to-one  correspondence  between 
αa  and  ( )5μ α ,a a a= .   

3.  Invariant systems  for  4|5–vectors  in  the space-time 4|5V   

    Respect  to transformations  of  the Lorentz group  we have  the invariant expressions 

written  below  in  the form  of  systems:  

1)   the  4|5–vector   ( ) ( )5μ α , , ,x x x c ct τ= = x   

α
α invx x = ,  

5
5 invx x = ,        i.e.      2

5
μ

μ 2x x x=  ; 

2)   the  4|5–vector  of  velocity  μu  (the  4|5-velocity) 

( )
μ

5μ α 1
, , , 1

ε ε
1 , ,dx d

ds d c
tu u u
τ

  
      

= = = ± = ± vu  .    Here, αu   is  virtual, 

 5 εd dx c d c ds tτ± ±= = = ,  virtual  ( ) 2/1ε  c−= v ,  physical  d
dt

= xv . 

Then  α
α 1u u =  ,   

5
5 1u u =  ,       i.e.      μ

μ 2u u = . 

Corollary 

    If  virtual  5 0a ≠ ,  then  5μ μa a u=   is  the  4|5–vector ( )5μ α ,a a a= ,  such that  

2
5

α
αa a a=   or  2

5
μ

μ 2a a a= . 

3)  the momentum  4|5–vector  (the  4|5–momentum)  of  a massive  point particle 

( ) ( )5μ μ α , ,
ε ε

, mc mp mcu p p mc± = = ± = ± v  ,    

2 2α
αp p m c= ,    5 2 2

5p p m c= ,       i.e.      2 2μ
μ 2p p m c=  .   
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Here,  m   is  the virtual mass  of  a moving particle.  By value m   coincides  with  the 

physical mass 0m   of  a particle at rest.  Hence,  αp   is  physical,   but  5p   is  virtual. 

4)  the energy-momentum    ( )2μ μ , ,Ep c mc u c± = = ± p E  .    

Here,  21

ε
E mc= ,  

ε
m= vp

 
,  2mc=E   are  respectively:   the physical energy,  

 3-momentum,  the virtual self-energy  of  a massive  moving particle.  By value  the virtual 

self-energy 2mc=E   coincides  with  the physical  self-energy  2
0 0E m c=   of  a  massive 

particle  at rest.   

2 2 2 42 cE m c− =p ,      

2 2 4m c=E ,           i.e.    2 2 2 2 42 2cE m c− + =p E . 

Remark 

The  5-acceleration  ( )
μ

5μ α ,
du
ds

w w w= =  , 5 0w = ,   and  the  5-force

( )
μ

5μ α ,
dp
ds

f f f= =  , 5 0f = ,   are  not  4|5-vectors,  since,  in general case,  

α
α 0w w ≠    and   α

α 0f f ≠ .   

4.  The mass current 4|5-vector and  the energy-momentum 4|5-tensor of  a  particle   

in the space-time 4|5V   

    The mass current  4|5-vector  of  a moving particle
 

( )( ) ( ) ( )4|5μ μ λ λ μρ δ εm mj cu mc x x u dϑ ϑ ϑ ϑ= = −∫  ,    where 

( )( ) ( )( ) ( )( )4|5 4 5 5λ λ α αδ δ δx x x x x xϑ ϑ ϑ=− − −  ,  ( )( )4|5 λ λ α 1δ dx x xϑ− =∫ ,

( )( ) ( )( )ρ ε δ δm m t tτ τ= − −x x
 
 is  the physical  mass density,  

( )( ) ( )( ) 1δ δ dt tτ τ− − =∫ x x x .   
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    Let  the energy-momentum  4|5–tensor  of  a massive  particle  μν μ ν
m mT j cu= .          

Trace  of   μν
mT : 2

 
μ α
μ  α2 2ρmT T c= = .  ( ) 

5 5 55
  
μ α ,m m mT T T=

 
,   where  55 2

 ρm m mT L c−= = .  

5 5μ μ μ
m m mT j cu j c= = ,   for which  the conservation equation  5μ

μ 0mT∂ =   and  5
5

μ 0mT∂ = .    

    The value  0 0 5 0μ μ μ
m m mT Tj cu u= =    or   0 2μ μ μ

ε
ρm m m

cT j c u= = %  
 
is not  the  4|5-vector  

and   is  usually called   the momentum density  of  a particle.  The moment 4|5-vector  of  

 a particle  0 0μ μ 3 μ μ1
mc

P T d x mcu p= = =∫   
 is called  the  4|5-momentum. 

    For  the symmetric energy-momentum  4|5–tensor  of  a massive particle  

( )   
μν μν μν

ownbase ,mT T T=    the base part  μν αβ α β
base m mT T j cu= =   is  the symmetric  4–tensor , 

the own part  ( )   
5 5μν μ μ

own ,m mT T T=
 
  are  two  equal  4|5-vectors. 

    By analogy  with  the  4|5-vector μx   for  the  4|5-vector  ( ) 
5 5 55

  
μ α ,m m mT T T=

  
there are 

the invariant equalities:   5 2
5 55

α
αT T T= ,   5 2

5 55
μ

μ 2T T T= .  

Respectively,  for  the  4|5-tensor μν
mT   there are  the invariant equalities:  

5
5

αβ γ
γαβT T T T= ,          α β<  ,

 

5
5

αν γ
αν γ2T T T T= ,        α ν<  . 

