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Abstract 

Three body motion or many body motion in relation to gravitation and other types of 

interaction has always occupied an enviable position in the history of physics in view of its 

complexity especially in comparison with the simpler two body motion. The challenge offered 

by these problems have been a continuous source of inspiration for mathematicians and 

physicists to work out solutions. This article is a modest endeavor to analyze and solve the 

problem as far possible .A method for solving the four body and in general the many body 

problem has been discussed. Certain peculiarities of the two body motion have been pointed 

out highlighting them in connection with three body motion and with many body motion. 

 Introduction 

The two body problem(1) was formulated by Johannes Kepler in 1609 and solved by Sir Isaac 

Newton in the year 1687.Ever since the three body problem(2) stood as a formidable challenge 

motivating physicists and mathematicians to take on it by various methods(3): to derive 

solutions to the problem under suitable restrictions. In this article the method of differential 

equations have been applied for analysis and solving the three body and the four body problem 

in the most general situation. A simple numerical technique for the many body problem has 

been suggested. Certain subtle aspects of the two body motion have been pointed out together 

with nature’s ingenious method of handling them in the context of the many body scenario that 

exists in the universe in an obvious  manner. 

Basic Calculations 

We have the gravitating masses 𝑚𝐴, 𝑚𝐵and 𝑚𝐶   at the corners of the triangle ABC. Their 

locations are denoted by the position vectors 𝑟𝐴, 𝑟𝐵 and 𝑟𝐶 . 

Equations of motion as reckoned from an inertial frame (4) of reference: 

𝑚𝐴
𝑑2𝑟𝐴

𝑑𝑡2 = 𝐺
𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 + 𝐺

𝑚𝐴𝑚𝐶

𝑟𝐴𝐶
3 𝑟𝐶𝐵   (1.1) 

𝑚𝐵
𝑑2𝑟𝐵

𝑑𝑡2
= 𝐺

𝑚𝐵𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐶 + 𝐺
𝑚𝐵𝑚𝐴

𝑟𝐵𝐴
3

𝑟𝐵𝐴   (1.2) 

𝑚𝐶
𝑑2𝑟𝐶

𝑑𝑡2 = 𝐺
𝑚𝐶𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴 + 𝐺

𝑚𝐶𝑚𝐵

𝑟𝐶𝐵
3 𝑟𝐶𝐵   (1.3) 
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In the above or elsewhere in the article  

𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖;  𝑟𝑖𝑗 = |𝑟𝑖𝑗| = |𝑟𝑗 − 𝑟𝑖|  

Or, 

𝑑2𝑟𝐴

𝑑𝑡2 = 𝐺
𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 + 𝐺

𝑚𝐶

𝑟𝐴𝐶
3 𝑟𝐶𝐵  (2.1) 

𝑑2𝑟𝐵

𝑑𝑡2 = 𝐺
𝑚𝐶

𝑟𝐵𝐶
3 𝑟𝐵𝐶 + 𝐺

𝑚𝐴

𝑟𝐵𝐴
3 𝑟𝐵𝐴   (2.2) 

𝑑2𝑟𝐶

𝑑𝑡2 = 𝐺
𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴 + 𝐺

𝑚𝐵

𝑟𝐶𝐵
3 𝑟𝐶𝐵   (2.3) 

Or , 

𝑑2(𝑟𝐴−𝑟𝐵)

𝑑𝑡2
=

𝐺(𝑚𝐴+𝑚𝐵)

𝑟𝐴𝐵
3

𝑟𝐴𝐵 −
𝐺𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐶 −
𝐺𝑚𝐶

𝑟𝐴𝐶
3

𝑟𝐶𝐴   

𝑑2(𝑟𝐵−𝑟𝐶)

𝑑𝑡2 =
𝐺(𝑚𝐵+𝑚𝐶)

𝑟𝐵𝐶
3 𝑟𝐵𝐶 −

𝐺𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴 −

𝐺𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐴𝐵    

𝑑2(𝑟𝐶−𝑟𝐴)

𝑑𝑡2 =
𝐺(𝑚𝐶+𝑚𝐴)

𝑟𝐶𝐴
3 𝑟𝐶𝐴 −

𝐺𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 −

𝐺𝑚𝐵

𝑟𝐵𝐶
3 𝑟𝐵𝐶     

Or 

  

−
𝑑2𝑟𝐴𝐵

𝑑𝑡2 =
𝐺(𝑚𝐴+𝑚𝐵)

𝑟𝐴𝐵
3 𝑟𝐴𝐵 −

𝐺𝑚𝐶

𝑟𝐵𝐶
3 𝑟𝐵𝐶 −

𝐺𝑚𝐶

𝑟𝐴𝐶
3 𝑟𝐶𝐴 (3.1) 

−
𝑑2𝑟𝐵𝐶

𝑑𝑡2 =
𝐺(𝑚𝐵+𝑚𝐶)

𝑟𝐵𝐶
3 𝑟𝐵𝐶 −

𝐺𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴 −

𝐺𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐴𝐵  (3.2) 

−
𝑑2𝑟𝐶𝐴

𝑑𝑡2
=

𝐺(𝑚𝐶+𝑚𝐴)

𝑟𝐶𝐴
3

𝑟𝐶𝐴 −
𝐺𝑚𝐵

𝑟𝐴𝐵
3

𝑟𝐴𝐵 −
𝐺𝑚𝐵

𝑟𝐵𝐶
3

𝑟𝐵𝐶   (3.3) 

In the above we have two independent variables and two independent equations [since 𝑟𝐴𝐵 +

𝑟𝐵𝐶 + 𝑟𝐶𝐴 = 0; It is also important to note that in the above equations from 3,1 to 3,3 there is 

no explicit involvement of 𝑟𝐴, 𝑟𝐵or 𝑟𝐶. Rather we are concerned with the vectors  

𝑟𝐴𝐵 , 𝑟𝐵𝐶  and 𝑟𝐶𝐴.Again adding (3.1) and (3.3) we obtain (3.3). Thus we have two vector 

unknowns and two independent vector equations. That boils down to six scalar unknowns and 

six scalar equations. 
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 Figure I  

[In the above figure OA=𝑟𝐴;OB=𝑟𝐵 ; OC=𝑟𝐶  

The triangle ABC goes on rotating tumbling, changing shape and size as the motion proceeds] 

Or, 

 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺

(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶)

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 

𝐺𝑚𝐶 (
𝑟𝐴𝐵

𝑟𝐴𝐶
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3)  (4.1) 

𝑑2𝑟𝐵𝐶

𝑑𝑡2
= −𝐺

(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶)

𝑟𝐵𝐶
3

𝑟𝐵𝐶 + 

𝐺𝑚𝐴 (
𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3)  (4.2) 

𝑑2𝑟𝐶𝐴

𝑑𝑡2
= −𝐺

(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶)

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 

𝐺𝑚𝐵 (
𝑟𝐴𝐵

𝑟𝐴𝐶
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3)   (4.3) 

 

We write : 

𝑀 = 𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶  

And  
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�⃗� =
𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3  

Our equations are 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺

𝑀

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 𝐺𝑚𝐶�⃗� (5.1) 

𝑑2𝑟𝐵𝐶

𝑑𝑡2
= −𝐺

𝑀

𝑟𝐵𝐶
3

𝑟𝐵𝐶 + 𝐺𝑚𝐴�⃗�  (5.2) 

𝑑2𝑟𝐶𝐴

𝑑𝑡2
= −𝐺

𝑀

𝑟𝐶𝐴
3

𝑟𝐶𝐴 + 𝐺𝑚𝐵�⃗�   (5.3) 

We solve for �⃗⃗⃗� in the following equation: 

𝑟𝐴𝐵 − �⃗⃗⃗�

|𝑟𝐴𝐵 − �⃗⃗⃗�3
+

𝑟𝐵𝐶 − �⃗⃗⃗�

|𝑟𝐵𝐶 − �⃗⃗⃗�|3
+

𝑟𝐶𝐴 − �⃗⃗⃗�

|𝑟𝐶𝐴 − 𝐾|⃗⃗⃗⃗⃗3
= 0 

We transfer the origin to the tip of the vector �⃗⃗⃗� 

Now our equations are: 

