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In this paper we consider a nonlinear stochastic approach to the description of quantum 
systems. It is shown that a possibility to derive quantum properties - spectrum quantization, 
zero point positive energy and uncertainty relations, exists in frame of Zaslavsky phase liquid. 
This liquid is considered as a projection of continuous medium into a Hilbert phase space. It 
has isotropic minimal diffusion defined by Planck constant. Areas of probability condensation, 
formed by phase liquid turbulence, may produce clustering centers–particles, which preserve 
boundaries. These areas are described as strange attractors with fractal transport properties. 
The stability of attractors has been shown in frame of the first order perturbation theory. 
Quantum peculiarities of considered systems have been strictly derived from markovian 
Fokker-Planck equation. It turned out that the positive zero point energy has volumetric 
properties and grows for higher time resolutions. We have shown that a quasi stable 
condensate may be applied as a satisfactory model of an elementary quantum system. The 
conditions of attractor stability are defined on the basis of Nonlinear Prigogine Theorem. It is 
shown that the integrity of classical and quantum approaches is recovered while existence of 
particles is derived in terms of mechanical model. 

 

I. INTRODUCTION 

Let us introduce a nonlinear Fokker-Planck 
model of transport for the description of 
Zaslavsky phase liquid [1] evolution. We 
suppose that a liquid is a projection of 
continuous medium into a Hilbert phase space: 
each particle corresponds to a phase liquid 

coordinate-momentum pair: ( ) ( ), ( )X t x t p t
     

 
. 

Here the vector ( )X t


is characteristic vector 
which defines a dynamic state of the considered 
system. If we analyze only one dimensional 
case then a nonlinear Fokker – Planck equation 
can be received based on the following 
assumptions: 

( ', ' , ) ( ', , ' ) ( ', , )W X t x t W X X t t W X X t  
A probability doesn’t depend on the initial time 
point; 

( ', ) ( ', , )P X t W X X t . A final probability 
density doesn’t depend on the initial coordinate;  
The initial distribution is defined by Dirac delta 
function )(xW )0( : initial coordinate is 
defined accurately in relation to the system’s 
typical size. In case of active phase trajectory 
mixing – phase liquid turbulence, a mutual 
correspondence of transport properties and the 

characteristic vector is absent: diffusion factor B 
is an explicit function of time parameter:

( , )B B X t . In this case the same transport 
properties are inherent to the different elements 
of a phase space. A Fokker-Planck transport 
model expresses diffusion in the following way:    
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0 0 0( , , )X X X W X X t dX             

Here X0 is some initial point of characteristic 
vector observance; integration is realized though 
the considered phase trajectories set. Then a 
nonlinear transport equation can be represented 
in a differential form (2).  

( , ) 1 ( , )( )
2

P X t P X tB X
t X X

         
    (2)                   

It is derived in frame of markovian chain 
properties, expressed by Chapman – 
Kolmogorov relation [1]: 

3 1 2 3 2 2 1( ) ( ) ( )W X X dX W X X W X X        (3)                         

Besides basic transport properties the diffusion 
B allows definition of averaged stochastic 
energy ( , )X t .  
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This factor expresses a displacement of 
characteristic vector in relation to the set of 
accumulated trajectories. In particular case of 
finite time resolution energy may be defined in 
the following way:    
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II. CLUSTERING AND QUANTIZATION 

Let’s consider a uniform system: ( , ) ( )B X t B t . 
Then clustering properties of nonlinear Fokker-
Planck transport are naturally derived in frame 
of Fourier space-time decomposition: 

1( , ) ( , ) exp( )
2kP k t P k i t d  


 



       (5)                                         

1( , ) ( , ) exp( )
2

K

K

P X P k ikX dk  
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A substitution of these relations into equation 
(2) gives a nonlinear dispersion law:

 2( , ) ( )k t i B t k    . An allocation of real parts 
of [2] leads to a positive α space instability 
increment: 

Re( )Im( ) ( )
Re( )

kk B t


                   (7)    

 ( , ) Im 0k t k                                                            
As a result the distribution of density tends to 
instable space oscillations of exponential 
growth:   