5.  The charge current  4|5-vector of a massive particle   

    The charge current  4|5-vector  of  a massive particle  with  the physical  charge e   and  

the virtual mass m   
μ μρe ej cu=    may be  written  as   5μ μ μ

m me
e e
m mc

Tj j= = ,  where   

the virtual charge density   ρ ρe m
e
m

=  .  

    If  we assume  the positive direction  of  time τ and  t ,  then  the charge current  4|5-

vector  of  a particle ( ) ( )5
 

μ μ α , , ,ρ ρ ρj cu j j c c= = = j% ,  where ρ   is  the virtual 
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charge density,   ρ
ε

ρ =%    is  the physical charge density,  ρ ρс= =j u v% .   Here,   

2
5

α
αj j j=     or    2 2 2 2 2ρ ρc c− =j% .   

    The equation  of  current continuity  μ α
μ α 0j j∂ ∂= = .  That is,  5

5
ρ 0j

τ

∂

∂
∂ = = .  

 Then  the physical charge  ρ ρ  Q Vd d= =∫ ∫% V ,   3εVd d d x= =V . 

II. The scalar-electromagnetic field  in the space-time 4|5V
 

 

1.  5-potential of the SEM-field  

    Let  the scalar-electromagnetic potential  ( ) ( ) ( )5μ ν α , ,, фA A Ax = = Aφ    is  the  

5-vector  5
λ Vx ∈ ,  5 4 1V V V⊕=  ,   but not  4|5-vector  4|5

ν Vx ∈ .  That is,  the scalar 

potential ф   is virtual  and  respect to  the transformations  of  the Lorentz group  (of boosts  

and  spatial rotations)  takes place  the inequality  2
5

α
αA A A≠     or    2 2 2ф− ≠Aφ .  

    In  the case of  a massive  SEM-field  with sources  the 4-potential ( )α νA x   depends  

explicitly  on  the virtual proper time τ ,  i.е.  5
α 0A∂ ≠ .  Thus,  the massive SEM-field  with  

the  5-potential ( )μ νA x  is considered  in 4|5V ,  where  the  4|5-vector  ( )5ν α ,x x x=  , 

2
5

α
αx x x= .  The theory  of  a massive SEM-field  is not gauge invariant. 

    In  the case of  a massless  SEM-field  without sources  the 5-potential μA   does not  

depend  explicitly  on the virtual proper time τ ,  that is,  5
α 0A∂ = .  Thus,  the massless  

SEM-field  is considered  actually  in 4V   and  is given by  the 5-potential ( )μ αA x , 4
α Vx ∈ .   

    The theory  of  a massless  SEM-field  is invariant  respect  to  gauge transformations of  

the  potential μA : μ μ μ μA A A f→ ∂′ −= ,  where  μ
μ 0:f f∂ ∂ = . 
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    In what  follows  we will use  mainly  the Heaviside-Lorentz  system  of  units,  where  

2 4παe =  ,  1c= =h  . 

2.  5-tensor  of  the SEM-field  strengths   

μν μ ν ν μF A A∂ ∂−= ( ), ,C,−= E H Э  

0

0

0

0

0

x y z

x z y x

y z x y

z y x z

x y z

E E E C

E H H Э

E H H Э

E H H Э

C Э Э Э

− − −

− − −

− − −

−

 
 
 
 
 
 
 
 
 

=

 

,  where

 

the physical electric field   grad 
t

∂

∂
− −= AE φ  ,   the physical magnetic field    rot=H A ,   

the virtual scalar field   фC
t τ

∂ ∂

∂ ∂
−= φ  ,   the virtual electric field   grad ф

τ

∂

∂
−= − AЭ . 

    For  the antisymmetric  5-tensor  ( )base own
μν  μν  μν,F F F=    the base part  ( )base

 μν αβ ,F F= = E H   

is  the antisymmetric  4-tensor  of  the physical EM-field ,   the own part  ( )5 5
own

 μν μ μ, F F F=  ,   

where  ( )5 5μ μC, , 0F F= = −−Э ,   are  two opposite 5-vectors  of  the virtual SE-field   

which  is not observable  directly  in a moving i.r.s.  

    By analogy  with  the  4|5-vector μA ,  for  the  4|5-tensor μνF
 
we have  the inequalities: 

5
5

αβ γ
γαβF F F F≠ ,           α β<  ,      i.e.   2 2 2 2C− −≠H E Э , 

5
5

αν γ
αν γ2F F F F≠ ,         α ν<  .   

    In the general case,  5 2
5 55

γ
γF F F≠ ,   i.е.  2 2С 0− ≠Э .  The equality  takes  place  in  

the special case  for  a plane SEM-wave.        

3.  Transformation  of  the virtual SE-field strengths  

    The physical  EM-  and  virtual SE- fields  transform independently  under  the Lorentz 

group.  As a result  of  boosts  the virtual SE-field  transforms as  the 4-vector ( )5α C ,F = Э :  
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( )1

ε
C С′ += VЭ

 
,   ( )1ε ε

С
+

′ + += V VЭЭ Э ,    where   21ε V−= ,   V = V . 

4.  The first union  of  the SEM-field  equations   

μ ν μννλ λμ λ 0F F F∂ ∂ ∂+ + = , 
    

i.е.    

the physical  equations:   rot
t

∂

∂
−= HE

 
,   0div =H ,   

 

the virtual  equations:    rot
τ

∂

∂
−= HЭ  ,    grad С

tτ

∂ ∂

∂ ∂
−= E Э  . 

Remark 

    Physical equations  consist  only  of  physical terms.  Virtual equations consist  only  of  

virtual terms.            

5.  The charge current 5-vector
 

( ) ( )5μ α , , ,ρ ρj j j= = j% ,   where ρ  is virtual,  but μ μρj u≠ .  Thus,  μj   is  not   

the  4|5-vector.   From  this ,  2
5

α
αj j j≠    or  2 2 2ρ ρ− ≠j% .      

6.  The Lagrangian  of  a massive  SEM-field  with sources  

     It is  the system  of  two Lagrangians :   the  full  Lagrangian   f i n t+=L L L  ,                         

where   2
 SEM

μν μ
μν μf

1

4
F F A Aм= = + =−L L   

( ) ( )2 2 2 2 2 2 2 21

2
C фм −− + − += +E H Э Aφ

 
,   μ

μi n t jA−=L ,                                  

м  -  the virtual mass  of  quantum SE-field,  and  the own part  of  Lagrangians L   and fL  : 
 

5 2
 SE 5

f α α
own own α α

1 1

2 2
F F A Aм= = = +−L L L  ( ) ( )2 2 2 2 21 1

2 2
C м −−= +Э Aφ .       

    The interaction term  does not  appear  in own part  of  the Lagrangian L .  Hence    

2 2
SEM  SE  EM 5Aм= + +L L L     and    SE EM ≠L L  .  The base part  of  the Lagrangian fL    

2
EM

f αβ α
 αbase αβ

1 1

4 2
F F A Aм= = − +L L  ( ) ( )2 2 2 2 21 1

2 2
м −−= +Ε H Aφ

 
. 
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7.  The  second union  of equations  of  a massive  SEM-field  with sources.  

Elimination  of  the infrared  divergences   

    Proca equations  for  a massive  SEM-field  with sources  are obtained  from  the 

Lagrangians  L   and  own L   as  the system   

2νμ μ μ
ν 2F Aм j∂ + = ,       

5 2
5

α α 0F Aм∂ + =  ,          or    

the physical equations:  2 C2div ρм
τ

∂

∂
+ = +E %φ ,    22rot

t
м

τ

∂ ∂

∂ ∂
+ = + +E ЭH A j  ,    

2C м
τ

∂

∂
= φ  ,   2м

τ

∂

∂
=Э A .   From  this,   Cdiv ρ

τ

∂

∂
= −E %  ,    rot

t τ

∂ ∂

∂ ∂
= + −E ЭH j  ,   

or  2div ρм+ =E %φ  ,   2 rot
t

м ∂

∂
+ = + EH A j .         

The virtual equation:   2 C2div ф ρ
t

м ∂

∂
+ = −Э  .                     

Corollary 

    As follows  from the equations  of  a massive  SEM-field,  the virtual  SE-field  varies   

in time τ  and,  therefore,  is  massive  in the presence  of  field sources . The small virtual 

mass м   of  a quantum SE-field  protects  from  the infrared catastrophe  in QED [2].  The 

physical  EM-field  (the observable base part  of  SEM-field)  is  massless  and   long-range.  

The EM-field  is responsible  for  the space-time  propagation.  The massive virtual  SE-field 

(the unobservable  own part  of  SEM-field)  may be  related  to the Coulomb interaction. 

8.  Wave equations  for  a massive  SEM-field  with sources  

    Using  the Stuckelberg&&  Lagrangians  with  the interaction term  

( )2 2μν μ μ μ
μν μ μ μ

1 1

4 2
A A AF F Aм j∂ −= +− −L ,  

 

( )25 5 2
5 5

α α
own α α 

1 1 1

2 2 2
F F A A Aм∂= − − +L , 

 

we  obtain  the system  of  SEM-field  equations  
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2νμ μ μ
ν 2F Aм j∂ + = ,  

5 2
5

α α 0F Aм∂ + =  ,     with  the condition    μ
μ 0A∂ = . 

That  is equivalent  to the system  of  wave equations  for  the 5-potential μA  

( )2 μ μ2 Aм j= −−I ,     where   ν
ν∂ ∂= −I , 

( )2 2
5

α 0Aм∂ + =  
,            with  the condition   5

5 0A∂ = .
 

    Then  the system  of  wave  equations  for  the SEM-field  strengths  

( )2 μν μν2 F Jм −− =I ,        where   μν μ ν ν μJ j j∂ ∂= − ,
 

( )2 2
5

αβ 0Fм∂ + =  ,                    or 

( )2 μν μνF Jм = −−W ,        where    γ
γ ∂ ∂= −W ,   

( )2 2
5

αβ 0Fм∂ + =  . 

From here  we find  the system  of  virtual  wave equations  for  the strengths  Э  and  С 

( )2 grad ρм
τ

∂

∂
− = + jЭW  ,     

( )2 2
5 0м∂ =+ Э  

,   

( )2 ρ ρС
t

м
τ

∂ ∂

∂ ∂
= −− %W  ,  

( )2 2
5 C 0м∂ =+  

.
 

