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ABSTRACT

The purpose of this paper is to show the effectiveness of an approach to formulate and

understand the dynamics of an observable phenomenon through Newtonian mechanics. The

approach starts by taking a simpler analogue of the problem we need to understand, and solving

both the simpler and real case simultaneously. Then, the real case is split into two independent

cases. The major part of the paper will be concentrated on demonstrating that this approach

is effective in comprehending the dynamics of the phenomenon. The problem considered is, in

a circus, a co-worker saves a person who falls down during a rehearsal by dashing him in the

horizontal direction, from a few feet above the ground. In the rest of the paper, for ease, the

person who saved will be called as rescuer and the person who is being saved will be called as

casualty. Analysis of this problem is based on assumptions that the collision between rescuer

and casualty is an inelastic collision and after the total mass of rescuer and casualty come in

contact with the ground, it remains stationary.

1 INTRODUCTION

The position, velocity, and acceleration components along with energy, momentum, and frictional
forces at impact for this problem are analyzed in this paper. In order to give a comprehensive view
of the problem, two cases are considered. In the first case, casualty falls to the ground with none
rescuing him. In the second case, casualty is considered to be saved by the rescuer. For second case,
the trajectory is separated into two independent trajectories. The first independent trajectory is of
the casualty till he comes in contact with the rescuer and the second independent trajectory involves
the trajectory of rescuer and casualty after collision and till they come in contact with the ground.
At the end of analysis, for a range of rescuer’s horizontal velocities, kinetic energy after collision is
compared with the kinetic energy of casualty before collision. By substituting numerical values in
momentum equations, rescuer’s horizontal velocity vo is found, for which the corresponding Kinetic
energy after collision is minimal.

2 POSITION, VELOCITY, AND ACCELERATION COMPONENTS

2.1 Equations of 1D motion with constant acceleration

Position function, xt = xo + voxt + 1
2 axt2

Velocity function, vxt = vox + axt

Acceleration function, axt = ax

Replace x with y and z for the corresponding directions. Let us consider this to be a 2D problem,
so we won’t be mentioning z-direction components in rest of the paper.

2.2 Case (i): If the casualty falls to the ground without being rescued

The time when he starts to fall at A be 0 and the time when he touches the ground at D be t1.
For time 0 and t1, the x and y direction components of position, velocity, and acceleration are
decomposed in the tables below.
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Figure 1: fig a

Position, Velocity, and Acceleration components for fig a:

at time 0 (at pt A) at time t1 (at pt D)
xo = 0 (my free choice) xt1 = 0
vxo = 0 vxt1 = 0
axo = 0 axt1 = 0

Table 1: x direction components for fig a

at time 0 (at pt A) at time t1 (at pt D)
yo = h1 (my free choice) yt1 = h1 + 0 − 1

2 gt2
1

vyo = 0 (initial velocity is 0) vyt1 = 0 − gt1

ayo = −g ayt1 = −g

Table 2: y direction components for fig a

2.3 Case (ii): If the casualty is rescued by a rescuer

Here for case(ii), we can separate the motion showed in fig b to two independent motions as shown
in fig b(i) and fig b(ii). In fig b(i), the time at point A is 0 and time at point B be t2. In fig b(ii),
the time at point B is 0 and the time at point C be t3. For each of the independent trajectories in
case(ii), position, velocity, and acceleration components in x and y directions are decomposed in
the below tables.
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Figure 3: fig b(i) and fig b(ii)

Position, Velocity, and Acceleration components for fig b (i):

at time 0 (at pt A) at time t2 (at pt B)
xo = 0 (my free choice) xt2 = 0
vxo = 0 vxt2 = 0
axo = 0 axt2 = 0

Table 3: x direction components for fig b(i)

at time 0 (at pt A) at time t2 (at pt B)
yo = h1 (my free choice) yt2 = h1 + 0 − 1

2 gt2
2

vyo = 0 (intial velocity is 0) vyt2 = 0 − gt2

ayo = −g ayt2 = −g

Table 4: y direction components for fig b(i)

Position, Velocity, and Acceleration components for fig b (ii):

at time 0 (at pt B) at time t3 (at pt C)
xo = 0 xt3 = 0 + vxt3 + 0 = w

vxo = vx (+ve value) vxt3 = vx + 0
axo = 0 (vx is const) axt3 = 0

Table 5: x direction components for fig b(ii)

at time 0 (at pt B) at time t3 (at pt C)

yo = h3 yt3 = h3 + vy1t + 1
2

dvy1

dt
t2

vyo = vy1 (-ve value) vyt3 = vy1 + t
dvy1

dt
(-ve value)

ayo =
dvy1

dt
=

(vy1+∆vy1)−vy1

∆t
(-ve value) ayt3 =

dvy1

dt
(-ve value)

Table 6: y direction components for fig b(ii)

2.4 Velocity components at point B

Velocity components of casualty just before the collision: vx = 0 and vy = vby

Velocity components of rescuer just before the collision: vx = vo and vy = 0
Velocity components of total mass (rescuer and casualty) just after the collision: vx = vx and
vy = vy1
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3 ENERGY EQUATIONS

Let us consider the mass of recuer and casualty to be equal. The energy equations for all the three
trajectories are formulated below.

3.1 Case (i): Work done by gravity to move the object from A to D
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Figure 4: fig a

WDAD = KED − KEA (No initial velocity at A, so KEA is 0)
WDAD = 1

2 mv2
D

At point A, gPEA = mgh1 and KEA = 0
At point D, gPED = 0 (height at pt D is 0) and KED = 1

2 mv2
D

By Conservation of Total Mechanical Energy, gPEA + KEA = gPED + KED

Substituting values we get, mgh1 + 0 = 0 + 1
2 mv2

D

h1 =
v2

D

2g
(1)

3.2 Case (ii): Work done by gravity to move the object from A to B
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Figure 5: fig b(i)

WDAB = KEB − KEA (No initial velocity at A, so KEA is 0)
WDAB = 1

2 mv2
B

At point A, gPEA = mgh1 and KEA = 0
At point B, gPEB = mgh3 and KEB = 1

2 mv2
B

By Conservation of Total Mechanical Energy, gPEA + KEA = gPEB + KEB

Substituting values we get, mgh1 + 0 = mgh3 + 1
2 mv2

B

h1 − h3 = h2 =
v2

B

2g
(2)
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3.3 Case (ii): Work done by gravity to move the object from B to C
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Figure 6: fig b(ii)

vhyp1 =
vy1

sinθ1

and vhyp2 =
vy2

sinθ2

WDBC = KEC − KEB = (1
2 × 2mv2

C) − (1
2 × 2mv2

B) = mv2
C − mv2

B

WDBC = m(v2
Cx − v2

Bx) + m(v2
Cy − v2

By) = m(v2
x − v2

x)+ m(v2
Cy − v2

By)

WDBC = mv2
Cy − mv2

By

At point B, PEB = mgh3 and KEB = 1
2 × 2m × v2

hyp1 =
mv2

y1

(sinθ1)2

At point C, PEC = 0 and KEC = 1
2 × 2m × v2

hyp2 =
mv2

y2

(sinθ2)2

By Conservation of Total Mechanical Energy, gPEB + KEB = gPEC + KEC

mgh3 +
mv2

y1

(sinθ1)2
= 0 +

mv2
y2

(sinθ2)2

h3 =
1

g

(

v2
y2

(sinθ2)2
−

v2
y1

(sinθ1)2

)

(3)

Now we will take the sum of total mechanical energy of casualty and total mechanical energy of
rescuer just before the collision and equate it with the sum of total mechanical energy of total
mass (rescuer and casualty) and energy lost to other forms just after collision.

(

1

2
mv2

By + mgh3

)

+

(

1

2
mv2

o + mgh3

)

=

(

mv2
y1

(sinθ1)2
+ 2mgh3

)

+ Elost to other forms (4)

From equation (4), we can note that

mgh3 + mgh3 = 2mgh3 (5)

Equation (5) clearly shows that Potential energy in Equation (4) is conserved.

1

2
mv2

By +
1

2
mv2

o =
mv2

y1

(sinθ1)2
+ Elost to other forms (6)
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4 MOMENTUM EQUATIONS

For ease of calculation, we will consider the mass of rescuer and the casualty to be 1 kg each. Let
us take the velocity of casualty just before collision, vBy = −6y m/s. So, the Kinetic energy of the
casualty before collision is 18 J. Then for a range of rescuer’s horizontal velocities,
|vo| = 2|vby|, |vby|, | vby

2 |, | vby

3 |, | vby

6 | , and | vby

12 |, we will be finding the Kinetic energy of total mass
(rescuer and casualty) just after collision.
I will use KEcas bef collision for the Kinetic energy of casualty just before collision and KEaft collision

for the Kinetic energy of total mass (rescuer and casualty) just after collision. I will be using
KEtot bef collision for the sum of the kinetic energies of both rescuer and casualty before collision.

i

j

Momentum(total) = Mass(total) x v(total)

P
i

P
jv

o

m
i

v
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m
j

P
total

 = M
total
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Figure 7: fig c

Consider |vo| > |vBy|. Lets say |vo| = 2|vBy|
So, mi = 1, vBy = −6y and mj = 1, vo = 12x

If |vo| = 2|vBy|, then KEaft collision (45J)> KEcas bef collision (18J)

Consider |vo| = |vBy|
So, mi = 1, vBy = −6y and mj = 1, vo = 6x

If |vo| = |vBy|, then KEaft collision (18J)= KEcas bef collision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

2
So, mi = 1, vBy = −6y and mj = 1, vo = 3x

If |vo| =
|vBy|

2 , then KEaft collision (11.25J)< KEcas bef collision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

3
So, mi = 1, vBy = −6y and mj = 1, vo = 2x

If |vo| =
|vBy|

3 , then KEaft collision (10J)< KEcas bef collision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

6
So, mi = 1, vBy = −6y and mj = 1, vo = x

If |vo| =
|vBy|

6 , then KEaft collision (9.25J)< KEcas bef collision (18J)

Consider |vo| < |vBy|. Lets say |vo| =
|vBy|

12
So, mi = 1, vBy = −6y and mj = 1, vo = 0.5x

If |vo| =
|vBy|

12 , then KEaft collision (9.0625J)< KEcas bef collision (18J)

4.1 Improbable case

Let us consider the case, |vo| = 0. Imagine the rescuer and the casualty to be in outer space. Let
us assume that the force experienced by them due to gravity of any celestial body is zero. Now let
us give the casualty an initial velocity vBy and the rescuer is stationary. In this case, after the
casualty hits the rescuer, their masses stick together and continue to move with a velocity

vBy

2 .
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But arranging such a collision in the presence of earth’s gravitational field between the rescuer and
the casualty is improbable. Let the velocity of total mass after collision be v1.

Consider the value of mi = 1, vBy = −6y and mj = 1, vo = 0

Ptot bef collision = mivi + mjvj = 1 × −6y + 1 × 0 = −6y

2v1 = −6y ⇒ v1 = −3y

|v1| =
√

(−3)2 =
√

9 = 3

KEtot bef collision = 1
2 × 1 × 36 + 1

2 × 1 × 0 = 18J

KEaft collision = 1
2 × 2 × 9 = 9J

KEcas bef collision = 1
2 × 1 × 36 = 18J

If |vo| = 0, KEaft collision =
KEcas bef collision

2
(7)

In this improbable case, Kinetic energy of the total mass after inelastic collision is reduced to half
the Kinetic energy of the casualty before collision.

5 FRICTIONAL FORCES

Assumption: The total mass of rescuer and casualty (2m), after they come in contact with the
ground at point C, remains stationary. In other words, the total mass (2m) after impact at point C
doesn’t moves along the direction of increasing x, due the presence of frictional forces between the
total mass and ground.

The maximum frictional force (Ffrmax) and Normal force (N) experienced by the mass due to the
ground, at the instant of impact at point C, are found based on the above assumption.

5.1 Just before the impact
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Figure 8: fig d

Just before the mass hits the ground, velocity in the x-direction is constant. So, acceleration in the
x-direction is 0.

ax = 0 ⇒ fx = max = 0

fy = −m
dvy2

dt
=

−m(vy2 − (vy2 − ∆vy2))

∆t3
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For a particular fall, however down we move the ground, just vy2 increases its magnitude in the
negative y direction. The horizontal velocity, vx remains constant. See the images below.

