Two formulas based on c-chameleonic numbers which conducts to c-primes and the notion of c-chameleonic number

Marius Coman email: mariuscoman13@gmail.com

Abstract. In one of my previous papers I defined chameleonic numbers as the positive composite squarefree integers C not divisible by 2, 3 or 5 having the property that the absolute value of the number P - d + 1 is always a prime or a power of a prime, where d is one of the prime factors of C and P is the product of all prime factors of C but d. In this paper I revise this definition, I introduce the notions of c-chameleonic numbers and m-chameleonic numbers and I show few interesting connections between c-primes and сchameleonic numbers (I defined the notions of a c-prime in my paper "Conjecture that states that any Carmichael number is a cm-composite").

Definition 1:

We name a chameleonic number a number which is either cchameleonic or m-chameleonic.

Definition 2:

We name a c-chameleonic number a positive integer, not necessary squarefree, not divisible by 2 or 3, with three or more prime factors, having the property that the absolute value of all the numbers P - d + 1, where d is one of its prime factors and P the product of all the others, is prime.

Example: 1309 = 7*11*17 is a c-chameleonic number because 7*11 - 17 + 1 = 61, prime, 7*17 - 11 + 1 = 109, prime and 11*17 - 7 + 1 = 181, prime (in fact, 1309 is the smallest c-chameleonic squarefree number with three prime factors).

Definition 3:

We name a m-chameleonic number a positive integer, not necessary squarefree, not divisible by 2 or 3, with three or more prime factors, having the property that the absolute value of all the numbers P + d - 1, where d is one of its prime factors and P the product of all the others, is prime. Example: The Carmichael number 29341 = 13*37*61 is a mchameleonic number because 13*37 + 61 - 1 = 541, prime, 13*61 + 37 - 1 = 829, prime and 37*61 + 13 - 1 = 2269, prime.

Observation 1:

Let p*q*r be a c-chameleonic number with three prime factors; then the number (p + 1)*(q + 1)*(r + 1) + 1seems to be often a c-prime.

Examples:

:	For	p = q = 5 we have the following ordered sequence of
	c-ch	ameleonic numbers:
	:	5*5*7 because $5*5 - 7 + 1 = 19$, prime and $5*7 - 5 + 1 = 19$
		1 = 31, prime;
		Indeed, the number $6*6*8 + 1 = 289 = 17^2$ is a c-
		prime (is a square of prime);
	:	5*5*13 because $5*5 - 13 + 1 = 13$, prime and $5*13 - 5$
		+ 1 = 61, prime;
		Indeed, the number $6*6*14 + 1 = 505 = 5*101$ is a c-
		prime (101 - 5 + 1 = 97, prime);
	:	5*5*31 because $31 - 5*5 + 1 = 7$, prime and $31*5 - 5$
		+ 1 = 151, prime;
		Indeed, the number $6*6*32 + 1 = 1153$ is prime,
		<pre>implicitly a c-prime;</pre>
	:	5*5*37 because $37 - 5*5 + 1 = 13$, prime and $37*5 - 5$
		+ 1 = 181, prime;
		Indeed, the number $6*6*38 + 1 = 1369 = 37^2$ is a c-
		prime (is a square of prime);
	:	5*5*43 because $43 - 5*5 + 1 = 19$, prime and $43*5 - 5$
		+ 1 = 211, prime;
		Indeed, the number $6*6*44 + 1 = 1585 = 5*317$ is a c-
		prime (317 - 5 + 1 = 313, prime);
	:	5*5*67 because $67 - 5*5 + 1 = 43$, prime and $67*5 - 5$
		+ 1 = 331, prime;
		Indeed, the number $6*6*68 + 1 = 2449 = 31*79$ is a c-
		prime $(79 - 31 + 1 = 49 = 7^2, a square of prime);$
	:	5*5*127 because $127 - 5*5 + 1 = 103$, prime and $127*5$
		-5+1=631, prime;
		Indeed, the number $6*6*128 + 1 = 4609 = 11*419$ is a
		c-prime (419 - 11 + 1 = 409, prime);
		()
Note	:	

ote:

A very interesting thing is that, through the formula above, is obtained from the c-chameleonic number 1309 = 7*11*17 the Hardy-Ramanujan number 1729 = 7*13*19; indeed, $8 \times 12 \times 18 + 1 = 1729$.

Observation 2:

Let C = p*q*r be a c-chameleonic number with three prime factors; then the numbers C + 30*(p - 1), C + 30*(q - 1) and C + 30*(r - 1) seems to be often c-primes.

Examples:

: For C = 1309 = 7*11*17 we have: : 1309 + 30*6 = 1489, prime, implicitly a c-prime; : 1309 + 30*10 = 1609, prime, implicitly a c-prime; : 1309 + 30*16 = 1789, prime, implicitly a c-prime.