9.  The equation  of current continuity. Conserved charges  

    From  the SEM-field equations  it follows  the equation  of  current continuity  μ
μ 0j∂ =   

together  with  the condition  5
5 0j∂ = .  Therefore,  in 4|5V   the physical  charge 

 

( )0 3 3
0

λ ρQ j d dx x x= =∫ ∫ % ,   the virtual  charge 
 ( )5 3 3

5
λ ρQ j d dx x x= =∫ ∫ ,  where  

0 5| | | |Q Q> ,  since  ρ
ε

ρ =%  ,  are  conserved  in time:   0 0d
Q

dt
=

 
,  5 0d

Q
dτ

= . 
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10.  The canonical energy-momentum tensor  of  a massive  SEM-field  

    From  the full  Lagrangian  fL   of  a massive  SEM-field  we  can obtain  the energy-

momentum  tensor  ( )   
μν μν μν

ownbase ,T T T=  ,  or  in  the matrix  form  

5

5 55

αβ α
μν

α

w v
σ̂

v u

T TT
T T

−
 

   
      

 

= =
g

S h
R

 .  

    All equalities  below  are given  with  an accuracy  to terms  that  disappear  upon 

integration  over 3d x   in 4|5V . 

    The base part  of  the energy-momentum  tensor   
μν αβ
baseT T=    has  the physical 

components:   the energy  density   ( 1c = )  

( ) ( )00 2 2 2 2 2 2 2 2 00 00 2
 EM  SE

μ
μ

1

2
Cw фT T T A Aм м−+ − − + − −= = − =E H Э Aφ

 
, 

g  - the momentum density 3-vector,   { } [ ] { } { }0 0 0

EM SE
Ci i iT T Tc − −= = =g E H Э , 

S - the energy  flux density 3-vector  (the Poynting vector) ,  { } [ ]01 Ci

c
T −= =S E H Э

 
,   

the stress  3-tensor    { }σ̂ i jT− = .     

    Trace  of  the base part  of  the energy-momentum  tensor     

0
0   

α
α

i
iT T T= + = ( )2 2

SE C 2 0− − = − ≠Э L .     

    Trace  of  the full energy-momentum  tensor     

5
5   

μ α
μ αT T T= + = ( ) ( )2 2 2 2 2 2 2 2

SEM 
1

2
C 0фм −− + − +− − = − ≠E H Э Aφ L .

                                           

The own part  of  the energy-momentum  tensor  ( )55
 
μν μ
own

μ,T T T=  
 
 has  the components: 

( ) ( )55 2 2 2 2 2 2 2 21

2
Cu фT м= = − − − + − − + =E H Э Aφ 2

SE EM
μ

μ 0A Aм− − ≠L L ,   

virtual:  05v T= = ЭE
 
,   { } [ ]5 Cic T= +=h ЭH E  ,  { } [ ]51 Ci

c
T += =R ЭH E .   
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Corollary 

    The virtual SE-field  brings in  the negative contribution to  the physical  total energy  and  

momentum  of  SEM-field. Thus, for hydrogen atom  in an external field  the virtual SE-field  

shifts  the observable energy levels  and  this leads  to two additional amendments  (see III.8).   

11.  The origin of  an electron virtual mass   

  The consideration  of only  the physical EM-field  cannot explain  the origin of  mass,  self-

energy  and  momentum  of  an electron.  The stability  of  an electron  cannot be  achieved  

only  through  physical  electromagnetic forces [3,4].  It should  also  take  into account  the  

massive  virtual  SE-field.   

    In the space-time 4|5V   the virtual mass m   of  an electron  has  the origin  of  a massive  

SEM-field   and  is explained  by  the presence  of  the virtual self-SEM-field  of  an electron.  

The latter corresponds  to  the nonzero  base part  of  the energy-momentum  5–vector  of  a 

massive  SEM-field,  i.e. , 5 5
 
μ α
base 0T T= ≠ .                                                                                                             

    Since  the momentum density  of  the virtual self-SEM-field  of  an electron 

{ } [ ]( )51 1 Ci

c c
T= = +h ЭH E

 
,  where  1c =  ,  then  the 3-momentum 

[ ]( )3 31 C
c

d x d x+= =∫ ∫И ЭH Eh .    

    In  i.r.s.,  where  the electron  at rest,  C 0′ = , ′ =H 0 .  From  the transformation  of   

the SEM-field strengths (see II.3)  it follows  that  1С
c

= VЭ ,  [ ]1

c
=H V E .        

Then,  
2

31

c
d x m= =∫И V ЭE V  ,  where  the virtual mass  of  an electron  

2
31

c
m d x= ∫ ЭE ,  05T = ЭE  .  Thus,  the virtual self-energy  2 3mc d x= ∫ ЭE  .    
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Also,  we have proved  the equality   5 3 3α α1
mc

T d x j d x=∫ ∫ ,  where  α
mj  -  the virtual 

mass current  4-vector  (see I.4).   

12.  Definition of  the current 5-vector                                                                                          

For  the base part  of  the energy-momentum 5–vector  of  a SEM-field   
5 5μ α

baseT T=              

we have  the following:  5α 0 0T м⇒≠ ≠ ,   and conversely , 5α 0 0T м⇐= = ,  where  

м  -  the virtual mass  of  a quantum SE-field. 

    We accept  the following  statement:  the mass current  5-vector μ
mj    has  a SEM-origin   

if  the SEM-field  is massive.  This statement  about  the SEM-origin  of  the mass current  is 

expressed  through  the equality 5μ μ
m Tj =  , which  takes place  if  the mass current  4-vector  

5α α 0m Tj = ≠ .   Then  the charge current  5-vector  5μ μ μ
e

e
m

Tj j= = . 