𝑑2�⃗⃗�𝐴𝐵

𝑑𝑡2 = −𝐺
𝑀

𝑅𝐴𝐵
3 �⃗⃗�𝐴𝐵   (6.1)  

𝑑2�⃗⃗�𝐵𝐶

𝑑𝑡2 = −𝐺
𝑀

𝑅𝐵𝐶
3 �⃗⃗�𝐵𝐶   (6.2) 

𝑑2�⃗⃗�𝐶𝐴

𝑑𝑡2 = −𝐺
𝑀

𝑅𝐶𝐴
3 �⃗⃗�𝐶𝐴   (6.3) 

Where, 

�⃗⃗�𝑖𝑗 = 𝑟𝑖𝑗 − �⃗⃗⃗� 

Equations (10),(11) and (12) represent three two body motions: 𝑓(𝑡, 𝑥, 𝑦, 𝑧) will be different in 

(10),(11) and (12) due to initial conditions 

 

Solutions have to be expressed as: 

�⃗⃗�𝑖𝑗 = 𝑟𝑖𝑗 − �⃗⃗⃗� = 𝑓(𝑡, 𝑥, 𝑦, 𝑧)(7) 

Or, 

𝑟𝐴𝐵 − �⃗⃗⃗� = 𝑓1
⃗⃗⃗⃗ (𝑡, 𝑥, 𝑦, 𝑧)  (8.1) 

𝑟𝐵𝐶 − �⃗⃗⃗� = 𝑓2
⃗⃗⃗⃗ (𝑡, 𝑥, 𝑦, 𝑧)  (8.2) 

𝑟𝐶𝐴 − �⃗⃗⃗� = 𝑓3
⃗⃗⃗⃗ (𝑡, 𝑥, 𝑦, 𝑧)  (8.3) 



5 
 

 

With given choice of �⃗⃗⃗� we have �⃗� = 0 . So as an alternative procedure we may transfer the 

origin to the tip of �⃗�  taking care of the aspect of dimensions. 

Let us take equation (5.1) by way of example 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺

𝑀

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 𝐺𝑚𝐶�⃗� 

We multiply both sides of the above by a   constant D which has the dimension of 

length/acceleration 

𝐷
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺𝐷

𝑀

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 𝐺𝑚𝐶𝐷�⃗� 

𝐷
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺𝐷

𝑀

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 𝐽 

Where, 

𝐽 = 𝐺𝑚𝐶𝐷�⃗� 

𝐽  has the dimension of length. We may now transfer the origin to the tip of 𝐽 to obtain 

equations of the type (6.1) (6.2) and (6.3). 

A Special Formula for Three Body Motion 

Referring to Figure I, the relative acceleration of mass 𝑚𝐴 along the directed line segment 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , 

that is, in the direction of 𝑟𝐴𝐵 = 𝑟𝐵 − 𝑟𝐴 

𝐴𝑟:𝐴𝐵 = 𝐺
𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 + 𝐺

𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐴𝐵 − 𝐺

𝑚𝐶

𝑟𝐶𝐴
3 𝑟𝐶𝐴𝐶𝑜𝑠(𝐵𝐴𝐶) − 𝐺

𝑚𝐶

𝑟𝐵𝐶
3 𝑟𝐵𝐶𝐶𝑜𝑠(𝐴𝐵𝐶) (9) 

The first two terms on the right side describe the relative acceleration between 𝑚𝐴 and 𝑚𝐵 due 

to mutual attraction between them.  

To understand the first two terms let consider two masses 𝑚𝐴 and 𝑚𝐵 in absence of the third. 

Acceleration of 𝑚𝐴 with respect to an inertial frame:𝐺
𝑚𝐵

𝑟𝐴𝐵
3

𝑟𝐴𝐵  

Acceleration of 𝑚𝐵 with respect to the same frame:𝐺
𝑚𝐴

𝑟𝐴𝐵
3

𝑟𝐵𝐴  

Relative acceleration of 𝑚𝐴 with respect to 𝑚𝐵 with respect to the same frame:𝐺
𝑚𝐴

𝑟𝐴𝐵
3

𝑟𝐵𝐴  

Relative acceleration of 𝑚𝐴 with respect to𝑚𝐵 with respect to the same frame:𝐺
𝑚𝐴

𝑟𝐴𝐵
3

𝑟𝐵𝐴  

Relative acceleration of 𝑚𝐴 with respect to 𝑚𝐵 due to mutual interaction between them:  

𝐺
𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 − 𝐺

𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐵𝐴 =  𝐺

𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵 + 𝐺

𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐴𝐵 
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In the presence of a third body the mutual attraction /interaction between 𝑚𝐴 and 𝑚𝐵 will not 

be affected. 

The third mass will cast its own the accelerations on 𝑚𝐴 and 𝑚𝐵 with respect to the reference 

frame[inertial] being considered. That will affect the relative acceleration between 𝑚𝐴 and 𝑚𝐵 

without affecting physically their mutual interaction 

 The third term in relation (9) modifies the acceleration of 𝑚𝐴 along AB due to the force exerted 

by 𝑚𝐶  on 𝑚𝐴. The fourth term modifies the acceleration of 𝑚𝐵 along BA due to the force 

exerted by 𝑚𝐶  on 𝑚𝐵. 

Similarly, acceleration of mass 𝑚𝐵 along the direction 𝑟𝐵𝐶 = 𝑟𝐶 − 𝑟𝐵 is given by: 

𝐴𝑟:𝐵𝐶 = 𝐺
𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐶 + 𝐺
𝑚𝐵

𝑟𝐵𝐶
3

𝑟𝐵𝐶 − 𝐺
𝑚𝐴

𝑟𝐴𝐵
3

𝑟𝐴𝐵𝐶𝑜𝑠(𝐴𝐵𝐶) − 𝐺
𝑚𝐴

𝑟𝐶𝐴
3

𝑟𝐶𝐴𝐶𝑜𝑠(𝐵𝐶𝐴) (10) 

Acceleration of mass 𝑚𝐶  along the direction 𝑟𝐶𝐴 = 𝑟𝐴 − 𝑟𝐶  is given by: 

𝐴𝑟:𝐶𝐴 = 𝐺
𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴 + 𝐺

𝑚𝐶

𝑟𝐶𝐴
3 𝑟𝐶𝐴 − 𝐺

𝑚𝐵

𝑟𝐵𝐶
3 𝑟𝐵𝐶𝐶𝑜𝑠(𝐵𝐶𝐴) − 𝐺

𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵𝐶𝑜𝑠(𝐵𝐶𝐴)   (11) 

But 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
+

𝑑2𝑟𝐵𝐶

𝑑𝑡2
+

𝑑2𝑟𝐶𝐴

𝑑𝑡2
= 0 

[since 𝑟𝐴𝐵 + 𝑟𝐵𝐶 + 𝑟𝐶𝐴=0] 

The radial and cross radial components of 
𝑑2𝑟𝐴𝐵

𝑑𝑡2 +
𝑑2𝑟𝐵𝐶

𝑑𝑡2 +
𝑑2𝑟𝐶𝐴

𝑑𝑡2  should be zero individually: 

That Implies 

𝐴𝑟:𝐴𝐵 + 𝐴𝑟:𝐵𝐶 + 𝐴𝑟:𝐶𝐴 = 0 

[NB: 
𝑑2𝑟 

𝑑𝑡2  has both radial and cross radial components: 𝑟𝐴𝐵, 𝑟𝐵𝐶  and 𝑟𝐶𝐴 lie on the same plane , 

the mentioned vectors being the sides of the triangle ABC. Their directions are not skewed 

against each other. That provides us with a distinct advantage.The accelerations 
𝑑2𝑟𝐴𝐵

𝑑𝑡2 ,
𝑑2𝑟𝐵𝐶

𝑑𝑡2  

and 
𝑑2𝑟𝐶𝐴

𝑑𝑡2
 do not have compnents normal to the plane of the triangle due to the strong form of 

Newton’s Third Law] 

Therefore, 

𝐺
𝑚𝐴 + 𝑚𝐵

𝑟𝐴𝐵
3

𝑟𝐴𝐵 + 𝐺
𝑚𝐵 + 𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐶 + 𝐺
𝑚𝐶 + 𝑚𝐴

