Formula for generating c-primes and m-primes based on squares of primes

Marius Coman Bucuresti, Romania email: mariuscoman13@gmail.com

Abstract. In this paper I present a formula, based on squares of primes, which seems to generate a large amount of c-primes and m-primes (I defined the notions of cprimes and m-primes in my previous paper "Conjecture that states that any Carmichael number is a cm-composite").

Observation:

The formula $m = (5*n + 1)*p^2 - 5*n$, where p is prime, p ≥ 7 , and n positive integer, seems to generate often c-primes and m-primes.

Examples:

:	For	$n = 1$ we have the formula $m = 6*p^2 - 5$ and the
	foll	owing values for m for the first twelve such primes:
	:	for $p = 7$, $m = 289 = 17^2$, so m is c-prime (square
		of prime); also $17 + 17 - 1 = 33 = 3*11$ and $3 + 11 - 1$
		1 = 13, prime, so m is m-prime too;
	:	for $p = 11$, $m = 721 = 7*103$ and $103 - 7 + 1 = 97$,
		prime, so m is c-prime; also $103 + 7 - 1 = 109$,
		prime, so m is m-prime too;
	:	for p = 13, m = 1009, prime, so m is implicitly c-
		prime and m-prime;
	:	for $p = 17$, $m = 1729$, which is not semiprime so it
		can't be c-prime or m-prime (but it is, as I
		conjectured in the paper mentioned in Abstract, as a
		Carmichael number, cm-composite - notion defined in
		the same paper);
	:	for p = 19, m = 2161, prime, so m is implicitly c-
		prime and m-prime;
	:	for $p = 23$, $m = 3169$, prime, so m is implicitly c-
		prime and m-prime;
	:	for $p = 29$, $m = 5041 = 71^2$, so m is c-prime (square
		of prime); also $71 + 71 - 1 = 141 = 3*47$ and $3 + 47$
		-1 = 49 = 7*7 and $7 + 7 - 1 = 13$, prime, so m is m-
		prime too;
	:	for $p = 31$, $m = 5761 = 7*823$ and $823 - 7 + 1 = 817 =$
		$19*43$ and $43 - 19 + 1 = 25 = 5^2$, square of prime,
		so m is c-prime; also $823 + 7 - 1 = 829$, prime, so m
		is m-prime too;

:	for p = 37, m = 8209, prime, so m is implicitly c- prime and m-prime;	
:	for $p = 41$, $m = 10081 = 17*593$ and $593 - 17 + 1 = 577$, prime, so m is c-prime;	
:	for $p = 43$, $m = 11089 = 13*853$ and $853 - 13 + 1 = 841 = 29^2$, so m is c-prime; also $853 + 13 - 1 = 865 = 5*173$ and $5 + 173 - 1 = 177 = 3*59$ and $3 + 59 - 1$	
:	<pre>= 61, prime, so m is m-prime too; for p = 47, m = 13249, prime, so m is implicitly c- prime and m-prime.</pre>	
For $n = 2$ we have the formula $m = 11*p^2 - 10$ and the		
	lowing values for m for the first twelve such primes:	
:	for $p = 7$, $m = 529 = 23^2$, so m is c-prime (square of prime);	
:	for $p = 11$, $m = 1321 = 7*103$ and $103 - 7 + 1 = 97$,	
•	prime, so m is c-prime; also $103 + 7 - 1 = 109$,	
	prime, so m is m-prime too;	
:	for $p = 13$, $m = 1849 = 43^2$, so m is c-prime (square	
	of prime); also $43 + 43 - 1 = 85 = 5*17$ and $5 + 17 - 1 = 21 = 2+7$ and $2 + 7 = 1 = 0 = 2+2$ and $2 + 2 = 1 = 0$	
	1 = 21 = 3*7 and 3 + 7 - 1 = 9 = 3*3 and 3 + 3 - 1 = 5, prime, so m is also m-prime;	
:	for $p = 17$, $m = 3169$, prime, so m is implicitly c-	
•	prime and m-prime;	
:	for $p = 19$, $m = 3961 = 17*233$ and $233 - 17 + 1 = 217$ = 7*31 and 31 - 7 + 1 = 25 = 5^2, square of prime, so m is c-prime; also $233 + 17 - 1 = 249 = 3*83$ and	
:	3 + 83 - 1 = 85, so m is m-prime too (see above); for p = 23, m = 5809 = 37*157 and 157 - 37 + 1 = 121 = 11^2, square of prime, so m is c-prime; also 157 + 37 - 1 = 193, prime, so m is m-prime too;	
:	for p = 29, m = 9241, prime, so m is implicitly c- prime and m-prime;	
:	for $p = 31$, $m = 10561 = 59*179$ and $179 - 59 + 1 =$	
:	<pre>121 = 11^2, square of prime, so m is c-prime; for p = 37, m = 15049 = 101*149 and 149 - 101 + 1 = 49 = 7^2, square of prime, so m is c-prime; also 149 + 101 - 1 = 249 = 3*83 and 3 + 83 - 2 = 85 so m is</pre>	
	m-prime too (see above);	
:	for $p = 41$, $m = 18481$, prime, so m is implicitly c-	
	prime and m-prime;	
:	for p = 43, m = 20329 = 29*701 and 701 - 29 + 1 = 673, prime, so m is c-prime;	
:	for $p = 47$, $m = 24289 = 101*227$ and $227 - 101 + 1 = 127$, prime, so m is c-prime; also $101 + 227 - 1 = 327 = 3*109$ and $3 + 109 - 1 = 111 = 3*37$ and $3 + 37 - 1 = 39 = 3*13$ and $3 + 13 - 1 = 15 = 3*5$ and $3 + 5 - 1 = 7$, prime, so m is m-prime too.	

: