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Abstract

The main purpose of this paper is to show that it is possible to
understand the origin of irreversibility with a simple one-dimensional
model of a collisionless gas. We begin by studying a one-particle "gas” and
then we generalise the results to an N~particle gas. The gas particles are
enclosed in a cylinder and their movement is perpendicular to a
frictionless piston. Only elastic collisions of the particles with the cylinder
bottom and with the piston are considered.

In order to understand the origin of irreversibilitly we compare the

. . . . . d
solution obtained for the differential equation f= _d—ttl . Where the force f one

~ the piston is due to the gravitacional field and to the particle collisions on
the piston, with the solution obtained for the momentum conservation law.
When the number of barticle increases and are not in phase, both solution
must agree most of the time in agreement with a statistical formulation.
Therefore irreversibility exists in a model without friction between the
piston and the cvlinder wall and without heat flux between the gas and the
exterior. And, although‘ this is comonly suggested, it is not due to
mathematical hypothesis like the use of a mean value for the force due 10
the particles collisions. In fact irreversibility has its origin in the interaction
between 1he_ particles through the piston and then the' statistical
formulation agree with an exact and deterministic solution, most of the

time and for most of the initial conditions, but not for all the time and all

the initial conditions.



ODUCTION

One of the most interesting and enduring problems! in physics is the
origin of irrevefsibility. One of the reasons for the permanence of this
problem is the dificulty in conciliating Boltzmann solution, with the
recurrence theorem of Poincaré. If the hypothesis of the molecular chaos
or “Stosszahlansatz" were the irreversibility feature as some authors still
affirmed nowadays!, we would be faced with a real paradox, as Poincaré
pointed out a long time ago. This is not the caseZ. The assumption of
molecular chaos must be considered as a mathematical hypothesis3
consistent with the tendency to the equilibrium state. With the molecular
chaos hypothesis, for a finite system, we cannot find the real solution of the
problem for all future because the real solution must contain an infinite
number of Poincaré cycles.

Our model is a cylinder with a frictionless piston wich is sustained by
a one-particle “gas”. The gravitational acceleration is g, the particle mass
m? and the piston mass m] The particle movement is perpendicular to the

piston. The particle of mass m? can be divided in N particles each one with
m?2

N mass, this particles having also a movement perpendicular to the

piston. This particles can collide simultaneously with the piston having an
effect equal to the one-particle “gas” or can collide not simultaneously like a
real gas (chaotically)4.

By considering this one-dimensional ideal gas we can avoid the
complexity due to collisions between particles and, simultaneously, have a
general and exact solutibn method to describe the evolution of the system.

 With this accurate and simple model we can explain the origin of



irreversibility without needing, for that, to appeal to making mathematical
hypotesis. For one-particle or N-particles defining a front surface parallel
to the piston we have an equivalent effect in both situations. The
equivalence is not, however, obvious, as we will see if the collisions with
the piston are "chaotic", although the equilibrium pressure is the same in
both situations. First we study the movement of the piston under the
influence of a one-dimensional one-particle gas by using the momentum
conservation law for collisions between the particle and the piston.
Second, we solve the differential equation of movement of the piston by
introducing the gas pressure.

Finally we compare both solutions and verify that the solution for the
differential equation only can have, for most of the time, the same values
as those obtained from the momentum conservation law if a large N
particle number is considered. In fact it is expected that the Poincaré cycle
depends on N.

In conclusion, we obtain an analytic and explicit method permitting
us to compare the differential quasi-exact solution for large values of N
with the exact solution for a one-particle gas. It is shown that the trajectory
followed by the piston to the equilibrium point is due to the assimetric
form of pressure on the moving piston. In fact the piston for a given
equilibrium pressure of the gas has a pressure on it higger for a

compression and lower for an expansion. This is what equation 14 reveal.



ONE-DIMENSIONAL ANALYSIS
= LEG

Consider the System represented in Fig. 1.
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Fig.1- A Cylinder with a frictionless piston which is sustained by a
one- particle “gas”. The gravitational acceleration is g, the particle mass my

and the piston mass m]. The particle movement is perpendicular to the
piston.