𝑟𝐶𝐴
3

𝑟𝐶𝐴 = 

𝐺
𝑚𝐶

𝑟𝐶𝐴
3 𝑟𝐶𝐴𝐶𝑜𝑠(𝐵𝐴𝐶) + 𝐺

𝑚𝐶

𝑟𝐵𝐶
3 𝑟𝐵𝐶𝐶𝑜𝑠(𝐴𝐵𝐶) + +𝐺

𝑚𝐴

𝑟𝐴𝐵
3 𝑟𝐴𝐵𝐶𝑜𝑠(𝐴𝐵𝐶) + 𝐺

𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴𝐶𝑜𝑠(𝐵𝐶𝐴) +  

+𝐺
𝑚𝐵

𝑟𝐵𝐶
3

𝑟𝐵𝐶𝐶𝑜𝑠(𝐵𝐶𝐴) + 𝐺
𝑚𝐵

𝑟𝐴𝐵
3

𝑟𝐴𝐵𝐶𝑜𝑠(𝐵𝐴𝐶) 
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Or, 

𝑚𝐴

𝑟𝐴𝐵
3

𝑟𝐴𝐵(1 − 𝐶𝑜𝑠𝐵) +
𝑚𝐵

𝑟𝐴𝐵
3

𝑟𝐴𝐵(1 − 𝐶𝑜𝑠𝐴) +
𝑚𝐵

𝑟𝐵𝐶
3

𝑟𝐵𝐶(1 − 𝐶𝑜𝑠𝐶) +
𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐶(1 − 𝐶𝑜𝑠𝐵) +

𝑚𝐶

𝑟𝐶𝐴
3 𝑟𝐶𝐴(1 − 𝐶𝑜𝑠𝐴) +

𝑚𝐴

𝑟𝐶𝐴
3 𝑟𝐶𝐴(1 − 𝐶𝑜𝑠𝐶) = 0 (13) 

Relative Angular Momentum 

Multiplying (3.1) by −𝑟𝐴𝐵 we have  

−𝑟𝐴𝐵 × (−
𝑑2𝑟𝐴𝐵

𝑑𝑡2
) = −

𝐺𝑚𝐶

𝑟𝐵𝐶
3

(−𝑟𝐴𝐵) × 𝑟𝐵𝐶 −
𝐺𝑚𝐶

𝑟𝐴𝐶
3

(−𝑟𝐴𝐵) × 𝑟𝐶𝐴 = 0 

[Since 𝑟𝐴𝐵 + 𝑟𝐵𝐶 + 𝑟𝐶𝐴 = 0 ⇒
𝑑2𝑟𝐴𝐵

𝑑𝑡2 +
𝑑2𝑟𝐵𝐶

𝑑𝑡2 +
𝑑2𝑟𝐶𝐴

𝑑𝑡2 = 0] 

 

Or, 

𝑟𝐴𝐵 ×
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −

𝐺𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐴 × 𝑟𝐵𝐶 −
𝐺𝑚𝐶

𝑟𝐴𝐶
3

(−𝑟𝐴𝐵) × (−𝑟𝐴𝐶) = 0 

Or, 

𝑟𝐴𝐵 ×
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −

𝐺𝑚𝐶

𝑟𝐵𝐶
3

𝑟𝐵𝐴 × 𝑟𝐵𝐶 −
𝐺𝑚𝐶

𝑟𝐴𝐶
3

𝑟𝐴𝐵 × 𝑟𝐴𝐶 

 

Referring to the triangle ABC in  Figure 1 

𝑟𝐴𝐵 ×
𝑑2𝑟𝐴𝐵

𝑑𝑡2
=

𝐺𝑚𝐶

𝑟𝐵𝐶
3

∆(𝐴𝐵𝐶)�̂� −
𝐺𝑚𝐶

𝑟𝐴𝐶
3

∆(𝐴𝐵𝐶)�̂� 

Where �̂�  is the downward unit normal[into the paper] referring to the figure below 

1

𝐺𝑚𝐶
𝑟𝐴𝐵 ×

𝑑2𝑟𝐴𝐵

𝑑𝑡2
=

1

𝑟𝐵𝐶
3

∆(𝐴𝐵𝐶)�̂� −
1

𝑟𝐴𝐶
3

∆(𝐴𝐵𝐶)�̂� (14) 

There are two similar relations. 

Adding them you have: 

1

𝑚𝐶
𝑟𝐴𝐵 ×

𝑑2𝑟𝐴𝐵

𝑑𝑡2 +
1

𝑚𝐴
𝑟𝐵𝐶 ×

𝑑2𝑟𝐵𝐶

𝑑𝑡2 +
1

𝑚𝐵
𝑟𝐶𝐴 ×

𝑑2𝑟𝐶𝐴

𝑑𝑡2 = 0 (15) 

But 

𝑑

𝑑𝑡
(𝑟𝐴𝐵 ×

𝑑𝑟𝐴𝐵

𝑑𝑡
) =

𝑑𝑟𝐴𝐵

𝑑𝑡
×

𝑑𝑟𝐴𝐵

𝑑𝑡
+ 𝑟𝐴𝐵 ×

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= 𝑟𝐴𝐵 ×

𝑑2𝑟𝐴𝐵

𝑑𝑡2
 

Similarly, 
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𝑑

𝑑𝑡
(𝑟𝐵𝐶 ×

𝑑𝑟𝐵𝐶

𝑑𝑡
) = 𝑟𝐵𝐶 ×

𝑑2𝑟𝐵𝐶

𝑑𝑡2
 

And 

𝑑

𝑑𝑡
(𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
) = 𝑟𝐶𝐴 ×

𝑑2𝑟𝐶𝐴

𝑑𝑡2
 

Therefore, 

1

𝑚𝐶

𝑑

𝑑𝑡
(𝑟𝐴𝐵 ×

𝑑𝑟𝐴𝐵

𝑑𝑡
) +

1

𝑚𝐴

𝑑

𝑑𝑡
(𝑟𝐵𝐶 ×

𝑑𝑟𝐵𝐶

𝑑𝑡
) +

1

𝑚𝐵

𝑑

𝑑𝑡
(𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
) = 0  

Or, 

 

𝑑

𝑑𝑡
[

1

𝑚𝐶
𝑟𝐴𝐵 ×

𝑑𝑟𝐴𝐵

𝑑𝑡
+

1

𝑚𝐴
𝑟𝐵𝐶 ×

𝑑𝑟𝐵𝐶

𝑑𝑡
+

1

𝑚𝐵
𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
] = 0 

Or, 

1

𝑚𝐶
𝑟𝐴𝐵 ×

𝑑𝑟𝐴𝐵

𝑑𝑡
+

1

𝑚𝐴
𝑟𝐵𝐶 ×

𝑑𝑟𝐵𝐶

𝑑𝑡
+

1

𝑚𝐵
𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟   (16) 

But the constant vector on the right hand side has to be the null vector. 

Both 𝑟𝐴𝐵 and 
𝑑𝑟𝐴𝐵

𝑑𝑡
 will lie in the plane of the triangle ABC (shown in the figure)with the 

comprehension that the size and the orientation of the triangle could change continuously in 

the general case. Therefore 𝑟𝐴𝐵 ×
𝑑𝑟𝐴𝐵

𝑑𝑡
  is directed at right angles top the plane of ABC. The 

same holds for 𝑟𝐵𝐶 ×
𝑑𝑟𝐵𝐶

𝑑𝑡
 and 𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
.So on the left side of the above we have a vector 

instantaneously normal to the plane of ABC. On the RHS we have a vector which is constant 

with respect to time. The only option would be to have the constant vector to be the null vector 

so that the orientation of the triangle may change as the three body motion proceeds. 