     ( , ) exp Im exp ReP X t k X i k X   (8)                             
In terms of uniform approximation the relation 
(8) shows that a markovian system is converted 
into the set of ( , )P X t  regular fluctuations 
having an exponential growth. Areas of 
probability condensation may be represented as 
clustering centers in frame of Zaslavsky phase 
fluid model turbulence [1]. These centers are 
formed by stochastic islands of elementary 
phase attractors. The model is defined by not 
stationary transport properties - nonlinear 
increments are certainly explicit time functions.  
A growth of first order clusters leads to a 
disturbance of diffusion distribution: uniform 
approximation finally becomes unacceptable. 
However it can still be applied to each quasi 

uniform cluster separately. Each cluster splits 
into several second order clusters: scale free 
clustering instability is to be continued into 
smaller scales. Is this process infinite or some 
internal clustering scale exists as viscosity scale 
limits the turbulence cascade of L.Richardson 
[3]: “Big whirls have little whirls that feed on 
their velocity, and little whirls have lesser 
whirls and so on to viscosity”? In any case we 
have to face a quantum resolution limit.  
To analyze this problem we search for a stable 
elementary attractor with a rigid boundary that 
may be considered as elementary particle. For 
one dimensional case the following conservative 
system is valid: 

2

2
( , ) ( , )

2
P X t B P X t

t X
 

 
 

             (9)                                          

  0 0
0

( , , )
L

B t W X X t dX const                

 (0, ) ( , )P t P L t const    0,X L                          
Mathematically this system corresponds to a 
well known uniform linear diffusion PDE 
(partial differential equation). A solution is 
traditionally searched in a form of the Fourier 
expansion, given below for ( , ) 0P X t  :   

1

2( , ) ( ) cos
N

j
j

jP X t c t X
L
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We represent a final spectrum of diffusion 
factor which is given in the implicit form: 
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        (11)               

Switching the small fluctuation allows us to 
consider the first order of a perturbation theory:

 ( ) (0) expj j jc t c t   . A substitution of this 
relation into (11) gives the discrete spectrum 
[2]:   
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Here, a circular frequency min2 / t   is 
introduced. If we consider real values of 
transport then an increment j is to be negative: 
a particle of condensate with a rigid boundary 
tends to be stable and preserve a uniform 
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diffusion. This effect provides a particle 
structural stability.  
As the initial distribution of attractor is assumed 
to be uniform, then its spectral width is defined 
by some space-time resolution  min min,X t  :  

min
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            (13)                                              

A substitution of the first relation into (12) gives 
us the needed uncertainty limit, naturally 
defined by diffusion: jj Bt  min . If B0 is a 
minimal spectral value among the set of 
possible modes then an uncertainty can be 
simplified: 0t B   . An equivalence of phase 
space element representation allows deriving a 
coordinate-momentum relation as well:

min 0jp X B   . In such a way an elementary 
volume of a phase area is limited by internal 
transport properties of a phase liquid. What is a 
minimal transport factor which limits a 
clustering cascade? It can be evaluated in frame 
of the suggested perturbation model as well.  
Let’s find a minimum of transport factor (12). 
The solution of a first derivative condition is 
represented below:   

2 2
/1/ 2 0j j j

L LB j
j j j

 
 
   

           
   

 (14)                               

             ln( ) 2ln( )j C j      2
j C j                            

Here C is an arbitrary negative constant, defined 
by probability normalization. A positive sign of 
a second derivative is defined by the following 
equation: 

 
32
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            (15)                                            

This equation leads to a condition of 1 / 4j 
which is automatically valid for integer values 
of a mode number. Finally minimal diffusion 
and a corresponding minimal energy of particle 
can be represented in a following way: 
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An internal diffusion limit is defined by an 
external scale – particle size L. The diffusion 
length    [m2/s] may be estimated then by the 
group of relations (17): 
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      2L C t
      (17)                                         

We may notice that an internal scale is a 
function of descriptive parameter t  and two 
characteristics of the dynamic system: scale of 
the attractor L and the relaxation amplitude C
which defines rarefaction of a phase fluid (we 
may use a phase condensate term subsequently 
for more comfortable visual interpretation). The 
relaxation amplitude expresses a rate of phase 
trajectories divergence and we intuitively 
understand the validity of direct relation 
between the diffusive length and a divergence 
rate.               
Another fundamental consequence is a minimal 
energy quant, corresponding to a stable   
particle-attractor of a phase gas. This zero point 
energy has volumetric properties and grows for 
higher time resolutions. It means that high 
frequency oscillations of a phase gas provide a 
significant contribution to the minimal energetic 
capacity. A positive zero point level is an 
evidence of internal energy of an “unfrozen” 
phase gas. An account of a linear dispersion law 
(7) shows that small scale clusters of high j are 
responsible for this capacity. In such a way the 
energy resonance absorption is possible if 
extreme time-space resolution is achievable. A 
classical limit of 0  and 0k   leads to a 
natural result: 0 0  .         
 