Corollaries 

α )  The source  (the charge current)  creates  only  the massive  SEM-field  since 

α 0 0j м⇒≠ ≠     or    0 0 0ρ м⇒∨≠ ≠ ≠j%  ,    where   ρ
ε

ρ =%  .
 
 

β )  The massless  SEM-field  is  free  of  the charge current,  that is,   α0 0м j⇒= =    or  

0 0 0ρм ⇒ ∧= = =j%  .   

Remark 

    In the space-time 4V   the  physical  EM-field  is  massless  and  long-range.  But  in the 

space-time 4|5V   the virtual  SE-field  is  massive  in  the presence  of  field  sources  and , 

therefore, is not long-range  (see II.7, Corollary).  In the absence  of  field sources  the virtual  

SE-field  may be massless  and  long-range. 
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13.  The equation  of motion  of  the charged particle  in an external massive  SEM-field                 

( )2μ μν μ ν
ν νi F A Af мj ∂= −  ,   where  νj  -  the charge current  5-vector, 

μ
if  - the  5-

force  acting  on  the particle  with  the physical charge e    and  the virtual mass m .   

    This particle  moves  in an external massive SEM-field  in the forward direction  of  time τ  

and  time t .  Other hand,
 
  5

μ
μ μ

i ρm m
d d

d d

u
s s

Tf = =
 
,  where  ρm  - the physical mass density  

of  a particle  (see I.4)   and   5μ
mT  -  the momentum density  4|5-vector  of  a particle.    

    Hence,  the physical equations:  

( )0 2 0 ν
νi C ρ A Af м ∂= + −Ej  ,    [ ] ( )2 ν

νi ρ ρ A Aм ∇= − + −E Э Hjf
ur

%  ,   

the virtual equation:  ( )5 2 5 ν
νi Cρ A Af м ∂= − −Эj % .   However ,  

5
5

i 0ρm
d

ds
uf == .

 

Therefore,  ( )5 2 5ν ν
ν ν0 A AFj м ∂= −  .   We can see  that  ( )ν

ν5 0A A∂ = .   

Then,   5ν
ν C 0ρFj = =−Эj %  ,    i.e.   Cρ = Эj%    or   С = Эv .                                                              

    On the other hand,  the 5-force  acting  on  a moving charge  from  an external massive  

SEM-field  with  the energy-momentum  tensor μνT ,  is equal  μ μν
νf Tf ∂= .   

    From the equality  μ μ
f if f=    follows  that  5 5

f i 0f f= = .  That is,  5ν
ν 0T∂ = .  

Therefore,  in 4|5V   the values  ( )50 50 3λP T dx x= ∫  and   ( )55 55 3λP T dx x= ∫    

are conserved  in time:   50 0d
d

P
t

=  ,  55 0d
d

P
τ

=
 
. 

14.  Equations  of  the virtual  SE-waves. The plane SEM-wave  

    We can obtain  the equations of  SEM-waves  from the equations  for  a massive  

SEM-field,   when  μ 0j м= = .  In particular,  the equations  of  the virtual SE-waves  are   

Cdiv 
t

∂

∂
= −Э  ,    rot =Э 0 ,    grad С

t
∂

∂
= − Э  .   
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    Here  below  the dot  above  denotes  the differentiation  with  respect  to time t . 

    Let  the propagation direction  of  a  plane SEM-wave  / / Oxn .  We can  find  i.r.s.   

in  which   0 const 0A = ≠φ = .  Then   −=E A& ,  rot=H A .  

    Thus,   [ ]=E Hn ,  [ ]=H En ,  =E H ,  0=En ,  0=Hn ,  0=E H .  

That is,  the physical EM-waves  are transverse.    

    Further,   gradф ф= − =Э n & ,  C ф= & .     

    Thus,   C=Э n ,  С = Эn ,  / /Э n ,  C = Э ,  0=ЭE ,  0=ЭH .    

That is,  the virtual SE-waves  are  longitudinal.    

    Since  2 2=H E ,  2 2C = Э ,  then  55 0T =   and  the energy density  of  a plane SEM-wave  

2 2
00 T −= E Э .  The Poynting vector  [ ] ( )2 2

EM SE 00 C T− −= = − = =S E H Э S S E Эn n  . 

That is,  00 T = Sn .  

III. The single-particle wave Dirac equation  in  the space-time 4|5V   

1.  The Lagrangian  for  the single-particle wave Dirac equation                                                 

Let ( )η xψ
 
-  the  wave function  of  a particle  with  the virtual mass ηm   and  spin  1

2
 .   

The value 1η = ±   corresponds  to  the forward / backward  direction  of  time τ  and  t ,   

to  the sign  of  a particle mass  m±   and,  therefore,  to the sign  of  an energy-momentum.     

    For  the case  of  a plane wave  ( ) ( ) ( )μ
η η μexp ηx u p i p x−=ψ  ,   where  

( )0
μ , ,E Ep = p  ,  ( ) 4|5

μ V, ,x t τ ∈= x .  

  The full Lagrangian  of  a particle  in the absence  of  an external SEM-field  has  the form    

( ) ( )5μ μ
η η μ η μ η η η η

2
1γ γ ηγi m∂ − ∂ − += ψ ψ ψ ψ ψ ψL  ,   the own part  of  Lagrangian  

( )5 5 5
5 5

own
η η η η η ηη

2
γ γ η γi m∂ − ∂ −= ψ ψ ψ ψ ψ ψL  .  Here, μγ  -  the Dirac matrices  in the 
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standard  representation,  satisfying  the condition  μ ν ν μ μν2γ γ γ γ g+ = ,   where μνg  -  the 

metric coefficients  in 5V  ,  5 0 1 2 3γ γ γ γ γi= .  Hence,  ( ) 20 1γ = ,  ( ) 2 1γ i = −  ,  ( ) 25 1γ =  . 