Finally we have, 

1

𝑚𝐶
𝑟𝐴𝐵 ×

𝑑𝑟𝐴𝐵

𝑑𝑡
+

1

𝑚𝐴
𝑟𝐵𝐶 ×

𝑑𝑟𝐵𝐶

𝑑𝑡
+

1

𝑚𝐵
𝑟𝐶𝐴 ×

𝑑𝑟𝐶𝐴

𝑑𝑡
= 0  (17) 

In so far as the initial configuration is considered the above formula may not be satisfied due to 

the presence of other types of forces[other than gravity] due to collisions etc 

Do we get back the relation (G) as soon as the extraneous forces stop acting or within retarded 

time effects even if the distortion is very large? Is there a possibility of past history or memory 

being retained…… 

 

Energy considerations: 
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Infinitesimal work is given by 

𝑑𝑊 = �⃗�𝐴𝑑𝑟𝐴 + �⃗�𝐵𝑑𝑟𝐵 + �⃗�𝐶𝑑𝑟𝐶 

�⃗�𝐴: net force onA 

𝑑𝑟𝐴: displacement of A 

𝑑𝑊 = (�⃗�𝐴𝐵 + �⃗�𝐴𝑐). 𝑑𝑟𝐴 + (�⃗�𝐵𝐶 + �⃗�𝐵𝐴). 𝑑𝑟𝐵 + (�⃗�𝐶𝐴 + �⃗�𝑐𝐵). 𝑑𝑟𝐶  

�⃗�𝐴𝐵, �⃗�𝐵𝐶  etc represent mutual interaction between every pair 

𝑑𝑊 = �⃗�𝐴𝐵. 𝑑𝑟𝐴 + �⃗�𝐵𝐴. 𝑑𝑟𝐵 + �⃗�𝐴𝑐. 𝑑𝑟𝐴 + �⃗�𝐶𝐴. 𝑑𝑟𝐶 + �⃗�𝐵𝐶 . 𝑑𝑟𝐵 + �⃗�𝑐𝐵. 𝑑𝑟𝐶  

𝑑𝑊 = �⃗�𝐴𝐵. 𝑑𝑟𝐴 − �⃗�𝐴𝐵. 𝑑𝑟𝐵 − �⃗�𝑐𝐴. 𝑑𝑟𝐴 + �⃗�𝐶𝐴. 𝑑𝑟𝐶 + �⃗�𝐵𝐶 . 𝑑𝑟𝐵 − �⃗�𝐵𝐶 . 𝑑𝑟𝐶  

𝑑𝑊 = �⃗�𝐴𝐵(𝑑𝑟𝐴 − 𝑑𝑟𝐵) + �⃗�𝐶𝐴(𝑑𝑟𝐶 − 𝑑𝑟𝐴) + �⃗�𝐵𝐶(𝑑𝑟𝐵 − 𝑑𝑟𝐶) 

𝑑𝑊 = �⃗�𝐴𝐵 . 𝑑𝑟𝐵𝐴 + �⃗�𝐶𝐴𝑑𝑟𝐶𝐴 + �⃗�𝐵𝐶 . 𝑑𝑟𝐵𝐶 

𝑑𝑊 =
𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
2

𝑑𝑟𝐵𝐴 +
𝐺𝑚𝐴𝑚𝐶

𝑟𝐴𝐶
2

𝑑𝑟𝐶𝐴 +
𝐺𝑚𝐵𝑚𝐴

𝑟𝐵𝐶
2

𝑑𝑟𝐵𝐶  

Integrating between Initial and final r(ij) values 

 

Integrating  

𝑊 = −
𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
−

𝐺𝑚𝐶𝑚𝐴

𝑟𝐶𝐴
−

𝐺𝑚𝐵𝑚𝐶

𝑟𝐵𝐶
+Constant 

[The above relation is indicative of the fact that in so far as work is considered there is 

effectively a two body motion between every pair of bodies]  

𝑊 = 𝐺𝑚𝐴𝑚𝐵 (
1

𝑟𝐴𝐵:𝑖
−

1

𝑟𝐴𝐵:𝑓
) + 𝐺𝑚𝐴𝑚𝐶 (

1

𝑟𝐴𝐶:𝑖
−

1

𝑟𝐴𝐶:𝑓
) + 𝐺𝑚𝐵𝑚𝐶 (

1

𝑟𝐵𝐶:𝑖
−

1

𝑟𝐵𝐶:𝑓
) 

[Initial r(ij) values may be regarded as constants 

𝜕𝑊

𝜕𝑥𝐴𝐵
=

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
2

𝜕𝑟𝐴𝐵

𝜕𝑥𝐴𝐵
=

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
2

𝑥𝐴𝐵

𝑟𝐴𝐵
 

𝜕𝑊

𝜕𝑥𝐴𝐵
=

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3

𝑥𝐴𝐵 

𝜕𝑊

𝜕𝑥𝐴𝐵
𝑖̂ +

𝜕𝑊

𝜕𝑦𝐴𝐵
𝑗̂ +

𝜕𝑊

𝜕𝑧𝐴𝐵
�̂� =

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3

𝑥𝐴𝐵𝑖̂ +
𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3

𝑦𝐴𝐵𝑗̂ +
𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3

𝑧𝐴𝐵�̂� 

𝜕𝑊

𝜕𝑥𝐴𝐵
𝑖̂ +

𝜕𝑊

𝜕𝑦𝐴𝐵
𝑗̂ +

𝜕𝑊

𝜕𝑧𝐴𝐵
�̂� =

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3

[𝑥𝐴𝐵𝑖̂ + 𝑦𝐴𝐵𝑗̂ + 𝑧𝐴𝐵�̂�] 
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𝜕𝑊

𝜕𝑥𝐴𝐵
𝑖̂ +

𝜕𝑊

𝜕𝑦𝐴𝐵
𝑗̂ +

𝜕𝑊

𝜕𝑧𝐴𝐵
�̂� =

𝐺𝑚𝐴𝑚𝐵

𝑟𝐴𝐵
3 𝑟𝐴𝐵=mutual force 

Potential function should be the sum of mutual potentials 

 

𝑊 = 𝐺𝑚𝐴𝑚𝐵 (
1

𝑟𝐴𝐵:𝑖
−

1

𝑟𝐴𝐵:𝑓
) + 𝐺𝑚𝐴𝑚𝐶 (

1

𝑟𝐴𝐶:𝑖
−

1

𝑟𝐴𝐶:𝑓
) + 𝐺𝑚𝐵𝑚𝐶 (

1

𝑟𝐵𝐶:𝑖
−

1

𝑟𝐵𝐶:𝑓
)

+ 𝐺𝑚𝐵𝑚𝐴 (
1

𝑟𝐵𝐴:𝑖
−

1

𝑟𝐵𝐴:𝑓
) + 𝐺𝑚𝐶𝑚𝐴 (

1

𝑟𝐶𝐴:𝑖
−

1

𝑟𝐶𝐴:𝑓
) + 𝐺𝑚𝐶𝑚𝐵 (

1

𝑟𝐶𝐵:𝑖
−

1

𝑟𝐶𝐵:𝑓
) 

𝑊 = 2𝐺𝑚𝐴𝑚𝐵 (
1

𝑟𝐴𝐵:𝑖
−

1

𝑟𝐴𝐵:𝑓
) + 2𝐺𝑚𝐵𝑚𝐶 (

1

𝑟𝐵𝐶:𝑖
−

1

𝑟𝐵𝐶:𝑓
) + 2𝐺𝑚𝐶𝑚𝐴 (

1

𝑟𝐶𝐴:𝑖
−

1

𝑟𝐶𝐴:𝑓
) 

But work done by each particle =change of its kinetic energy. 

Therefore 

𝐺𝑚𝐴𝑚𝐵 (
1

𝑟𝐴𝐵:𝑖
−

1

𝑟𝐴𝐵:𝑓
) + 𝐺𝑚𝐵𝑚𝐶 (

1

𝑟𝐵𝐶:𝑖
−

1

𝑟𝐵𝐶:𝑓
) + 𝐺𝑚𝐶𝑚𝐴 (

1

𝑟𝐶𝐴:𝑖
−

1

𝑟𝐶𝐴:𝑓
)

=
1

2
𝑚𝐴 [(

𝑑𝑟𝐴

𝑑𝑡
)

𝑓

2

− (
𝑑𝑟𝐴

𝑑𝑡
)

𝑖

2

] +
1

2
𝑚𝐵 [(

𝑑𝑟𝐵

𝑑𝑡
)

𝑓

2

− (
𝑑𝑟𝐵

𝑑𝑡
)

𝑖

2

]

+
1

2
𝑚𝐶 [(

𝑑𝑟𝐶

𝑑𝑡
)

𝑓

2

− (
𝑑𝑟𝐶

𝑑𝑡
)

𝑖

2

] 

Or, 

𝐺𝑚𝐴𝑚𝐵
1

𝑟𝐴𝐵:𝑖
+ 𝐺𝑚𝐵𝑚𝐶

1

𝑟𝐵𝐶:𝑖
+ 𝐺𝑚𝐶𝑚𝐴

1

𝑟𝐶𝐴:𝑖
+

1

2
𝑚𝐴 (

𝑑𝑟𝐴

𝑑𝑡
)

𝑖

2

+
1

2
𝑚𝐵 (

𝑑𝑟𝐵

𝑑𝑡
)

𝑖

2

+
1

2
(

𝑑𝑟𝐶

𝑑𝑡
)

𝑖

2

=

𝐺𝑚𝐴𝑚𝐵
1

𝑟𝐴𝐵:𝑓
+ 𝐺𝑚𝐵𝑚𝐶

1

𝑟𝐵𝐶:𝑓
+ 𝐺𝑚𝐶𝑚𝐴

1

𝑟𝐶𝐴:𝑓
+

1

2
𝑚𝐴 (

𝑑𝑟𝐴

𝑑𝑡
)

𝑓

2

+
1

2
𝑚𝐵 (

𝑑𝑟𝐵

𝑑𝑡
)

𝑓

2

+
1

2
𝑚𝐶 (

𝑑𝑟𝐶

𝑑𝑡
)

𝑓

2

   

(18) 

Potential function should be the sum of mutual potentials 

Many body scenario[Arbitrary type of interaction]: 

𝑑𝑊 = ∑ �⃗�𝑖𝑗𝑖,𝑗:𝑖≠𝑗 𝑑𝑟𝑖  

�⃗�𝑖𝑗: is the force on ith particle/body due to the jth one 

In the  summation: 𝑑𝑊 = ∑ �⃗�𝑖𝑗𝑖,𝑗:𝑖≠𝑗 𝑑𝑟𝑖 we can interchange the values of I and j 

Example:�⃗�𝑖𝑗 . 𝑑𝑟𝑖 + �⃗�𝑗𝑖 . 𝑑𝑟𝑗 = �⃗�𝑖𝑗. 𝑑𝑟𝑖 − �⃗�𝑖𝑗 . 𝑑𝑟𝑗 = �⃗�𝑖𝑗(𝑑𝑟𝑖 − 𝑑𝑟𝑗) = �⃗�𝑖𝑗 . 𝑑𝑟𝑗𝑖  

[�⃗�𝑗𝑖 = −�⃗�𝑖𝑗[due to Newton’s third law 

Therefore: 
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𝑑𝑊 = ∑ �⃗�𝑖𝑗

𝑖,𝑗:𝑖≠𝑗

𝑑𝑟𝑖 = ∑ �⃗�𝑖𝑗 . 𝑑𝑟𝑗𝑖

𝑖>𝑗

 

𝑑𝑊 = ∑ �⃗�𝑖𝑗 . 𝑑𝑟𝑗𝑖

𝑖>𝑗

 

Effectively we have a two body scenario on the energy front for every pair involved in the multi-

body fray. 

We define the configuration potential as the sum of pair wise mutual bodies as if the other 

bodies were at infinity. 

𝑉(𝑟1, 𝑟2, … … . . , 𝑟𝑛) = ∑ 𝑉(|𝑟𝑗 − 𝑟𝑖

𝑖,𝑗>𝑗

|) 

[summation over I and j: 𝑖 ≠ 𝑗 

𝑉(|𝑟𝑗 − 𝑟𝑖|): mutual energy for every pair assuming the absence of other bodies 

Share of potential energy for each particle: 

𝑉(𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = ∑ 𝑉(|𝑟𝑗 − 𝑟𝑖|)

𝑖

 

[summation over j,holding I fixed] 

 

 

 

 

Four Body Motion 

Gravitating masses 𝑚𝐴, 𝑚𝐵, 𝑚𝐶  and 𝑚𝐷 are located at the points 𝐴, 𝐵, 𝐶 and  𝐷 denoted by the 

position vectors 𝑟𝐴, 𝑟𝐵, 𝑟𝐶  and 𝑟𝐷 

Equations representing their interaction: 

𝑚𝐴
𝑑2𝑟𝐴

𝑑𝑡2 = 𝐺𝑚𝐴𝑚𝐵
𝑟𝐴𝐵

𝑟𝐴𝐵
3 + 𝐺𝑚𝐴𝑚𝐶

𝑟𝐴𝐶

𝑟𝐴𝐶
3 + 𝐺𝑚𝐴𝑚𝐷

𝑟𝐴𝐷

𝑟𝐴𝐷
3     (19.1) 

𝑚𝐵
𝑑2𝑟𝐵

𝑑𝑡2 = 𝐺𝑚𝐵𝑚𝐶
𝑟𝐵𝐶

𝑟𝐵𝐶
3 + 𝐺𝑚𝐵𝑚𝐴

𝑟𝐵𝐴

𝑟𝐵𝐴
3 + 𝐺𝑚𝐵𝑚𝐷

𝑟𝐵𝐷

𝑟𝐵𝐷
3    (19.2) 

𝑚𝐶
𝑑2𝑟𝐶

𝑑𝑡2 = 𝐺𝑚𝐶𝑚𝐴
𝑟𝐶𝐴

𝑟𝐶𝐴
3 + 𝐺𝑚𝐶𝑚𝐵

𝑟𝐶𝐵

𝑟𝐶𝑩
3 + 𝐺𝑚𝐶𝑚𝐷

𝑟𝐶𝐷

𝑟𝐶𝐷
3        (19.3) 

𝑚𝐷
𝑑2𝑟𝐷

𝑑𝑡2
= 𝐺𝑚𝐷𝑚𝐴

𝑟𝐷𝐴

𝑟𝐷𝐴
3

+ 𝐺𝑚𝐷𝑚𝐵
𝑟𝐷𝐵

𝑟𝐷𝐵
3

+ 𝐺𝑚𝐷𝑚𝐶
𝑟𝐷𝐶

𝑟𝐷𝐶
3
       (19.4) 
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[𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖 ] 

In the above adding the right hand sides we obtain the null vector. This is in conformity with the 

fact that the net force on the system is zero; 𝑚𝐴
𝑑2𝑟𝐴

𝑑𝑡2
+ 𝑚𝐵

𝑑2𝑟𝐵

𝑑𝑡2
+ 𝑚𝐶

𝑑2𝑟𝐶

𝑑𝑡2
+ 𝑚𝐷

𝑑2𝑟𝐷

𝑑𝑡2
= 0 

Or, 

𝑑2𝑟𝐴

𝑑𝑡2
= 𝐺𝑚𝐵

𝑟𝐴𝐵

𝑟𝐴𝐵
3

+ 𝐺𝑚𝐶
𝑟𝐴𝐶

𝑟𝐴𝐶
3

+ 𝐺𝑚𝐷
𝑟𝐴𝐷

𝑟𝐴𝐷
3
       (20.1) 

𝑑2𝑟𝐵

𝑑𝑡2
= 𝐺𝑚𝐶

𝑟𝐵𝐶

𝑟𝐵𝐶
3

+ 𝐺𝑚𝐴
𝑟𝐵𝐴

𝑟𝐵
3

+ 𝐺𝑚𝐷
𝑟𝐵𝐷

𝑟𝐵𝐷
3
         (20.2) 

𝑑2𝑟𝐶

𝑑𝑡2
= 𝐺𝑚𝐴

𝑟𝐶𝐴

𝑟𝐶𝐴
3

+ 𝑚𝐵
𝑟𝐶𝐵

𝑟𝐶𝑩
3

+ 𝐺𝑚𝐷
𝑟𝐶𝐷

𝑟𝐶𝐷
3
           (20.3) 

𝑑2𝑟𝐷

𝑑𝑡2 = 𝐺𝑚𝐴
𝑟𝐷𝐴

𝑟𝐷𝐴
3 + 𝐺𝑚𝐵

𝑟𝐷𝐵

𝑟𝐷𝐵
3 + 𝐺𝑚𝐶

𝑟𝐷𝐶

𝑟𝐷𝐶
3      (20.4) 

Or, 

𝑑2𝑟𝐴𝐵

𝑑𝑡2 = −𝐺(𝑚𝐴 + 𝑚𝐵)
𝑟𝐴𝐵

𝑟𝐴𝐵
3 + 𝐺𝑚𝐶 [

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3] + 𝐺𝑚𝐷 [

𝑟𝐵𝐷

𝑟𝐵𝐷
3 +

𝑟𝐷𝐴

𝑟𝐷𝐴
3]       (21.1) 

𝑑2𝑟𝐵𝐶

𝑑𝑡2 = −𝐺(𝑚𝐵 + 𝑚𝐶)
𝑟𝐵𝐶

𝑟𝐵𝐶
3 + 𝐺𝑚𝐴 [

𝑟𝐶𝐴

𝑟𝐶𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐷 [

𝑟𝐶𝐷

𝑟𝐷𝐵
3 +

𝑟𝐷𝐵

𝑟𝐷𝐵
3]       (21.2) 

𝑑2𝑟𝐶𝐷

𝑑𝑡2 = −𝐺(𝑚𝐶 + 𝑚𝐷)
𝑟𝐶𝐷

𝑟𝐶𝐷
3 + 𝐺𝑚𝐴 [

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐵 [

𝑟𝐷𝐵

𝑟𝐷𝐵
3 +

𝑟𝐶𝐵

𝑟𝐶𝐵
3]        (21.3) 

𝑑2𝑟𝐷𝐴

𝑑𝑡2 = −𝐺(𝑚𝐷 + 𝑚𝐴)
𝑟𝐷𝐴

𝑟𝐷𝐴
3 + 𝐺𝑚𝐶 [

𝑟𝐴𝐶

𝑟𝐴𝐶
3 +

𝑟𝐶𝐷

𝑟𝐶𝐷
3] + 𝐺𝑚𝐵 [

𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐷

𝑟𝐵𝐷
3]         (21.4) 

In relation (21.2) by some suitable transformation we have to make 𝐺𝑚𝐶 [
𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3] +

𝐺𝑚𝐷 [
𝑟𝐵𝐷

𝑟𝐵𝐷
3

+
𝑟𝐷𝐴

𝑟𝐷𝐴
3
] = 0 without changing 𝑟𝐴𝐵. We have an effectively 2-body motion 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺(𝑚𝐴 + 𝑚𝐵)

𝑟𝐴𝐵

𝑟𝐴𝐵
3
 .Same transformations are used on the other equations without 

changing 𝑟𝐴𝐵. 

We do this separately for each of the equations: we are simply solving two body motion 

 

𝑑2𝑟𝐵𝐷

𝑑𝑡2 = −𝐺(𝑚𝐵 + 𝑚𝐷)
𝑟𝐵𝐷

𝑟𝐵𝐷
3 + 𝐺𝑚𝐴 [

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐶 [

𝑟𝐷𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐵

𝑟𝐶𝐷
3]         (21.5) 

𝑑2𝑟𝐶𝐴

𝑑𝑡2 = −𝐺(𝑚𝐶 + 𝑚𝐴)
𝑟𝐶𝐴

𝑟𝐶𝐴
3 + 𝐺𝑚𝐵 [

𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3] + 𝐺𝑚𝐷 [

𝑟𝐷𝐶

𝑟𝐷𝐶
3 +

𝑟𝐶𝐵

𝑟𝐶𝐵
3]           (21.6) 

In the above we have three independent variables and three independent equations: we may 

consider der the independent variables to be 𝑟𝐴𝐵, 𝑟𝐵𝐶  and 𝑟𝐶𝐷: 𝑟𝐴𝐵 + 𝑟𝐵𝐶 + 𝑟𝐶𝐷 + 𝑟𝐷𝐴 = 0; 𝑟𝐴𝐵 +

𝑟𝐵𝐶 + 𝑟𝐶𝐴 = 0; 𝑟𝐵𝐶 + 𝑟𝐶𝐷 + 𝑟𝐷𝐵 = 0. Adding the left side of (3.1) through (3.4) gives us zero etc 
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:Or, 

   
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷)

𝑟𝐴𝐵

𝑟𝐴𝐵
3

+ 𝐺𝑚𝐶 [
𝑟𝐴𝐵

𝑟𝐴𝐵
3

+
𝑟𝐵𝐶

𝑟𝐵𝐶
3

+
𝑟𝐶𝐴

𝑟𝐶𝐴
3
] + 𝐺𝑚𝐷 [

𝑟𝐴𝐵

𝑟𝐴𝐵
2

+
𝑟𝐵𝐷

𝑟𝐵𝐷
3

+

𝑟𝐷𝐴

𝑟𝐷𝐴
3]  (22.1) 

𝑑2𝑟𝐵𝐶

𝑑𝑡2 = −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷)
𝑟𝐵𝐶

𝑟𝐵𝐶
3 + 𝐺𝑚𝐴 [

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐷 [

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐷

𝑟𝐷𝐵
3 +

𝑟𝐷𝐵

𝑟𝐷𝐵
3]    (22.2) 

𝑑2𝑟𝐶𝐷

𝑑𝑡2 = −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷)
𝑟𝐶𝐷

𝑟𝐶𝐷
3 + 𝐺𝑚𝐴 [

𝑟𝐶𝐷

𝑟𝐶𝐷
3 +

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐵 [

𝑟𝐶𝐷

𝑟𝐶𝐷
3 +

𝑟𝐷𝐵

𝑟𝐷𝐵
3 +

𝑟𝐶𝐵

𝑟𝐶𝐵
3]  (22.3) 

𝑑2𝑟𝐷𝐴

𝑑𝑡2 = −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶+𝑚𝐷)
𝑟𝐷𝐴

𝑟𝐷𝐴
3 + 𝐺𝑚𝐶 [

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐶

𝑟𝐴𝐶
3 +

𝑟𝐶𝐷

𝑟𝐶𝐷
3] + 𝐺𝑚𝐵 [

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐷

𝑟𝐵𝐷
3] (22.4) 

 

𝑑2𝑟𝐵𝐷

𝑑𝑡2 = −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷)
𝑟𝐵𝐷

𝑟𝐵𝐷
2 + 𝐺𝑚𝐴 [

𝑟𝐵𝐷

𝑟𝐵𝐷
3 +

𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐴𝐵

𝑟𝐴𝐵
3] + 𝐺𝑚𝐶 [

𝑟𝐵𝐷

𝑟𝐵𝐷
3 +

𝑟𝑫𝑪

𝑟𝐷𝐶
3 +

𝑟𝐶𝐵

𝑟𝐶𝐵
3] (22.5) 

𝑑2𝑟𝐶𝐴

𝑑𝑡2
= −𝐺(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷)

𝑟𝐶𝐴

𝑟𝐶𝐴
3

+ 𝐺𝑚𝐵 [
𝑟𝐶𝐴

𝑟𝐶𝐴
3

+
𝑟𝐴𝐵

𝑟𝐴𝐵
3

+
𝑟𝐵𝐶

𝑟𝐵𝐶
3

]

+ 𝐺𝑚𝐷 [
𝑟𝐶𝐴

𝑟𝐶𝐴
3

+
𝑟𝐴𝐷

𝑟𝐴𝐷
3

+
𝑟𝐷𝐶

𝑟𝐷𝐶
2

] 

(22.6) 

 

Or, 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺𝑀

𝑟𝐴𝐵

𝑟𝐴𝐵
2

+ 𝐺𝑚𝐶�⃗� + 𝐺𝑚𝐷 �⃗⃗�     (23.1) 

𝑑2𝑟𝐵𝐶

𝑑𝑡2 = −𝐺𝑀
𝑟𝐵𝐶

𝑟𝐵𝐶
2 + 𝐺𝑚𝐴�⃗� + 𝐺𝑚𝐷�⃗⃗�     (23.2) 

𝑑2𝑟𝐶𝐷

𝑑𝑡2
= −𝐺𝑀

𝑟𝐶𝐷

𝑟𝐶𝐷
2

+ 𝐺𝑚𝐴�⃗⃗� + 𝐺𝑚𝐵�⃗⃗�   (23.3) 