The particle with mass m2 collides with the piston which has a mass
m]. Both the piston and the particle move along the same direction.

After an elastic collision with the piston the particle rebounds to the
cylinder bottom where it has another collision. The particle returns to the
piston and the process is repeated. The piston moves under the particle and
gravitational influences. |

The velocities of the particle and the piston are considered small to
avoid relativistic effects. This being so, we can use the well-known
kinematics under the influence of a constant gravitational field. We obtain_

exact expressions for the piston and particle movements.



Collisions between the particle and the piston occur at times tc.

At time t=tc - 0 we consider the following conditions.

Piston height h

Piston velocity
Component v
(1a)
Particle velocity
component u

At times t = t¢ + o, after a collision between the particle and the

piston, the conditions are:

Piston héight h

Piston velocity
component v
(Ib)
Particle velocity
component u’

By applying the momentum and energy conservation laws the

following equations are obtained:
u' =[2v +« (A-1) u] 7 (1A) (2a)

v'=[2Au + (I-A) v] /7 (1+A) (2b)

with A = m2/mj.
If v/u <<l and A <1, we verify that u' < o. Then the time 1 between the

successive particle collisions with the piston and with the bottom can be

obtained from:



h=(-u)teZg2 (3a)

because the particle leaves the piston with a velocity (-u') subjected to the

acceleration g.

The “landing time" 1 is therefore

1=2h/ \/u'2+2gh+(—u')

The particle velocity at the bottom is
Vo =(-u') + g1 (4)

At time t after the first particle-piston collision the piston height is:
|
L=h+yt -5g t2, (5a)
and the particle position is
l 2
m=Vo(t—‘t)-"2‘g(t—1:). (5b)

A new collision instant c is obtained by imposing

m=L - (6a)
which yields ’



c-=(h+vot+%gtz)/(vo+gt-v'). (6b)

Th¢ piston velocity just before a new collision is
V=V -gc (7a)
and the particle speed
u=vo-gl(c-1). (7b)

The piston height L at t = ¢ is

L(c)=h+v‘c-%gc2. (7c¢)

This value L (c) is equal to m obtained from equation (Sb)
fort=c.

In conclusion (7a), (7b) and (7c) define new initial conditions v,
u and h.

In the appendix A we present the program that enables us to
calculate the piston and particle movements.

Because the piston has an impulsive movement (see equation

5a) we consider its mean velocity between two consecutive collisions with

the particle as
w = [L(c) - h]/c.

In Fig. 2 we present the piston position L(t), the mean velocity

piston w(t) and the particle velocity u(t).
In our calculations we considered that the piston was initially

atrest and at a 2 m distance from the cylinder bottom. We have taken



A =m2/mi=10"% . and u = 100 ms™L_

We can easily interprete what happens:

The gravitational field acts on the piston and its speed
increases with a negative velocity component (L(t)< 0). In the meantime the

collision frequency increases, as expected, because of the decreasing
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Fig. 2 - Piston position L(t), particle velocity component u(t) (u(t) » 0),
and mean velocity w(t).

distance between the bottom and the piston and the increasing particle

speed (as we can confirm from (2a) for v <o). First we have a negative



piston acceleration and after the piston come to rest the movement is
reversed with a positive acceleration due to the particle collisions. The
particle speed decreases, as we can see at (2a) for v > o. The collision
frequency also decreases (L(t) > 0) and a new inversion occurs.

The piston position h and y and v return approximately to the initial
values. If A <1 but not too small compared to unity, we notice that all the
values for L(t) lie on a curve that contains the initial value. As seen from
fig.2 this L(t), u(t) and w(t) are periodic and continuous functions. This
periodic functions have an important second harmonic component as it can
be verified by Fourier Analysis. We verify this fact with a computer
graphic plotting.