III. PHASE LIQUID CONDENSATE 

Let us consider a projection of a phase gas into 
a visible space. All consequences, mentioned 
above, stay valid in a coordinate space; although 
a classical Hamiltonian approach can’t be 
applied for a trajectory unambiguous 
description. We may introduce a direct 
correspondence between a stochastic 
uncertainty relations for a stable attractor-
particle and conventional quantum relations: 
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         (18)                                                
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2

2
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C L
p X

    
2jp X  
     (19) 

The Planck factor here defines a universal value 
of a minimal attainable diffusion in frame of a 
phase gas model: 02B . Because of 
quantization properties we shall refer to this 
concept as to the quantum phase condensate. 
Isotropy of phase transport properties has been 
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derived under the condition of rigid boundaries. 
It should be noted that this basic assumption is 
naturally satisfied for quantum measurements 
where the instrumental scale L is present. A 
substitution of Planck factor allows deriving the 
zero point quant and a corresponding spectrum 
as well:     

0 2
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       (20)                                                   

Here a frequency supplementary term 1 / t   
has been introduced for convenient 
representation of quant. An example of 
hydrogen like spectrum allows illustration of the 
key transport properties (21). 
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The Rydberg constant Ry and a nuclear charge Z 
are incorporated in the relation between 
quantum and stochastic properties of a quasi 
stable atomic system. Modification of this 
equation allows expressing a relaxation factor in 
the following way:  

2 2

22j
Ry Z t const

L
 

             (22)                                                  

Again system stability decreases if larger scales 
are preferred. In such a way a clustering 
tendency, mentioned in Section II is realized. 
However we should remark the qualitative 
difference of two cases: a uniform stable cluster 
(a) and turbulent medium – “phase ocean” (b), 
separating these clusters. According to (1) we 
have the following diffusive laws 
correspondingly for 0jB B : 

2
2 2 j j

LX t B t
j


  
 

   
    (23a)                                    

2 ( )X B t t                (23b)                                                       

If we make a renormalization t A t   where 
A const  then a group of the shift square can 
be represented in the following way: 

2( ) ( )D A t X D t A           (24a)                                               
2( , ) ( , )D A t t X D t t A        (24b)                                            

For t  and 0t t t   these transport laws 
may be sufficiently simplified: 

( ) ( )D At D t A                   (25a)                                                          
( , ) ( )D At t D t A                 (25b) 

The first law (23a, 24a or 25a) expresses 
Einstein’s law of a Brownian particle shift. This 
type of attractor has a fractal dimension of

1.5FDim  , if we consider one dimensional 
case, and can be described as a self-similar 
strange attractor [4]. In general case a property 
of self similarity is not valid for unbounded 
media but is always present for the stable 
attractor (a). According to (7) it means that a 
linear dispersion law is valid in the first case:   

Re( ) Re( )jB
k
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t



            (26)                           

If we introduce a wave number 2 /k   where
 is a considered space scale, then (25a) 
equation can be modified: ( ) ( )D A D A   . 
Space-time self similarity, which is a natural 
fractal property, is a distinctive feature of a 
stable clusters. This scale free property provides 
their stability. Complexity and collective 
behavior of several ranges forms attraction and 
integrity: “order of chaos effect” according to 
the concept of Klimontovich [5]. The absence of 
boundary mixing means that a probability is 
preserved in a certain area of a phase space and 
clustering occurs. A constant diffusion leads to 
a surface of a constant energy, as it follows 
from (9): const  .  
Energy conservancy assumes that some 
dissipation mechanism exists. As we consider a 
phase fluid model, then it is natural for us to 
focus on a hydrodynamic approach. The 
mechanism of dissipation may be considered as 
a generalized viscosity which is “hidden” in 

( )B t  term. Let us designate q+ and q- for power 
input and output per system phase volume. Then 
energy balance condition can be formulated in 
the following way [6]:  

( )( ) ( ) 1
( )

q tR t f t
q t




     
 

            (27)                  

Here )(t


 is a set of control parameters. We may 
use an example of hydrodynamic bifurcation 
realized in turbulent flows. In this case all 
input/output energy mechanisms are provided 
by the flow inertial forces and by the viscous 
dissipation correspondingly. The basic phase 
parameter )(tR  is then a generalized case of a 
Reynolds number Re.    