Remark 

    To harmonize  the following  we take  that  the matrices αγ  are  virtual,  5γ  is physical . 

2.  The single-particle wave Dirac equation  in the absence  of an external SEM-field   

    From  the system of  Lagrangians ηL   and  own
ηL  we obtain  the system  of  two equations   

( ) ( )5μ
μ η1 0ˆγ η γp m x− +   =ψ ,                                                                                     (1)

 

( ) ( )5
5 η 0ˆγ ηp m x− =ψ ,                                                                                                   (2)

 

where  μ μp̂ i ∂=  ,  or  in  the difference  of  the equations  (1)  and  (2)    

( ) ( )α
α η 0ˆγ p m x− =ψ ,                                                                                                       (3)

 

( ) ( )5
5 η 0ˆγ ηp m x− =ψ .                                                                                                    (2)

 

    The equation  (3)  is  the classical wave Dirac equation  in  the space-time 4V .  Solutions   

of  the equation  (3)  are  the particle states ( )η xψ   with  two values  1η = ±  .  That is,  the 

classical  wave Diraс equation  is  the  two-particle equation [5]. 

    However, (1) (2),{ }  and  (3) (2),{ }   are  the single-particle systems. That is,  their 

solutions  are  the particle states ( )η xψ
  
that correspond   to the definite value η   in  the 

operator part.  The system (1) (2),{ }   we  will call  the single-particle wave  Dirac equation  

for  a particle  with  the mass ηm   and   spin 1

2
 
  
in  the absence  of  an external  SEM-field   

in  the space-time 4|5V . 
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3.  Second-order equations                                                                                                                            

    The squares  of  operators  of  the system (1) (2),{ }   lead  to  the system (4) (5),{ }   for 

which  the solutions  are  also  the single-particle states  ( )η xψ   with  a definite  value η  

( )5 2μ
μ η η2 1ˆ ˆ η γp p m+=ψ ψ  

,                                                                                        (4) 
 

 5 2
5 η ηˆ ˆp p m=ψ  ψ  .                                                                                                            (5) 

    Half  of  the sum of  operators  of  the equation  (4)  for  two values  1η = +    and   

1η = −    leads  to the system  

2μ
μ η η2ˆ ˆp p m=ψ ψ  ,  

5 2
5 η ηˆ ˆp p m=ψ  ψ  ,   

from  which  in  the difference  of  equations  we obtain  the system 

2α
α η ηˆ ˆp p m=ψ ψ  ,   

5 2
5 η ηˆ ˆp p m=ψ  ψ  .    

    The latter  two systems  are  two-particle  systems.  That is,  their solutions  are  the states  

with  two values  1η = ±   corresponding  to  two signs  of  an energy-momentum. 

4.  The electron-positron vacuum.  The single-particle  wave Dirac equation  in  the 

presence  of an external  massless  SEM-field.  The polarization of vacuum 

    The classical wave Dirac equation  in the space-time 4V   is  the two-particle equation. The 

single particle  equation  obtained  from it  is considered  only  in the absence  of  an external 

EM-field  and  with “ the Dirac vacuum “  in which  all states  with  negative energies   are 

employed [5].  Dirac proposed  the theory  of  holes  which describes  particles  of  both signs  

of charge  in the presence  of  an external  EM-field.  This theory denotes  the passage  to 

many-particle  quantum field theory.  In this case,  the solution  of  the wave  Dirac equation  
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has  no simple probabilistic interpretation,  since it must  describe  the processes  of creation  

and  annihilation  of electron-positron pairs [6]. 

    The single-particle  wave Dirac equation  in  the space-time 4|5V   may be considered  in  

the presence  of  an external SEM-field  and  allows  predict  the phenomenon  of  vacuum 

polarization.  In this case,  the wave function  of  a single particle  retains  the simple  

probabilistic  interpretation. 

    Let us consider  the single-particle system (1) (2),{ }   for  1η = +   corresponding to the 

positive energy  of  a particle.  If  we accept  that  this system  describes  the vacuum  of  

electron /positron states,  then  in the presence  of  an external massless  SEM-field   with   

5-potential ( )μA x   this system  may be  written  in the form:   

( ) ( )5
μ

μ
μ η η2 2 1ˆγ η γAp e e m + − + − =ψ ψ  

,   

( ) 5
5 5 η η2 2ˆ ηγAp e e m− + −  =ψ ψ  ,  

where  e±  -  the  electron / positron  charge.  In the case  of  a plane wave   

( ) ( ) ( )μ
η η μexp ηx u p i p x−= =ψ  

( ) ( ) ( ) ( )μ μη η
μ μexp expe eA Ax i e x x i e x+ −− − − +      = =ψ ψ  

,    where
 

( ) ( ) ( ) ( ) ( ){ }η μ μ μ
η μ η μexp exp ηe A Ax x i e x u p i p e x± −− +   ± ±  = =ψ ψ .

