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This paper presents a reformulation of classical mechanics which
is invariant under transformations between inertial and non-inertial
reference frames and which can be applied in any reference frame
without introducing fictitious forces.

Introduction

The reformulation of classical mechanics presented in this paper is obtained starting from an
auxiliary system of particles (called free-system) that is used to obtain kinematic magnitudes
(such as inertial position, inertial velocity, etc.) that are invariant under transformations
between inertial and non-inertial reference frames.

The inertial position ri, the inertial velocity vi and the inertial acceleration ai of a particle i
are given by:

ri
.= (~ri − ~R)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

ai
.= (~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

(vi
.= d(ri )/dt ) and (ai

.= d2(ri )/dt2 ) where ~ri is the position vector of particle i, ~R is the
position vector of the center of mass of the free-system, and ~ω is the angular velocity vector
of the free-system (see Appendix I)

The net force Fi acting on a particle i of mass mi produces an inertial acceleration ai

according to the following equation:

Fi = mi ai

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi.

The magnitudes [mi, ri, vi, ai and Fi ] are invariant under transformations between inertial
and non-inertial reference frames.

A reference frame S is non-rotating if the angular velocity ~ω of the free-system relative to S
is equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center
of mass of the free-system relative to S is equal to zero.
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The Definitions

For a system of N particles, the following definitions are applicable:

Mass M .=
∑N

i mi

Position CM 1 ~Rcm
.= M−1

∑N

i mi ~ri

Velocity CM 1 ~Vcm
.= M−1

∑N

i mi ~vi

Acceleration CM 1 ~Acm
.= M−1

∑N

i mi ~ai

Position CM 2 Rcm
.= M−1

∑N

i mi ri

Velocity CM 2 Vcm
.= M−1

∑N

i mi vi

Acceleration CM 2 Acm
.= M−1

∑N

i mi ai

Linear Momentum 1 P1
.=

∑N

i mi vi

Angular Momentum 1 L1
.=

∑N

i mi

[
ri × vi

]
Angular Momentum 2 L2

.=
∑N

i mi

[
(ri −Rcm)× (vi −Vcm)

]
Work 1 W1

.=
∑N

i

∫ 2

1
Fi · dri = ∆ K1

Kinetic Energy 1 ∆ K1
.=

∑N

i ∆ 1/2 mi (vi)2

Potential Energy 1 ∆ U1
.= −

∑N

i

∫ 2

1
Fi · dri

Mechanical Energy 1 E1
.= K1 + U1

Lagrangian 1 L1
.= K1 −U1

Work 2 W2
.=

∑N

i

∫ 2

1
Fi · d(ri −Rcm) = ∆ K2

Kinetic Energy 2 ∆ K2
.=

∑N

i ∆ 1/2 mi (vi −Vcm)2

Potential Energy 2 ∆ U2
.= −

∑N

i

∫ 2

1
Fi · d(ri −Rcm)

Mechanical Energy 2 E2
.= K2 + U2

Lagrangian 2 L2
.= K2 −U2

2



Work 3 W3
.=

∑N

i ∆ 1/2 Fi · ri = ∆ K3

Kinetic Energy 3 ∆ K3
.=

∑N

i ∆ 1/2 mi ai · ri

Potential Energy 3 ∆ U3
.= −

∑N

i ∆ 1/2 Fi · ri

Mechanical Energy 3 E3
.= K3 + U3

Work 4 W4
.=

∑N

i ∆ 1/2 Fi · (ri −Rcm) = ∆ K4

Kinetic Energy 4 ∆ K4
.=

∑N

i ∆ 1/2 mi

[
(ai −Acm) · (ri −Rcm)

]
Potential Energy 4 ∆ U4

.= −
∑N

i ∆ 1/2 Fi · (ri −Rcm)

Mechanical Energy 4 E4
.= K4 + U4

Work 5 W5
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
= ∆ K5

Kinetic Energy 5 ∆ K5
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~V )2 + (~ai − ~A) · (~ri − ~R)

]
Potential Energy 5 ∆ U5

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
Mechanical Energy 5 E5

.= K5 + U5

Work 6 W6
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
= ∆ K6

Kinetic Energy 6 ∆ K6
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)

]
Potential Energy 6 ∆ U6

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
Mechanical Energy 6 E6

.= K6 + U6

The Relations

From the above definitions, the following relations can be obtained (see Appendix II )

K1 = K2 + 1/2 M V2
cm

K3 = K4 + 1/2 M Acm ·Rcm

K5 = K6 + 1/2 M
[
(~Vcm − ~V )2 + (~Acm − ~A) · (~Rcm − ~R)

]
K5 = K1 + K3 & U5 = U1 + U3 & E5 = E1 + E3

K6 = K2 + K4 & U6 = U2 + U4 & E6 = E2 + E4
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The Principles

The linear momentum [P1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its weak form.

