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Abstract

Statistical power is an important concept for psychological research. However, examining the 

power of a structural equation model (SEM) is rare in practice. This article provides an 

accessible review of the concept of statistical power for the Root Mean Square Error of 

Approximation (RMSEA) index of overall model fit in structural equation modeling. By way of 

example, we examine the current state of power in the literature by reviewing studies in top 

Industrial-Organizational (I/O) Psychology journals using SEMs. Results indicate that in many 

studies, power is very low, which implies acceptance of invalid models. Additionally, we 

examined methodological situations which may have an influence on statistical power of SEMs. 

Results showed that power varies significantly as a function of model type and whether or not 

the model is the main model for the study. Finally, results indicated that power is significantly 

related to model fit statistics used in evaluating SEMs. The results from this quantitative review

imply that researchers should be more vigilant with respect to power in structural equation 

modeling. We therefore conclude by offering methodological best practices to increase 

confidence in the interpretation of structural equation modeling results with respect to statistical 

power issues.
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The Issue of Statistical Power for Overall Model Fit in Evaluating Structural Equation Models: 

Examples from Industrial-Organizational Psychology Research

Structural equation modeling (SEM) is an increasingly popular analysis framework in 

many areas of scientific inquiry, including psychology, management, and sociology (MacCallum 

& Austin, 2000; Swanson & Holton, 2005). However popular, SEM is highly complex and its 

statistical mechanics are often not well understood by users. As a result, SEM has the potential to 

be misapplied, affecting the interpretation of scientific findings. For example, researchers often 

allow data to dictate which measurement errors should correlate, as opposed to appealing to a

priori theory, which can make poorly fitting models appear “passable” (Hermida, Conjar, Najab, 

Kaplan, & Cortina, 2010; Landis, Edwards, & Cortina, 2009), or give inappropriate statements 

regarding causality without the backing of theoretical assumptions within SEM (Pearl, 2009; 

2012).

While there are a number of methodological subtleties to SEM (Bagozzi & Yi, 2012;

Bentler & Bonnett, 1980; MacCallum & Austin, 2000), one issue that has largely escaped the 

attention of SEM users is consideration of statistical power in SEM with respect to overall model 

fit. Understanding power in model fit is important because power reflects the probability that a

model will differentiate between good and bad theory-implied constraints or specifications

(Cohen, 1988; 1992). Since overall model fit is one of the main standards by which empirical

evidence provided by structural equation models (SEMs) are judged, understanding issues 

related to power of SEM fit indices can provide the understanding necessary to effectively 

conduct SEM-based data analysis, improve inferences regarding SEMs, and increase the rate of 

scientific progress enjoyed by users of SEM.
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The primary purposes of the present study are fivefold. First, we wish to inform 

researchers how sampling variability and power can potentially harm our inferences regarding 

our judgments of SEMs. Second, we wish to give sufficient background as to how power is 

calculated in a structural equation modeling context for overall model fit. Third, we wish to 

benefit researchers by explaining the main influencers of power so as to aid researchers in study 

design efforts. Fourth, we wish to examine certain methodological situations that could signal a 

need for the researcher to pay particular attention to statistical power. Fifth, we wish to conduct a 

quantitative review regarding power in order to a) gain understanding of the distribution of 

power as it exists in published journal articles, and b) test the degree to which power is 

associated with certain methodological situations.

The results of our review speak to the level of uncertainty related to the decisions 

scholars make about model fit. Thus our survey provides best practices to researchers in terms of 

“powering” their study to detect non-trivial problems related to model misfit. Our research is 

primarily based on MacCallum, Browne, and Sugawara (1996), who conducted the pioneering 

work in developing the concept of statistical power in overall model fit indexes. It is our hope 

that after reading this review, researchers will understand the statistics of power as it relates to 

overall model fit, and moreover be able to identify how some methodological issues might 

provide signals to the researcher regarding power of their tested models.

Overview of Power

The primary strength of SEM, and the root of its popularity, is in integrating the 

measurement model focus of factor analysis with a structural or theoretical model that has been 

the focus of path analytic or regression modeling. An important issue to both measurement and 

structural models is examining how well the model implied by theory fits to the data collected 
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(Kaplan, 1995; Specht, 1975). To the extent that a theoretical model fits empirical data, the 

theoretical model is confirmed, as it is a plausible explanation for the covariance structure 

amongst the variables (Mulaik et al., 1989). The issue of how to evaluate model fit is 

complicated, and opinions have yet to converge on the most appropriate method. As a result of

different opinions related to how fit should be assessed (Barrett, 2007; Hayduk et al., 2007), a 

number of model fit indices have been developed for SEMs (Bagozzi & Yi, 1998; Bentler, 

1990), each with different properties across a number of dimensions, such as absolute vs. relative 

fit (Mulaik, 2009). 