𝑑2𝑟𝐷𝐴

𝑑𝑡2
= −𝐺𝑀

𝑟𝐷𝐴

𝑟𝐷𝐴
2

+ 𝐺𝑚𝐵�⃗⃗� + 𝐺𝑚𝐶 �⃗⃗�  (23.4) 

𝑑2𝑟𝐵𝐷

𝑑𝑡2 = −𝐺𝑀
𝑟𝐵𝐷

𝑟𝐵𝐷
2 + 𝐺𝑚𝐴�⃗⃗� − 𝐺𝑚𝐶 �⃗⃗�  (23.5) 
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𝑑2𝑟𝐶𝐴

𝑑𝑡2 = −𝐺𝑀
𝑟𝐶𝐴

𝑟𝐶𝐴
2 + 𝐺𝑚𝐵�⃗� − 𝐺𝑚𝐷�⃗⃗�   (23.6) 

Where 

𝑀 = 𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 𝑚𝐷 

�⃗� =
𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3;   

�⃗⃗� =
𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐷

𝑟𝐵𝐷
3 +

𝑟𝐷𝐴

𝑟𝐷𝐴
3  

�⃗⃗� =
𝑟𝐷𝐴

𝑟𝐷𝐴
3 +

𝑟𝐴𝐶

𝑟𝐴𝐶
3 +

𝑟𝐶𝐷

𝑟𝐶𝐷
3  

�⃗⃗� =
𝑟𝐷𝐵

𝑟𝐷𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐷

𝑟𝐶𝐷
3  

Here we have to transform equation by equation from(23.1) to (23.6) instead of a single 

transformation on all of them at once: 

We start with equation (23.1) 

𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺𝑀

𝑟𝐴𝐵

𝑟𝐴𝐵
3

+ 𝐺𝑚𝐶�⃗� + 𝐺𝑚𝐷 �⃗⃗� 

Or,  

𝑑2𝑟𝐴𝐵

𝑑𝑡2 = −𝐺𝑀
𝑟𝐴𝐵

𝑟𝐴𝐵
2 + 𝐺𝑚𝐶 [

𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐶

𝑟𝐵𝐶
3 +

𝑟𝐶𝐴

𝑟𝐶𝐴
3] + 𝐺𝑚𝐷 [

𝑟𝐴𝐵

𝑟𝐴𝐵
3 +

𝑟𝐵𝐷 

𝑟𝐵𝐷
3 +

𝑟𝐷𝐴

𝑟𝐷𝐴
3]   (24) 

We solve for �⃗⃗⃗�  from the following equation 

𝐺𝑚𝐶 [
𝑟𝐴𝐵−�⃗⃗⃗�

|𝑟𝐴𝐵−�⃗⃗⃗�|3 +
𝑟𝐵𝐶−�⃗⃗⃗�

|𝑟𝐵𝐶−�⃗⃗⃗�|3 +
𝑟𝐶𝐴−�⃗⃗⃗�

|𝑟𝐶𝐴−�⃗⃗⃗�3] + 𝐺𝑚𝐷 [
𝑟𝐴𝐵−�⃗⃗⃗�

|𝑟𝐴𝐵−�⃗⃗⃗�|3 +
𝑟𝐵𝐷−�⃗⃗⃗�

|𝑟𝐵𝐷−�⃗⃗⃗�|3 +
𝑟𝐷𝐴−�⃗⃗⃗�

|𝑟𝐷𝐴−�⃗⃗⃗�|3] = 0     (25) 

Then we transfer the origin to the tip of �⃗⃗⃗�. That converts (23.1) into a two body equation: 

𝑑2(𝑟𝐴𝐵−�⃗⃗⃗�)

𝑑𝑡2 = −𝐺𝑀
(𝑟𝐴𝐵−�⃗⃗⃗�)

|𝑟𝐴𝐵−�⃗⃗⃗�|3   (26) 

 

Or, 

𝑑2�⃗⃗�

𝑑𝑡2 = −𝐺𝑀
�⃗⃗�

|�⃗⃗�|3    (27) 

�⃗⃗�=𝑟𝐴𝐵 − �⃗⃗⃗� 

This transformation will make equations (23.2) to (23.6) more complicated. We do not solve 

them now We solve only the two body equation and re transform to the original variables 
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𝑟𝐴𝐵 − �⃗⃗⃗� = 𝑓(𝑡, 𝑎, 𝑏)  (28) 

[a and b are constants of integration to be evaluated from the initial conditions] 

With the other equations we assume the existence of solutions in the transformed state and 

that such solutions can be inverse transformed to the original variables. With these equations 

we solve  equations similar to (27) and then transform to obtain two body motion for each  

particular equation like (23.2) and solve it for the two body equation obtained: for the other 

equations e again assume that solutions do  exist in the transformed state and that the 

solutions may be inverse transformed to the original variables. 

Each time we are transforming we are moving into a different space. Six such spaces have been 

called up. On inverse transforming we are returning to the same original space having the same 

variables. The solution set in the original set will be the same for all inverse transformations. 

We have six equations of the type (28) 

�⃗⃗⃗�  will be of the same form for four equations[from 23.1 to 23.4] but its form will be different 

for 23.5 and 23.6. The function 𝑓 will have the same form for all six equations of type (28)with 

respect to t and the concerned Ks. But the Ks will have different form for 23.5 and 23.6. The 

constants of integration a and b will be different for each equation. We have three independent 

vectors and three  independent equations equivalent to six consistent equations from (22.1) 

through (22.6) or six consistent equations from  23.1 to 23.6 . So we should be able to obtain 

consistent solutions at the final stage. That we finally have  equations of identical form is 

logically correct if the relative orientation or symmetry is considered. The Each particle should 

view the others in a similar manner in relation to the final formulas….. 

For the appropriate solution of �⃗⃗⃗� against equation (23.1) we have the transformed value of 

𝐺𝑚𝐶�⃗� + 𝐺𝑚𝐷 �⃗⃗� equal to zero 

We may write equation (23.1) as: 
𝑑2𝑟𝐴𝐵

𝑑𝑡2
= −𝐺𝑀

𝑟𝐴𝐵

𝑟𝐴𝐵
2

+ 𝑗 

Where 𝑗 = 𝐺𝑚𝐶�⃗� + 𝐺𝑚𝐷 �⃗⃗� s 

Transferring the origin to the tip of 𝑗 by using some dimension factor like D and later making it 

unity as we did in the three body situation, the process of solution may be simplified. 

This type of treatment may be extended to the many body system; the “n” body system may be 

resolved into 𝐶2
𝑛 equations of two body motion. We may also think in terms of force laws other 

than the inverse squared law. Similar techniques may be applied. 

Impulse Considerations in the Many Body Problem 

We are considering “n” bodies which are interacting between themselves. 

Force on the 𝑖𝑡ℎ body due to the 𝑗𝑡ℎ one ;�⃗�𝑖𝑗 
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Net force on the   𝑖𝑡ℎ body: �⃗�𝑖 = ∑ �⃗�𝑖𝑗𝑗  

Or, 

𝑑�⃗�𝑖

𝑑𝑡
= ∑ �⃗�𝑖𝑗

𝑗

 

Multiplying both sides of the above by dt we have: 

𝑑�⃗�𝑖

𝑑𝑡
𝑑𝑡 = ∑ �⃗�𝑖𝑗

𝑗

𝑑𝑡 

Or, 

𝑑�⃗�𝑖 = ∑ �⃗�𝑖𝑗𝑗 𝑑𝑡 (29) 

Given the initial configuration we may calculate the right hand side of the above to obtain the 

infinitesimal change of the momentum vector( hence the change in the velocity vector) for each 

particle at any point of time starting from the initial configuration. From the existing velocities 

at any instant of time, the velocities for the next infinitesimal dt may be obtained for each 

particle. Over the said 𝑑𝑡 each particle is displaced through:(�⃗�𝑖 + Δ�⃗�𝑖)𝑑𝑡.Proceeding in such a 

manner we may determine the configuration of the system at any point of time starting from a 

known initial configuration in relation to position and velocities. 