 

    Thus,  the original system (1) (2),{ }  on  the one hand  describes  the  electron\positron 

vacuum,  and  on the other hand  in the presence  of  an external SEM-field   this one  is the 

sum  of  two single-particle systems.  In this case, ( )η xψ
  
is  the solution  of  the original  

system  if  and only  if  ( )η
e x±ψ   are  the solutions  of  the single-particle  systems  with  the  

appropriate charge sign  
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( ) ( )η 5 ημ
μ μ 1ˆγ ηγe eAp e m± ±± − = +  ψ ψ  ,                                                                     (6) ±         

( )5 η 5 η
5 5ˆγ η γe eAp e m± ±± − =  ψ ψ  .                                                                                (7) ±     

    Each  of  the two systems (6) , (7){ }± ±
  is  the single-particle Dirac equation  in  the space-

time 4|5V ,  respectively  for the electron\positron  in  the presence  of  an external  SEM-field 

with  5-potential ( )μA x .  The sign  of  the electron\positron energy  is determined  by  the 

value η .  Thus,  in  the space-time 4|5V   an external  SEM-field   induces  the appearance  of 

single-particle  electron\positron states  in vacuum  (vacuum polarization). 

5.  CM – symmetry  of  the  single-particle  Dirac  equation 

    The single-particle Dirac equation  as  the system (6) , (7){ }± ±
  possesses  the property  

of  CM -symmetry  relatively  2-operation:   

1)  C - inversion  of  the charge sign:   e e→± m  ,   

2)  M - inversion  of  the mass sign:  1 1η η→= ± = m  ,   i.е.  the sign inversion  of  the  

energy-momentum. 

6.  The spin 5-tensor     

Let  in the standard representation  of  the Dirac matrices:  5 0 1 2 3γ γ γ γ γi=  ,  ( ) 25 1γ =
 
,  

0γ=α γ .  In addition, we define  the following matrices:  0 5 1 2 3γ γ γ γ γ γi= = −& ,  ( ) 2 1γ =& , 

5γ=β γ .  Then  the spin 5-tensor  μν μ ν

2
σ γ γ,i

=     
 
in  the matrix form  

( )

1

1 1

1

1

1

2 3

3 2
μν

2 3 2

3 2 3

2 3

0

0

0, , ,
0

0

α α α γ
α σ σ β
α σ σ βσ γ
α σ σ β
γ β β β

i i i
i i
i ii i
i i

i i i

− − −

− − −− −

− − −

−

 
 
 
 = =  
 
  
 

α σ β

&

&

&
 

,   where  

the matrices α ,σ   are  physical, γ& ,β   are  virtual.   
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7.  The angular momentum  5-tensor 

( )μν μ ν ν μ μν1

2
σi x xΛ ∂ − ∂ +=

    
or  in the matrix form

( )

1 2 3

1 3 2 1

2 3 1 2

3 2 1 3

1 2 3

μν

0
0

, , , 0

0
0

K K K
K J J N
K J J N
K J J N

N N N

Ο

− − −

Λ − Ο − − − −

− − −

− Ο

 
 
 
 
 
 
 
 

= = −K J N  ,   where 

( ) 1

2t
i it∂

∂
+ ∇ −=K r α

ur
 ,                   1

2
i i

τ
τ

∂

∂

 + ∇ − 
 

=N r β
ur

 , 

1 1

2i
 ∇ + =J r σ

ur

 
,                              1 1

2
γ

i t
t

τ
τ

∂ ∂

∂ ∂
Ο  − − 

 
= &   . 

Here, the operators K , J  are physical, Ο , N  are virtual.  1

2
γ= &T   is  the 1-dimensional  

operator  of  the virtual temporal spin  of an electron,  and  that has  the eigenvalues  1

2
±  . 

The nonzero components  of  the 5-tensor μνΛ :  ( )μν αβ
base ,Λ Λ= = − K J   - the 4-tensor  and  

( )5 5μν μ μ
own ,Λ Λ Λ= .  The base part of  the 5-vector 5μΛ   is the 4-vector ( )5 5μ α

base ,Λ Λ Ο= = N . 

8.  The equation of second order for an electron  with the positive energy in an external 

massless  SEM-field  

    The classical  wave Dirac equation  in  the space-time 4V   predicts  the energy levels  of  

hydrogen atom  in  an external  EM-field  without  additional  amendments  on  the Lamb 

shift  and  hyperfine structure [5].  The single-particle  wave Dirac equation  in  the space-

time 4|5V  predicts  two  additional  amendments  for  the energy levels  of  hydrogen atom in  

an external  SEM-field.   

    We consider  the system  of equations (6) (7),{ }+ +  for  an electron  with  the positive 

energy,  that is,  when  1η = +   
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( ) ( )5μ
μ μ 1ˆ 0γ γ ep Ae m− − +   =ψ  ,                                                                               (6)+   

( )5
5 5 0ˆγ ep Ae m− −   =ψ  

.                                                                                             (7)+

 

    Applying  the adjoint operator  to each equation,  we obtain  the system
                                                                                                                             

( ) ( ) ( )5 2μ μ μν
μ μ μν

2
ˆ ˆ 2 1 0σ γ e

ep A p A Fe e m+ − − − −  
=ψ

 
,                                      (8) 

 

( ) ( )5 5 2
5 5 0ˆ ˆ ep A p Ae e m− − −   =ψ  

.                                                                             (9)
 

    In the difference  of equations  (8)  and  (9)  we obtain  the system 

( ) ( ) ( )α α μν 5 2
α α μν

2
ˆ ˆ 1 2 0σ γ e

ep A p A Fe e m+ − − − −  
=ψ  ,                                      (10) 

( ) ( )5 5 2
5 5 0ˆ ˆ ep A p Ae e m− − −   =ψ  

.                                                                             (9)
 

    The system (10) (9),{ }   in the differential form                                                               (11)                                                                                                                                

( ) ( ) ( ) ( )[ ]
2

2 5 21 2 C 0γ γ et
i e i e m e i∂

∂

 
∇ 

 
− − + − + + − − + =A H E Эσ α β

ur
& ψφ  , 

2
2 0ф ei e m

τ

∂

∂
− −

  
  
  

=ψ  .                                                                                               (12)            
 

    In the case of  a plane wave :   ( ) ( ) ( )μ μ
μexpe Ax u p i p e x + = − =ψ  

( ) ( ) ( ) ( ){ }0exp фE Eu p i e t e e τ + + + = − − +Ap xφ . 
 