Now let us see if there are special initial conditions for which the

mean velocity of the piston is zero. If.
w=[L{c)-hl/c=0
then L(c) = h and (5a) enable us to obtain
h+yc-gc2/2=h
and therefore gc = 2y. By combining this result with (7a), we obtain
V=V -gC=-V.
For L = h the particle velocity components is

u'=-u. ~ (8b)

10



If we consider (2a) and (2b) together with v =-y, then

v=-Au.

Obviously the “landing time" for the particle (3b) satisfies

g1=v'=-v=Au and for u’ = - u the initial conditions are the following:

vV =~-Au, (9a)
AuZ A
h-= 2 (1 + > ). (9b)

m
In conclusion: for an initial particle velocity u and for A = Tﬁ% . (9a)

and (9b) are the initial conditions for which we obtain a zero mean velocity
w = 0. Then all the collisions particle-piston occur at the same position h
and with the same velocities u and v. These conditions can then be
considered as the equilibrium conditions of the system he, ue and ve. In

this case the time between collisions is:
c-21=2Au/g. (9¢)

When conditions are such that A « [, then from (9a) and (9b) we

have

11



v <o, (10a)
2
h:'%—, (10b)

which means that macroscopically the piston is at rest.

On the other hand we can write (I0b) as:

l
myg = 2mp U 5. (1)

This means that macroscopically the gravitational force balanced by

the momentum variation Zmy u during the time 2h/u or c=2Au/g as we
obtain from (9c). |

The piston movement in phase space is represented by Fig.3.

Fig.3

- Fig. 3 - The piston movement in phase space.
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For each cycle the energy has the following constant value

U2 V2
Eo=(m1+m2)gh+m27+m1 > - (11a)

We can easily obtain for a given energy value Eo the rest state for

the piston (w = 0). By connecting (lla) with (9a) and (9b), there results

(I+A)g he ]

m .
Eo=~2-l[2(l+A)g he + A (1ib)
2

I+

Equating (lla) to (1Ib) we obtain

_2(1+A) gh +Au2 + v2
8 he =2(LA) + (FA/(I+A/2)

(1lc)

The equilibrium point [he, we] belongs to the interior of the cycle and
can only be attained if the initial conditions are the rest conditions . We
have a periodic behaviour but we don't have an asymptotically stable
behaviour. In fact, the system is maintained as a cycle but does not tend to

the equilibrium point at the interior of the cycle.

R L EQUATION S ION

Designating now by x the piston heigh that we previously called L,

the differential equation that describes the piston movement is:

X=ac-§g (12)



where ac is the mean acceleration due to the sucessive collisions of the one-

particle gas with the piston.

The mean acceleration ac is

1 .
ac = Ellz my (U - x) vy, (13a)

where 2 m2 (u - x) is the particle momentum variation in an elastic

collision with the piston and (u - x) is the particle component velocity in

the rest frame of the piston and yc is the number of collisions per unit
time between the particle and the piston. Neglecting the displacement of

piston between successive collisions, the time between successive collisions
is 2 x/(u-x) and therefore y,is given by (u-x)/2x.

We thus obtain

l

l .
2=y 2my (u-x)

2%
u-x
wich can still be written in the form
-Lgmzuz[l X) 12 (13b)
 mx 2 i u) ' 3

When conditions are such that [x| « [ul, we can make the

aproximation

14



| 2 myu2
ac=‘”“;'

2X ,
oy > (1- 3 ), from wich (13c)

we may define an equivalent force on the piston

. .
fo-myac-22% (- &) (14)

2% | . . geq . Ex
The factor (I - “L‘l”) is a correction to the equilibrium pressure 2 —*.

The pressure exerted on a piston at rest in the laboratory frame would

E . .
simply be 2 —x& as seen from equation (13b) for x = 0. The factor (I - 2 i‘ ) is

a correction to the above pressure arising from the motion of the piston.
The force expressed by equation (I4) is assimetric in the sense that it
depends on the sign of x. If this factor were absent the solution of equation
(12) would be time reversible, while this is not the case when retaining the
full expression (14).

Let us write the energy expressions for the initial state [xo.Xo.Uo)-
and for a generic state [xx,ul.

In order to solve equation (12) assume that t=0 is the collision instant
between the particle and piston. Then, for t=0, the particle and the piston

heights are the same.

15
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By imposing energy conservation we obtain for all subsequent times

2 A2
Uo X0
Eo—(m1+m2)gxo+m2 5 tmpT, -

(15)
u2 52
=(my +mp)gx +mpy 5 +my 5.
From this expression we are able to calculate the particle velocity.
2
Solving eq. (15) for Eg = m2 ‘UE- and inserting the result in eq. (14),
equation (12) finally yields (16) where A = m,/m;.
1 2 Eo . 2%
EYCR: i1210- 2.
X x[ oy 2(1+A) gx - x4} (1 J )-8 (16)

This equation has the form ¥ = f(x,x) which can be reduced to the

autonomous system

dx _
at 7Y
(17)
d
?i% = f(x,y).

By using well known analysis methods we can state, using (17), that
the system is an autonomous and asymptotically stable system with a
singular point where X = 0 and ¥ = o. This point is a focus, which means that
in phase space the point P(x, x) describes a spiral convergent to the
equilibrium point Q(xe,Xe = 0). Physically this means that the solution to eq.

(12), with f, given by eq. (14) has a time irreversible behaviour. The

equilibrium height xe can be easily obtained from eq. (16¢) setting X=X=0



wich yelds (18a).

>2Eo/m1 2(1+A) g %0 + A UOZ + ioz

Xe

We can also obtain the equilibrium particle speed ue. From (16b) and
(18a).

Ue = —A— (18b)

If we compare (18a) with the relation (lic), we verify that for A «<1 x¢
is pratically coincident with the height he that we previously calculated
from the collisional model discussed in section I.

Similarly ue has a value close to that obtained from expression (I10b).
For example assuming A = 10-4 we obtain for the equilibrium height the
values 1.6657 using the model of section I and the value 1.6666 for the
model of sec;ti_on IT as shown in the appendices A and B.

The solution of eq. (I7b) can be numerically obtained using the
Runge-Kutta method and for a particular set of initial conditions is depicted
in fig.4. The solutidn of the differential equation only agrees aproximately
with the cycle defined by the collisional model in the initial cycle. The
result is an oscillétory movement which is not a sinusoidal one. This

-solution is indeed a spiral convergent to an equilibrium point. Only the

first cycle of this spiral aproximately coincides with the cycle obtained from

the collisional model.

-

. e s . 2% | _
In order to estimate the oscillation period we can assume (I- s ) =1

for the initial cycles and rewrite eq. (16¢) as

= JGhlg g 20« A) gog (182)

17



F-T(20+A) g g)(e-1) -2 ¢

where use was made of eq.(18a).

Conclusions and
Di )

With the two solutions considered, i.e. the momentum conservation
solution (m.cs.) and the differential equation solution, (d.es.) we can
understand the origin of irreversibility.

Obviously the rigorous solution method obtained with the
momentum and energy conservation principles like any other numerical
soiution has numerical calculation limitations like any other and therefore
with the rigorous solution method we cannot have a rigorous solution. Such
calculation limitations are obviously related to software and hardware
limitations. In fact when the number of particles increase the software
dimension also increases and the calculation time is larger. In addition to
this limitation we can only process a finite number of digits. This being so,
this rigorous solution method is obviously limited by the numerical
calculation capacity. Therefore it is impossible to know whether we have or
not a rigorous solution if the solution method is sensitive to the number of
digits processed. Here we do not have this problem as we compare the
rigorous solution method, although with a finite number of digits, with the
d.e.s.

For N particles defining a parallel front to the piston the rigorous
solution is different from the d.e.s. For a N-particles system, the d.e.s. must

aproximately agree with the momentum conservation solution for most of

18



the initial conditions and for most of the time otherwise the differential
equation would be meaningless. However, this solution converges to the
equilibrium point, therefore it does not contain the Poincaré cycles that a
'rigorous solution must exhibit. A rigorous mechanical solution (ie the
rigorous momentum conservation solution without numerical limitation)
would also be expected to agree with the d.e.s. for most of the time and
initial conditions. This can be easily understood considering the piston
divided into N pistons each one with an associated particle (note that we
are considering the particles movement perpendicular to ‘Lhe piston). If the
pistons are independent we have for each one a solution identical with that
represented in fig 3. although only in the case of N particles defining a
‘parallel front to the piston (particles in phase) do we have equal solutions
in time. If the particles are not in phase and because the pistons are
connected to each other (we have in fact only one piston) the movement in
phase space of eéch particle and each piston when the pistons are
independent, is perturbed due to the connection between the pistons
(«<Leslie>> no longer knows what piton he is going to findd-7). Then the
piston (and the particles) can explore others region 'positions in phase space
with coordinates values similar to those corresponding to the d.e.s.

This simple model makes it possible to understand the origin of
irreversibility with a “mechanical” treatment. In fact the tendency to the
equilibrium point is not related to friction between the piston and the
cylinder wallsd (because we have assumed that the piston movement s
frictionless) or to heat exchange between the gas and the exterior, but is
rather aresult of the interaction between the particles through the piston.
This interaction leads the piston to the equilibrium point although the
piston always returns to the neighbourhood of the initial point an infinite

number of times. Then we must conclude that the differential equation

19



solution must agree with the rigorous solution for most of the time and for
most of the initial conditions but not for whole time and all initial
conditions. When a statistical formulation is made, whatever it is, we have
an agreement with the equilibrium tendency, but this agreement does not

warrant to thinking that irreversibility is originated from mathematical

d .
hypotheses like —f+ = F_:i with the mean value assumed in our present

treatment.

The rigorous solution must also describe the tendency to equilibrium,
but goes beyond that. In fact only conceptually, as a limit, can we think of
a point in phase space and think of a well defined trajectory.

But as a limit this classical conceptualization of a trajectory can be
conceived and therefore we can connect the differential equation with the
rigorous solution. In this limit the irreversibility emerge associated with
the interaction between the particles if the particles are not in phase. This
interaction mechanism has obviously nothing to do, with numerical rigour
and is presented independently of the number of digits processed.
Although the trajectory calculated by the rigorous solution is different from
the de.s. for the whole future, they must agree for most of the time and
this explains the physical meaning and success of the d.es. method.
Although completely correlated, only once in a while do the particles and

the piston exibit this correlation macroscopically. This being so, solutions

... = dp - ) . ) ) ..
like f = F—? or like the Liouville solution must be considered statistical

mechanical solutions. The mechanical solution is the momentum
conservation solution and the physical mechanism that leads the piston
trajectory to agree with the differential equation trajectory is the

interaction between the particles trough the piston. This interaction is the

20



origin of irreversibility. Collisions are the mechanism that constructs the
trajectory in phase space and the equilibrium point is one point of that

trajectory for most of the initial conditions and for mos t of the time.

21
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68
90
120
110

120
130
140
159
160
170
i8a
190
200
219
220
230
240
250
260
270
280
250
300
319

320

330
349
350
360
270
380
290
400
410
428
439

440
459
468
470
429

“ APPERDIX B

| Prosram decscribine riston
movement (differential
w»cmﬁwoz (16cH>.

PRINTER IS 785.8a

PLOTTER IS 785

PRINT "IM;SP1;IP 408,600,460
B,4a88;"

P=.1 @ L=2 @ V=R

FOR N=1 T0O 4@a8g8

U=L

Y=y

K=U )
H=Y 1.2}

GOSUB 439

A=W

K=U+P*Y~2

H=Y+Rs2

GOSUB 439

B=W

{=U+PXY-/2+P%XA 4
L=Y+B/2

GOSUB 439

C=U

K=U+PXY+PXB~/2

H=Y+C .
GOSUB 438

D=W
L=U+P%Y+PX(A+B+C) /€
U=Y+(A+2%XB+2XC+Dd 76
SCALE 1.2,2,-.6.,.6

RARKIS B, .1

YAXIS 1.6, .1

PLOT L,V

NEXT N

END

R SUBROTINE —--—--

W=P%((S-2%K-H¥H)> ¥ (1-H/SAR((S
-2%¥K-HXH>%1086808)5 )5 /K-1)
RETURN

!

w Eauilibrium roint
_rna.mmmmm
_

L - Fiston heigaht. In the text .
we have made 1=x.
V - Piston velocity component.