A (0, h1) +X

-Y

h1

d
ir

 o
f 

in
cr

ea
si

n
g

 y

dir of increasing x

h2

h3

B (0, h3)

C

g
 =

 9
.8

0
 m

/s
2

Vx

Vy2

Figure 9: fig d(i)
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Figure 10: fig d(ii)
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Figure 11: fig d(iii)

As this case is just before the impact, there is a small gap between the total mass and the ground.
So, vy2 continues to increase its magnitude in the negative y direction and vx continues to remain
constant until the mass comes in contact with the ground. So, due to the manifest lack of contact
between the mass and ground at this instant, there is neither a Normal force nor frictional force
acting on the mass.
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5.2 At the instant of impact

At the instant of impact, based on the assumption that the total mass (2m) after the impact is
stationary, the values of Fx, Fy, ax, and ay are found.
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Figure 12: fig e

X-direction components:

At the instant of impact, velocity component in x direction changes from vx to 0. So, the
corresponding force and acceleration component are

Fx = 2m × (0 − vx)

∆t3
= −2mvx

∆t3
(8)

ax = − vx

∆t3
(9)

Sign Interpretation for equation (9): vx just before the impact is a +ve value. At the instant of
impact, acceleration ax is -ve value. The -ve acceleration decreases vx from +ve value to 0.

Y-direction components:

At the instant of impact, velocity component in y direction changes from vy2 to 0. So, the
corresponding force and acceleration component are

Fy = 2m × (0 − vy2)

∆t3
= −2mvy2

∆t3
(10)

ay = − vy2

∆t3
(11)

Sign Interpretation for equation (11): vy2 just before the impact is a -ve value. At the instant of
impact, acceleration ay= -(-value) =+value. Positive acceleration in y direction increases vy2 from
-ve value to 0.

5.3 Requirements of the ground to make the total mass (2m) stationary at impact

The maximum frictional force exerted by the ground, Ffrmax should be atleast −2mvx

∆t3

N.

The ground should be able to provide a normal force of atleast
−2mvy2

∆t3

N.
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6 EFFECTIVENESS OF THE APPROACH IN COMPREHENDING THE PHE-
NOMENON

KE
aft collision
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Figure 13: fig f

As we can see from the above plot, the horizontal velocity of the rescuer for which the Kinetic
energy after inelastic collision is reduced to the maximum possible relative to the Kinetic energy of
casualty just before the collision, is vo = 0. If vo = 0, then the KE of total mass (rescuer and
casualty) after collision is just half the KE of casualty before collision. To assert this statement,
refer to equation (7) in the improbable case explained in momentum section.We can also prove this
by substituting the mass, vy1, and θ1 values used in improbable case under momentum equations
section to equation (6) derived in the energy equations section.

Equation (6): 1
2 mv2

by + 1
2 mv2

o =
mv2

y1

(sinθ1)2 + EKE lost to other forms

The first term in LHS is 18J and the second term in LHS is 0. So, it is enough to prove

mv2

y1

(sinθ1)2 = 1
2 (1

2 mv2
by)=9J

While deriving equation (4), for the RHS terms we have considered the total mass to be 2m. So,
we can here substitute m=1 kg, and v1 = |vhyp1| = 3 m/s

For this case, horizontal velocity of rescuer, vo is 0. So, θ1 value is 90o.

vy1 = sinθ1 × 3 = sin90o × 3 = −3y (-ve for its direction)

|vy1| =
√

(−3)2 =
√

9 = 3

If vo = 0, then
mv2

y1

(sinθ1)2 = 1×9
1 = 9J, which is the value of 1

2 (1
2 mv2

by)

Substituting
mv2

y1

(sinθ1)2 value in equation (6), we get EKE lost to other forms=9J

Kinetic energy of the total mass (rescuer and casualty) after collision, is reduced in comparison
with the Kinetic Energy of casualty before collision by an amount, EKE lost to other forms=9J. The
above exercise demonstrates that we can infer and assert any further conclusions from the primary
information available depending on the requirements.

7 CONCLUSION

When working with problems involving the dynamics of moving objects, we can consider a similar
problem, shedding the intricacies of the problem in which we are interested in. In this way, we can
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compare the findings from our problem with a simpler analogue, leading to better understanding of
the problem. The simpler analogue we used in this paper for comparison is essentially a special
case of our problem. For instance, position, velocity, and acceleration components at point D in
special case and at point C in real case can be used for studying the impact at point C in real case.
This paper also demonstrates how splitting a problem into smaller blocks will give us better ways
to approach the problem. Here, in this example, separation of trajectory for the second case into
two independent trajectories, proved easy to derive equation (4) in section 3.
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