    The second  and  fourth  physical terms  in square brackets  in the equation (11)  appear  

as a result  of interaction  of  the electron  with the external virtual SE-field.  It can suppose  

that  these  terms  correspond  to two  additional  amendments  for the energy levels  of  

hydrogen atom  in  an external  SEM-field.  The second term  takes  into account  “the virtual 

temporal spin”  of  an electron.  
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9.  The canonical energy-momentum tensor.  Conservation equations.  Charge and mass 

current 5-vectors  of an electron.   

    From  the Lagrangian ηL
  
for 1η = +    we obtain  the energy-momentum  5-tensor   

( )μν μ ν ν μ

2
γ γiT ∂ ∂−= ψ ψ ψ ψ

   
for  which  μν

ν 0T∂ = .  From here  it follows  that  in 4|5V   

the values   ( )0 0 3μ μ λP T dx x= ∫  
and   ( )5 5 3μ μ λP T dx x= ∫ ,  where  4|5

λ Vx ∈  ,  are 

conserved  in time:    0μ 0d
d

P
t

=
 
,   5μ 0d

d
P

τ
= . 

 

    From  the equation (2)  and  conjugate equation  we obtain  the momentum density   

5-vector  ( )5 5 5μ μ μ μ μ

2
γ γ γ m

iT m j∂ ∂−= = =ψ ψ ψ ψ ψ ψ
 
,  where μ

mj   - the mass current  

5-vector.  Then  the charge current  5-vector  5μ μ μγe
e
m

Tj e= = ψ ψ    
 
and   5μ

μ 0T∂ = .  

From  this  it follows  that  in 4|5V   the values  ( )05 05 3λP T dx x= ∫  and   

( )55 55 3λP T dx x= ∫   are conserved  in time:   05 0d
d

P
t

=
 
,   55 0d

d
P

τ
= .   

    From  own
ηL

  
we  obtain   ( )55 5 5 5 5

2
γ γiT ∂ ∂−= ψ ψ ψ ψ  

   
or   55 5 5γ mT m j= =ψ ψ  .   

That is,  55T   is  the scalar density  of  the particle mass  and  55
5 0T∂ = .   

10.  The physical and virtual electron charge and mass 

    The physical electron charge   ( )0 3 0 3
0

λ γeQ j d dx x e x e= = =∫ ∫ ψ ψ  ,   

and  is conserved  in time t :  0 0d
Q

dt
= .   

    Since  5 5γej e= ψ ψ    is  the pseudo-scalar,  then  the virtual electron charge     

5 3
5 γQ de x= ∫ ψ ψ  ,  and  is conserved  in time τ :  5 0d

Q
dτ

= .   It  can be assumed   
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that  the virtual electron charge 5Q   is  the “bare” charge 0e   of  an electron.  That  is,  

5 0Q e=   and   5 0| | | |Q Q>  [6].   

    The virtual electron mass  ( )0 3 0 3
0

λ γmj d dx x m x m= = =∫ ∫ ψ ψM    is conserved   

in time t :  0 0d
dt

=M .  Then  the physical electron mass  5 3
5 γ dm x= ∫ ψ ψM  ,  and  

 is conserved  in time τ :  5 0d
dτ

=M .  It  can be assumed  that  the virtual electron mass 

0 m=M    is  the “bare” mass 0m   of  an electron.  That is,  0 0m=M    and   5 0| | | |>M M .   

Conclusion 

    With inclusion  of  the virtual proper time  in the metric  of  Minkowski space  we passed  

to  the four-dimensional  bimetric space-time.  As a result,  we operated  with physical  

(observable)  and  virtual (unobservable) objects  entering  into the physical expressions  

like  how with  real  and  imaginary numbers.                                                                                   

    Introduction of virtual objects  supplementing physical objects ensured  the completeness  

of  description of  the occurring physical processes  and  led us  to the following results.            

    1.  The consistent  and  closed electrodynamics  was built  for  the scalar-electromagnetic           

field  (the SEM-field). The virtual scalar-electric field (the SE-field)  is  massive  in the 

presence of  field sources. The virtual mass  protects  from the infrared catastrophe in QED. 

The physical  EM-field  is  massless.  It was shown  that  the mass, self-energy and current  

for an electron  have  the origin  of  the massive SEM-field .                                      

    2.  In classical quantum theory  it  was found  a form of  the single-particle wave Dirac 

equation for which  the electron wave function  retains the simple probabilistic interpretation.  

It was shown  that  in the single-particle Dirac theory  the virtual scalar-electric field  shifts  

the physical energy levels  and  this leads  to two additional amendments  for  the hydrogen 

atom  in an external  field.  
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