14
26
3a
40

56
60
ca
t51%]

96
160
i1@
1206
130
146
158
1606
17a
180

19a
2060
2186
22a
23a
246
250
2609
27a
280
290
3aa
3la

315
Jao
334G
Z4a

——-- APPENDIX A ———-

Frosram describina episton
movement ( momentum -—
conservation lawl).

o o oy o

1
PRINTER IS 705,84 '
FPLOTTER IS 765 ’
PRINT "IN:SP1;:IP 408,600,400
8,4600; "

H=z @ U=166 @ V=08

A=.6001

G=1

T=6a

FOR N=1 TO 3a86
K=(2XV+(A-1IXUd (1 +A)
Y=(2¥XAXU+(1-RIXVD -/ (1+AD
Z=2%XH/ (SARCKAZ+2XGXHI+ (¥
VB=—-X+G*2Z

C=(H+VOX2Z+  SXGXZ~2)>/(VB+GXZ~
Y

U=va-Gx(C-2>

U=Y-GXC

L=H+YXC-C~2-s2

W=(L-H>-C
M=U8X(C-2Z)—.3%kGX(C-Z2>~2
T=T+C

H=L

SCALE 1.2,2,-.6,.6

®AXIS &, 1

"YRAXIS 1.6, .1

FLOT L.Y
HEXT H
EHD

!

f Equilibriu

( L = 1.665717332
!

Pistan heisht at & collision
time (tc).

Pistan height at egnother
collision instant { after
the interval of time between
calligions C» (t=tc+c).
Piston velacity comronent at
time tc—-0.

Fistan velacity Comecnent at
time tc+0.



APPENDIX C

I. Equations (2a) and (2b) can be obtained in the following
way.

The elastic collision between the mass my piston and the
mass m, particle satisfies the following equations where (v,y) and
(u,x) are the velocity components for the piston (ml) and for the
particle (mz), at the moments (tc - 0) and (tc + 0) (tc is an

instant of collision)

mlv + mzu = mly + m2 X

2, 22,2
m,v myu’ = m;y myX .

We can write from these equations the following

X-y = v-u

mx + my = mv + m,u |

Then we obtain (2 a)

or

x = 2v + u (A-1) (2a)
1+A




with

>
"
F|\F

In a similar way we obtain eq. (2b)

y = [28u + (1-4) v]/(1+A). (2b)

II. Equation (16c) is obtained in the following way:

The equation (13a) can be written under the form

m u2 2
=122 _ (& '
ac— ml x 2 [1 (u)] (13a")
X
If l—l << 1, we have
u
- 2 -
X » _2x
-3 =a-2.
Then (13a') can be written
m u2
_ 1272 2%
a. = my x 2 1 -u—) (13b)
i
or
_ A 2 _ 2% .
a,=— u (1 -—u). (13b"')

Now, from the energy conservation equation, we can write

u” as a function of % (piston velocity) and x (piston positionm).



In fact

2 koz
Eo = (m1 + m2) g X, *my u /2 + m —— =
u2 kZ
= (mptm) gx +m 5 +m o
Then
u2 =1 [2(1 +A) gx +Au 2, X 2
o o] o
A
2.
-2 (Q+A gx - %
Or
2 E | 2
A = 22 -2 (1 +ngx -] (16b)
1
But
k=a -g

Then we obtain (16c¢) substituting at 13b' equation (16b).

E
’%[25‘3—2(1+A)gx - iz]"-‘

1

x(1-Z) -, (16¢)