P1 = constant
[

d(P1)/dt =
∑N

i mi ai =
∑N

i Fi = 0
]

The angular momentum [L1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L1 = constant
[

d(L1)/dt =
∑N

i mi

[
ri × ai

]
=

∑N

i ri × Fi = 0
]

The angular momentum [L2 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L2 = constant
[

d(L2)/dt =
∑N

i mi

[
(ri −Rcm)× (ai −Acm)

]
=∑N

i mi

[
(ri −Rcm)× ai

]
=

∑N

i (ri −Rcm)× Fi = 0
]

The mechanical energy [ E1 ] and the mechanical energy [ E2 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E1 = constant
[

∆ E1 = ∆ K1 + ∆ U1 = 0
]

E2 = constant
[

∆ E2 = ∆ K2 + ∆ U2 = 0
]

The mechanical energy [ E3 ] and the mechanical energy [ E4 ] of a system of N particles
are always zero ( and therefore they always remain constant )

E3 = constant
[

E3 =
∑N

i
1/2

[
mi ai · ri − Fi · ri

]
= 0

]
E4 = constant

[
E4 =

∑N

i
1/2

[
mi ai · (ri −Rcm)− Fi · (ri −Rcm)

]
= 0

]
∑N

i
1/2 mi

[
(ai−Acm) · (ri−Rcm)

]
=

∑N

i
1/2 mi ai · (ri−Rcm)

The mechanical energy [ E5 ] and the mechanical energy [ E6 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E5 = constant
[

∆ E5 = ∆ K5 + ∆ U5 = 0
]

E6 = constant
[

∆ E6 = ∆ K6 + ∆ U6 = 0
]
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Observations

All equations of this paper can be applied in any inertial reference frame and also in any
non-inertial reference frame.

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi.

In this paper, the magnitudes [m, r, v, a, M, R, V, A, F, P1, L1, L2, W1, K1, U1, E1, L1,
W2, K2, U2, E2, L2, W3, K3, U3, E3, W4, K4, U4, E4, W5, K5, U5, E5, W6, K6, U6 and E6 ]
are invariant under transformations between inertial and non-inertial reference frames.

The mechanical energy E3 of a system of particles is always zero [ E3 = K3 + U3 = 0 ]

Therefore, the mechanical energy E5 of a system of particles is always equal to the mechanical
energy E1 of the system of particles [ E5 = E1 ]

The mechanical energy E4 of a system of particles is always zero [ E4 = K4 + U4 = 0 ]

Therefore, the mechanical energy E6 of a system of particles is always equal to the mechanical
energy E2 of the system of particles [ E6 = E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
then the potential energy U3 and the potential energy U5 of the system of particles are
given by: [ U3 = ( k

2 ) U1 ] and [ U5 = (1+ k
2 ) U1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
then the potential energy U4 and the potential energy U6 of the system of particles are
given by: [ U4 = ( k

2 ) U2 ] and [ U6 = (1+ k
2 ) U2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K5 of the system of particles is equal to zero, then we obtain:
[ K1 = −K3 = U3 = ( k

2 )U1 = ( k
2+k ) E1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K6 of the system of particles is equal to zero, then we obtain:
[ K2 = −K4 = U4 = ( k

2 )U2 = ( k
2+k ) E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K5〉 of the system of particles is equal to zero, then we
obtain: [ 〈K1〉 = −〈K3〉 = 〈U3〉 = ( k

2 ) 〈U1〉 = ( k
2+k ) 〈E1〉 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K6〉 of the system of particles is equal to zero, then we
obtain: [ 〈K2〉 = −〈K4〉 = 〈U4〉 = ( k

2 ) 〈U2〉 = ( k
2+k ) 〈E2〉 ]
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The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion ( in 〈K5〉 relative to ~R and in 〈K6〉 relative to ~Rcm ) are always zero.

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( ṙi ṙi + r̈i ri ) ] where ri

.= |~ri − ~R | and
[ K6 =

∑N

j>i
1/2 mi mj M−1( ṙij ṙij + r̈ij rij ) ] where rij

.= | ~ri − ~rj |

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( τ̈i ) ] where τi

.= 1/2 (~ri − ~R) · (~ri − ~R) and
[ K6 =

∑N

j>i
1/2 mi mj M−1( τ̈ij ) ] where τij

.= 1/2 (~ri − ~rj) · (~ri − ~rj)

The kinetic energy K6 is the only kinetic energy that can be expressed without the necessity
of introducing any magnitude that is related to the free-system [ such as: r, v, a, ~ω, ~R, etc. ]

In an isolated system of particles, the potential energy U2 is equal to the potential energy
U1 if the internal forces obey Newton’s third law in its weak form [U2 = U1 ]

In an isolated system of particles, the potential energy U4 is equal to the potential energy
U3 if the internal forces obey Newton’s third law in its weak form [U4 = U3 ]

In an isolated system of particles, the potential energy U6 is equal to the potential energy
U5 if the internal forces obey Newton’s third law in its weak form [U6 = U5 ]

A reference frame S is non-rotating if the angular velocity ~ω of the free-system relative to S
is equal to zero, and the reference frame S is also inertial if the acceleration ~A of the center
of mass of the free-system relative to S is equal to zero.