5 
 

The scheme of const  boundary formation 
from instability may be represented by the set of 
chains, following below: 

1( ) ( ) 1 ( ) ( ) 1q t R t q t R t       (28)          

     1( ) ( ) 1 ( ) ( ) 1q t R t q t R t                                                   

     1( ) ( ) 1 ( ) ( ) 1q t R t q t R t          

     ( ) ( ) 1 ( ) ( ) 1q t R t q t R t       
Here   and  show finite increase and decrease 
of corresponding parameter. A positive 
feedback of input/output power is compulsory 
condition of bifurcation. For the case of fixed 
input power q+ basic phase parameter 
stabilization can be represented in the following 
way: 

0 0 1

( )( ) ( )
( ) ( ) ...

q tR t f t
q t q t



 
       

     (29)                                          

This not stationary process represents the 
consequent switching of nonlinear viscous 
vortexes. Let us apply this model to 
consideration of a quantum cluster-attractor. We 
consider an arbitrary surface in a phase space, 
separating areas of 1R   and 1R  . It has been 
shown [6] that an attractor stability may be 
reduced to the condition 1R  . At the same time 
a balance condition 1R   is valid at the 
considered surface (Fig.1) where a probability 
flow reaches zero point and the isolation 
condition appears:  ( , ) 0grad P X t    . 

 
FIG.1. Scheme of stable attractor-cluster 

 

A probability displacement AB is possible 
under the condition of  distortion which 
corresponds to a transition 1R  => 1R  . 
According to Nonlinear Prigogine Theorem [5] 

the existence of quasi impervious boundary 
0R   corresponds to a minimal entropy 

production in the vicinity of this boundary:
minh h . Here we introduce ( ( ))h h X t  as 

Kolmogorov – Sinai dynamic entropy. It is 
composed by averaging of positive Lyapunov 
factors: 
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    (30)                                                 

Vector ( )X t  is a characteristic phase vector of a 
system state while factor 

i  shows distance 
growth ( )iX t  in i direction for two infinitely 
closely located points in phase space. In such a 
way it’s clear that an existence of a considered 
surface is possible in unstable media of phase 
turbulence. On the other hand a surface 
distortion is possible only under condition of 
cluster instability. In Section II we have shown 
that cluster is stable in frame of the first order 
perturbation theory: cluster decay can be 
realized only within a higher order, strong 
impact. 

 

IV. CONCLUSION 

We have shown a clustering of phase turbulence 
and formation of a quasi stable condensate in 
attraction areas. These compact formations, 
particles-clusters, have quantum properties and 
internal uncertainties which make them 
convenient models for a quantum systems 
description. The charm of this approach is that a 
chronic collision between mechanical and 
quantum approaches is totally removed. It is 
now clear that random fluctuation of instable 
phase fluid lead to formation of low energy and 
low transport regions, which attract phase 
trajectories. Repletion of these areas contributes 
to higher uniformity and density. As a result a 
cluster becomes more stable and preserves its 
status quo until a strong nonlinear impact 
appears.       

 
 
 
 
 



6 
 

______________________________ 

[1] Zaslavsky, G.M., Sagdeev, R.Z., “Introduction to nonlinear physics: from the pendulum to 
turbulence and chaos”, Nauka: Moscow, 1988, p. 15-16; 
 
[2] Kamenshchikov, S.A., “Transport Catastrophe Analysis as an Alternative to a Fractal 
Description: Theory and Application to Financial Time Series”, Journal of Chaos, 2014, 
DOI:10.1155/2014/346743; 
 
[3] Ashford Oliver M., “Prophet or Professor? Life and Work of Lewis Fry Richardson”, Bristol: 
Adam Hilger, 1985, p. 320; 
 
[4] Klimontovich, U.L., “Turbulent motion and structure of chaos. New approach to statistic 
theory of open system”, M.: KomKniga, 2010, pp.288-289; 
 
[5] Mandelbrot B., J. W. Van Ness, “Fractional Brownian motions, fractional noises and 
applications”, SIAM Review, 1968, Vol.10, pp.422-437; 
 
[6] Kamenshchikov, S.A., “Extended Prigogine Theorem: Method for Universal 
Characterization of Complex System Evolution”, Chaos and Complexity Letters, International 
Journal of Complex Systems Research, vol. 8, ISSN: 1556-3995, pp. 63-71. 
 

 

 

 
 
 
 