Of the many structural equation model fit indices available in the literature, the RMSEA 

is a popular index of absolute fit (i.e., it is not relative to the null model as are indices such as the 

confirmatory fit index or CFI) and is noted for its insensitivity to estimator by comparison to 

relative fit indices (Sugawara & MacCallum,1993). The RMSEA is, most fundamentally, a 

function of the model chi-square value, but also includes the model degrees of freedom, and 

sample size as seen in Equation 1.  
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Important to note is that model degrees of freedom, for traditional maximum likelihood 

SEM with continuous factor indicators, are computed by obtaining the total number of elements 

in the variance-covariance matrix that can be analyzed minus the number of estimated 

parameters. Readers who wish to review these concepts should consult a more in-depth 

explanation of degrees of freedom by Rigdon (1994).

The functional form of the RMSEA in Equation 1 can be explained by noting first that 

nested within the RMSEA index is the assumption that the model being estimated is misspecified 
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to some extent and, consequently, the model chi-square statistic follows what is known as a non-

central chi-square distribution. The non-central chi-square distribution can be thought of as the 

chi-square distribution when chi-square possesses any non-zero value (Patnaik, 1949). Relevant 

to this review, the non-central chi-square distribution comes into play when one wants to know 

the chance that chi-square exceeds a particular chi-square value when the true population value

of chi-square is non-zero (Cox & Reid, 1987). Of chief concern is the noncentrality parameter, 

which is simply the parameter that occurs in a distribution that is a transformation of the normal 

distribution (like the non-central chi-square distribution), and how this parameter relates to 

power. 

Let us walk through a brief statistical sample to illustrate these interactions. At this point, 

the reader is encouraged to walk through these steps in order to become more intimate with the 

procedure. It would also be helpful to have the seminal work (MacCallum et al., 1996) on hand 

for easy access to referenced graphs and figures, as well as tools to easily calculate power on 

hand (Preacher & Coffman, 2006).

Suppose a researcher tested a model with 20 degrees of freedom, a sample size of 200. 

Next suppose the researcher wanted to obtain the probability of rejecting the null hypothesis that 

the obtained chi-square would be equal to or less than RMSEA = .05 (i.e. – χ² = 29.95 in this 

context), if the true value was RMSEA = .08 (i.e. – χ² = 45.47 in this case), with alpha equal to 

the traditional .05 level.

Calculation of the noncentrality parameters associated with the null and alternative 

hypothesis is easily done via the following formula:

))()(1( 2RMSEAdfN             (2)
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Therefore, in this example the noncentrality parameter associated with the null hypothesis 

(ncp0) is 9.95, and the noncentrality parameter associated with the alterative hypothesis (ncpa) is 

25.47. It is important to note at this point that the extent to which the model is correctly 

specified, the model is better approximated by the “central” chi-square (which has a mean or 

expected value equal to the model degrees of freedom) and ߣ approaches 0. The more the model 

is misspecified is the degree to which the noncentrality parameter and central chi-square diverge

(see figure 1, pg. 136; MacCallum et al., 1996). We will now turn to specific hypothesis tests 

taken from MacCallum et al. (1996) that will be relevant for our quantitative review. 

Exact, Close and Not Close Fit. MacCallum et al. (1996) use the non-central chi-square 

distribution to propose three hypothesis tests which evaluate different aspects of model fit by 

assessing the degree of overlap between a pair of non-central chi-square distributions  (i.e., the 

null and alternative distributions). The first test proposed by MacCallum et al. is a test of exact 

fit. Exact fit is analogous to the central chi-square test of model fit in that it evaluates whether a 

model's fit to the data is sufficiently good to be “exactly” as the specified model dictates (see 

footnote 1). The null value used for the exact fit test is not, however, 0 (i.e., no model 

discrepancies from the data), but rather some very small RMSEA value, such as .01. In the 

instance that the estimated RMSEA is sufficiently large—that is, large enough to be significantly 

different from a small value such as .01 (MacCallum et al., 1996)—then we can infer that the fit 

of the model is not likely to be exact. 

A departure from the exact fit idea is proposed through the second test of close fit. Close 

fit differs from exact fit in that it evaluates whether the confidence interval about RMSEA 

centers around, but does not exceed, 0.05. Hence, the purpose of the close fit test is to evaluate a 

model in which the null hypothesis is .05, with an alternative hypothesis that is larger than .05—
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suggesting that the RMSEA in the population is likely to be ≤ .05. Models that are not 

significantly larger than .05 are inferred to have a close fit, and although close fit is not exact, 

MacCallum et al. argue that the data approximates the model “closely” or well enough to be of 

use scientifically. 

The final test proposed is not close fit. Not close fit supplements conceptual deficiencies 

in the previous tests by evaluating whether the estimated RMSEA ≥.05 therefore indicating that 

the model is likely to be a poor fit to the data. Similar to the test of close fit, the null distribution 

centers on RMSEA of .05, however the alternative distribution for not close fit is fixed at a value 

less than .05. Thus, as MacCallum et al. show (p. 136-8), the not-close fit test adds to the 

information provided by the close fit test by distinguishing between situations where the 

RMSEA’s confidence interval falls relatively close to a value of .05. Specifically, based on the 

pattern of tests accepted and rejected the researcher can triangulate on the likely “true” RMSEA 

of the model. For example, when the test of not close fit is rejected and the test of close fit is 

accepted, a researcher can infer that the true RMSEA falls somewhere below .05. Alternatively, 

when close fit is rejected but not close fit is accepted, a researcher can infer that the true RMSEA 

falls above .05. A final possibility is that both tests are accepted, which suggests that RMSEA’s 

confidence interval centers around .05. In combination, all three tests permit a researcher to 

evaluate the degree of model fit more flexibly than using only “rule of thumb” cut off values for 

fit indices or a single chi-square test, as the “three test” procedure admits to the idea that degrees 

of freedom and sample size play an important role in the precision of the estimates obtained 

using SEM and the level of uncertainty we have about their true values—which is thereby 

reflected in the confidence interval associated with the estimated model’s fit (McQuitty, 2004).        
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Brief Review of Hypothesis Testing for RMSEA. The hypothesis testing procedure for 

tests of overall model fit in SEM differ slightly from the way hypothesis tests are structured for 

traditional statistics such as ANOVA F-tests or t-tests. To be precise, accepting the null is a 

sought after result in the case of close and exact fit. Moreover, accepting the null of a not close 

fit test does not imply unacceptably poor fit, but only not good fit. Whereas the interpretation of 

the tests differs, the logic of the hypothesis testing procedure does not differ from the usual 

procedure as outlined in introductory statistics texts. 

Hypothesis testing for RMSEA proceeds by evaluating the distributions of two values of 

RMSEA—which for the sake of consistency with MacCallum, et al., we will, for the remainder 

of the present section, refer to as є—the null value: єo and the alternative value: єa. Using єo and 

єa we then can compare the non-central chi-square distribution associated with єo to the non-

central chi-square distribution associated with єa. The overlap between єo and єa is overall 

covariance model power—based on є. The null hypothesis value for each of the tests (exact, 

close, or not close) we describe above (e.g., .01 for exact fit) and similar to differences between 

means in a t-test, the differences between єo and єa values can be conceptualized as the “effect 

size” component that factors into the power calculations for t-tests. When єo > єa, power is 

estimated as:

ߨ = ܲ(߯ௗ2, > ௔ߣ  ߯௖2)        (3)

Whereas when єo < єa, power is estimated as:

ߨ = ܲ(߯ௗ2, < ௔ߣ  ߯௖2)        (4)

In both cases,߯௖2, ߯ௗ2,, and ߣa represent the non-central chi-square distributions associated with єo 

and єa and ߨ represents statistical power . When єo > єa, the power is measured as the portion of 

߯ௗ2, or ߣa, that lies to the left of alpha (α) in the left tail of߯௖2. When єo < єa, power is measured as 
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the portion of ߯ௗ2, or ߣa, that lies to the right of the critical value α in the right tail of߯௖2. When є = 

0, the non-centrality parameter ߣ is also 0 (see Equation 3). In this case, є is distributed as a 

regular, central chi-square and perfect fit is implied. We will now move to a discussion of 

statistical factors that influence power.

Factors Affecting Power

Closeness of null and alternative RMSEA values. One major area that influences 

power (all else equal), is the closeness of the RMSEA values associated with the null and 

alternative hypotheses. Closeness of null and alternative RMSEA values is negatively associated 

with power. That is, the closer the RMSEA values, the more power decreases.