Finer Points from Two Body Motion 

From the conservation of linear momentum in a two body problem 

𝑝1 + �⃗�2 = �⃗⃗⃗�1  

From the conservation of angular momentum it follows: 

�⃗⃗�1 + �⃗⃗�2 = �⃗⃗⃗�2  

[�⃗⃗⃗�1  and �⃗⃗⃗�2 are constant vectors(independent of time)] 

Now,  we have  from the strong form of Newton’s third law: 

(𝑟1 − 𝑟2) ×
𝑑2(𝑟1 − 𝑟2)

𝑑𝑡2
= 0 

Now, 

𝑑

𝑑𝑡
[(𝑟1 − 𝑟2) ×

𝑑(𝑟1 − 𝑟2)

𝑑𝑡
] =

𝑑(𝑟1 − 𝑟2)

𝑑𝑡
×

𝑑(𝑟1 − 𝑟2)

𝑑𝑡
+ (𝑟1 − 𝑟2) ×

𝑑(𝑟1 − 𝑟2)

𝑑𝑡

= 0 + (𝑟1 − 𝑟2) ×
𝑑2(𝑟1 − 𝑟2)

𝑑𝑡2
= 0 

Or, 

(𝑟1 − 𝑟2) ×
𝑑(𝑟1 − 𝑟2)

𝑑𝑡
= �⃗⃗⃗�3 

[�⃗⃗⃗�3:Constant vector] 

(𝑟1 − 𝑟2) × (�⃗�1 − �⃗�2) = �⃗⃗⃗�3 
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(𝑟1 × �⃗�1) + (𝑟2 × �⃗�2) − (𝑟1 × �⃗�2) − (𝑟2 × �⃗�1) = �⃗⃗⃗�3 

(𝑟1 ×
𝑝1

𝑚1
) + (𝑟2 ×

�⃗�2

𝑚2
) − (𝑟1 ×

�⃗�2

𝑚2
) − (𝑟2 ×

�⃗�1

𝑚1
) = �⃗⃗⃗�3 

�⃗⃗�1

𝑚1
+

�⃗⃗�2

𝑚2
− (𝑟1 ×

(�⃗⃗⃗�1 − �⃗�1)

𝑚2
) − (𝑟2 ×

�⃗⃗⃗�1 × �⃗�2

𝑚1
) = �⃗⃗⃗�3 

𝑜𝑟, 
 

�⃗⃗�1

𝑚1
+

�⃗⃗�2

𝑚2
+

�⃗⃗�1

𝑚2
+

�⃗⃗�2

𝑚1
− (

𝑟1

𝑚2
+

𝑟2

𝑚1
) × �⃗⃗⃗�1 = �⃗⃗⃗�3 

 

 

�⃗⃗�1 (
1

𝑚1
+

1

𝑚2
) + �⃗⃗�1 (

1

𝑚1
+

1

𝑚2
) −

𝑚1𝑟1 + 𝑚2𝑟2

𝑚1𝑚2
× �⃗⃗⃗�1 = �⃗⃗⃗�3 

 

�⃗⃗�1

𝜇
+

�⃗⃗�2

𝜇
−

𝑀𝑟𝑐𝑚

𝑚1𝑚2
× �⃗⃗⃗�1 = �⃗⃗⃗�3 

Reduced mass, 𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
 

 

�⃗⃗�1

𝜇
+

�⃗⃗�2

𝜇
−

𝑟𝑐𝑚

𝜇
× �⃗⃗⃗�1 = �⃗⃗⃗�3 

�⃗⃗�1 + �⃗⃗�2 − 𝑟𝑐𝑚 × �⃗⃗⃗�1 = 𝜇�⃗⃗⃗�3 
 

�⃗⃗⃗�2 − 𝑟𝑐𝑚 × �⃗⃗⃗�1 = 𝜇�⃗⃗⃗�3 (30) 

𝑟𝑐𝑚 is the only variable in the above equation, �⃗⃗⃗�1and �⃗⃗⃗�2 have been taken with respect to an 

arbitrary inertial origin, �⃗⃗⃗�3 is the relative angular momentum 

Let us check is the problem gets diluted at the three body or at the multi-body interaction  

level. In the three body or the many body systems we do not have a simple relation like 

(𝑟1 − 𝑟2) ×
𝑑2(𝑟1−𝑟2)

𝑑𝑡2 = 0 even if Newton’s third law is considered in the strong form. The 

quantity 
𝑑2(𝑟1−𝑟2)

𝑑𝑡2  is decided not only by the interaction between the bodies at 𝑟1 and 𝑟2but 

also by interaction from other bodies. There is a possibility of resolution to the problem. 

 

In an n-body interacting(isolated) system we consider the following two points: 
1) Center of mass  

2) Neutral point  
The center of mass is at rest or moves with uniform velocity with respect to inertial 
frames  
At the neutral point the net force is zero. A body[test mass] kept on it will move 
uniformly or will be at rest  
So relative acceleration between the two mentioned points should be zero  
Let us test this with a two body system the bodies being at a separation of L units of 
length  
Center of mass coordinates  

 𝑥1 =
𝑚2

𝑚1+𝑚2
𝐿(𝑡) 
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 𝑥1 =
𝑚1

𝑚1+𝑚2
𝐿(𝑡) 

 𝑥1 and 𝑥2 and are distances of the  center of mass from the masses 𝑚1 and 𝑚2 
respectively. 
Calculation Neutral point coordinates: 

𝐺
𝑚1𝑚

𝑋1
2 = 𝐺

𝑚2𝑚

𝑋2
2  

𝑋1 and 𝑋2 are the distances of 𝑚1and 𝑚2 respectively. 
 

 √𝑚1𝑋2 = √𝑚2𝑋1 

But 𝑋1 + 𝑋2 = 𝐿 
Therefore 

𝑋1 =
𝑚2

𝑚1 + 𝑚2
𝐿 

𝑋2 =
√𝑚2

√𝑚1 + √𝑚2

𝐿 

Distance of the neural point and the center of mass is given by |
𝑚2

𝑚1+𝑚2
− √𝑚2

√𝑚1+√𝑚2
| 𝐿(𝑡) or by |

𝑚1

𝑚1+𝑚2
−

√𝑚2

√𝑚1+√𝑚2
| 𝐿(𝑡).Both are identical in absolute value. 

 

But there can always be a non zero acceleration between the two points if 
𝑑2𝐿

𝑑𝑡2 ≠ 0. 

For most planetary orbits eccentricity is close to zero  
𝑑2𝐿

𝑑𝑡2 small.That makesBut there are 

exceptions also. Theoretically the point remains. But the situation gets diluted when we 
consider three body or many body motion. 

For the 3-body situation we have two vector equations from (3.1) to (3.3) and an extra 

equation so that there is no acceleration between the neutral point and the center of mass. In 

total there are three vector equations and two vector unknowns[six scalar quantities and nine 

scalar equations. 

For the n-body system, there are n-1 vector quantities to be determined while the number of 

independent vector equations is “n”. These “n” equations include the one asserting there is no 

acceleration between the center of mass and the neutral point: the situation definitely gets 

eased off. I view of the fact that we have 3n scalar unknowns and 3n+3 scalar equations. The 

ratio between the number of scalar unknowns or variables  and the number of independent 

equations tends to unity  as we increase the number of bodies in the interaction scenario.   The 

last  equation-----the extra one is of global significance especially when you consider galaxies 

separated  by huge distances and that they are in relative motion. The other equations are 

locally powerful. The “extra” equation does not have any meaning in the local context. We 

may assume its validity in the global context as mentioned leaving it in the hands of nature to 

fix it up consistently with the other ones which are locally powerful, Perfect isolation has to be 

shunned. 

Considering an infinite number of objects as we have in the universe and with the 

comprehension that gravitational interaction has an infinite range, there is reason to admire 

nature’s skill in disposing the situation. We are of course thinking of gravitation here and not 

the other fundamental forces that exist in nature. 

 

Conclusion 

The article delineates simple methods to solve the three body, four body and in general the 

many body problem using the technique of differential equations. A simple type of a 

numerical method has also been suggested. Certain peculiarities in the context of the two 

body problem have been notified. The possibility of these peculiarities being diluted in the 

context of the many body problem has been indicated at. 
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