If the origin of a non-rotating reference frame S [ ~ω = 0 ] always coincides with the center of
mass of the free-system [ ~R = ~V = ~A = 0 ] then relative to S: [ ri = ~ri, vi = ~vi and ai = ~ai ]
Therefore, it is easy to see that always: [vi = d(ri )/dt and ai = d2(ri )/dt2 ]

This paper does not contradict Newton’s first and second laws since these two laws are valid
in all inertial reference frames. The equation [ Fi = mi ai ] is a simple reformulation of
Newton’s second law.
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Appendix I

The Free-System

The free-system is a system of N particles that must always be free of internal and external
forces, that must be three-dimensional, and that the relative distances between the N particles
must be constant.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the free-system
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the free-system relative to the reference frame S) are given by:

M .=
∑N

i mi

~R .= M−1
∑N

i mi ~ri

~V .= M−1
∑N

i mi ~vi

~A .= M−1
∑N

i mi ~ai

~ω
.= I−1

↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑N

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑N

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the free-system, I
↔

is the inertia tensor of the free-system (relative
to ~R) and ~L is the angular momentum of the free-system relative to the reference frame S.

The Transformations

(~ri − ~R) .= ri = ri
′

(~ri
′ − ~R′) .= ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) .= vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) .= vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) .= ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) .= ai
′ = ai
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Appendix II

The Relations

In a system of particles, these relations can be obtained ( The magnitudes Rcm, Vcm, Acm,
~Rcm, ~Vcm and ~Acm can be replaced by the magnitudes R, V, A, ~R, ~V and ~A, or by the
magnitudes rj , vj , aj , ~rj , ~vj and ~aj , respectively. On the other hand, R = V = A = 0 )

ri
.= (~ri − ~R)

Rcm
.= (~Rcm − ~R)

−→ (ri −Rcm) = (~ri − ~Rcm)

vi
.= (~vi − ~V )− ~ω × (~ri − ~R)

Vcm
.= (~Vcm − ~V )− ~ω × (~Rcm − ~R)

−→ (vi −Vcm) = (~vi − ~Vcm)− ~ω × (~ri − ~Rcm)

(vi −Vcm) · (vi −Vcm) =
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
·
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)−2 (~vi−~Vcm) ·
[
~ω× (~ri− ~Rcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)+2 (~ri− ~Rcm) ·
[
~ω× (~vi−~Vcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) ·(~vi−~Vcm)+
[
2 ~ω×(~vi−~Vcm)

]
·(~ri− ~Rcm)+

[
~ω×(~ri− ~Rcm)

]
·
[
~ω×(~ri− ~Rcm)

]
=

(~vi − ~Vcm)2 +
[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

[
~ω × (~ri − ~Rcm)

]2
(ai − Acm) · (ri − Rcm) =

{
(~ai − ~Acm) − 2 ~ω × (~vi − ~Vcm) + ~ω × [ ~ω × (~ri − ~Rcm) ] −

~α× (~ri − ~Rcm)
}
· (~ri − ~Rcm) = (~ai − ~Acm) · (~ri − ~Rcm)−

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{
~ω× [ ~ω×(~ri− ~Rcm) ]

}
·(~ri− ~Rcm)−

[
~α×(~ri− ~Rcm)

]
·(~ri− ~Rcm) = (~ai−~Acm) ·(~ri− ~Rcm) −

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{ [
~ω · (~ri − ~Rcm)

]
~ω − ( ~ω · ~ω ) (~ri − ~Rcm)

}
· (~ri − ~Rcm) =

(~ai− ~Acm) · (~ri− ~Rcm)−
[
2 ~ω× (~vi−~Vcm)

]
· (~ri− ~Rcm)+

[
~ω · (~ri− ~Rcm)

]2− ( ~ω )2 (~ri− ~Rcm)2

−→ (vi −Vcm)2 + (ai −Acm) · (ri −Rcm) = (~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)
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Appendix III

The Magnitudes

The magnitudes L2, W2, K2, U2, W4, K4, U4, W6, K6 and U6 of a system of N particles can
also be expressed as follows:

L2 =
∑N

j>i mi mj M−1
[
(ri − rj)× (vi − vj)

]
W2 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
∆ K2 =

∑N

j>i ∆ 1/2 mi mj M−1 (vi − vj)2 = W2

∆ U2 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
W4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
∆ K4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(ai − aj) · (ri − rj)

]
= W4

∆ U4 = −
∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
W6 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj) ·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj) · (~ri−~rj)

]
∆ K6 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(~vi − ~vj)2 + (~ai − ~aj) · (~ri − ~rj)

]
= W6

∆ U6 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj)·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj)·(~ri−~rj)

]
The magnitudes W(1 to 6) and U(1 to 6) of an isolated system of N particles, whose internal
forces obey Newton’s third law in its weak form, can be reduced to:

W1 = W2 =
∑N

i

∫ 2

1
Fi · d~ri

∆ U1 = ∆ U2 = −
∑N

i

∫ 2

1
Fi · d~ri

W3 = W4 =
∑N

i ∆ 1/2 Fi · ~ri

∆ U3 = ∆ U4 = −
∑N

i ∆ 1/2 Fi · ~ri

W5 = W6 =
∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
∆ U5 = ∆ U6 = −

∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
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