This pattern occurs because to the degree that null and alternative RMSEA values are 

similar is the degree to which the non-central chi-square distributions overlap. To the degree the 

distributions overlap, is the degree to which there is a lack of ability to find area under the 

alternative non-central chi-square distribution that is beyond the critical value associated with the 

null hypothesis and not overlapping with the non-central chi-square distribution associated with 

the null. To use our previous examples, the ncp0 and ncpa associated with RMSEA = .05 and 

RMSEA = .08 are 9.95 and 25.47 (difference of 15.52) and generate a power coefficient of .45.

If the null was moved to RMSEA = .07, the ncp0 would shift to 19.50 (difference of 5.97). This 

would cause the null and alternative distributions to move closer together, creating more overlap 

and less power (in this case .13). However, if the null was moved to RMSEA = .01, the ncp0 

would shift to 0.40 (difference of 25.07). This would cause the null and alternative distributions 

to move further apart, creating less overlap and more power (in this case .88). The bottom line 

here is that the more differentiation there is between the null RMSEA and the alternative 

RMSEA, the more power will increase, all else being equal.
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Sample Size. Sample size has a positive association with power. That is, as sample size 

increases, power increases. This is because as sample size increases, the ability for the null and 

alternative noncentrality parameters to separate themselves from one another increases as well.

For example, in our running example with a sample size of 200, the difference between the ncp0 

and ncpa was 15.52 (derived from 25.47-9.95), which equates to a power coefficient of 0.45. If 

the sample size is increased from 200 to 500, this difference increases to 38.92 (derived from 

63.87-24.95), and drives power to 0.86. If the sample size decreased to 100, the difference 

between the parameters would drop to 7.72 (derived from 12.67-4.95), causing power to 0.24.

This is because the individual noncentrality parameter is calculated via a multiplicative term 

involving degrees of freedom, sample size, and the square of the RMSEA null or alternative 

hypothesis in question (see equation 2). Ultimately, as sample size increases, power will increase 

as well, all else being equal.

Degree of Model Misfit. A more subtle influence on power is the degree of model 

misspecification. All else being equal, it is easier to obtain power as model misfit increases. For 

example, with df = 20, N = 200, RMSEA null = .00, and RMSEA alt = .05, power is only 0.40. 

However, if the null and alt RMSEA were .05 and .10, power would increase to 0.84. While 

these examples are contrived to illustrate the general principle, the general theme here is that the 

more precise your models, and the more precise of a comparison you wish to make, the more 

difficult it is to obtain power. Just as before, this occurs because the noncentrality parameters are 

connected to degrees of freedom, sample sizes, and RMSEA. For high RMSEA values, there is 

more potential for the ncp0 and ncpa to differ than for low values of RMSEA, holding all else 

equal. The bottom line here is that as the degree of model misfit increases, power will increase as 

well, all else being equal. 
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Degrees of Freedom. Finally, the relationship between degrees of freedom and power is 

positive. That is, as degrees of freedom increase, power increases as well. This relationship takes 

place on two different fronts. First, degrees of freedom impact obtained noncentrality 

parameters. As the degrees of freedom increase, so too does the noncentrality parameter. Applied 

to the current context, as degrees of freedom increase, the noncentrality parameters associated 

with the null and alternative hypotheses increase, but the degree of difference between the 

noncentrality parameters also increases. This is because the individual noncentrality parameter is 

calculated via a multiplicative term involving degrees of freedom, sample size, and the square of 

the RMSEA null or alternative hypothesis in question. For example, with df = 5, N = 200, 

RMSEA null = .05, and RMSEA alt = .08, power is only 20, with the ncpa and ncp0 possessing a 

difference of 3.88 (6.37-2.49). However, if the degrees of freedom were increased to 50, power 

would increase to 0.73, with the ncpa and ncp0 possessing a difference of 34.92 (57.31-22.39).

A more obscure way that degrees of freedom impact power is through manipulation of 

the shape of noncentral chi-square distributions. This is because the shape (variance) associated 

with the noncentral chi-square distribution is dependent on both degrees of freedom and the 

noncentrality parameter, as represented in the formula below:

)2df(2                (3)

This can be seen further by examining the formulas associated with the skewness and kurtosis of 

the noncentral chi-square distribution, as shown in formulas 4 and 5, respectively:

5.1

5.1

)2df(

)3df(*2


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         (4)
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             (5)
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To the degree the noncentral chi-square distributions change, power will change as well, 

all else being equal. The bottom line here is that as the number of degrees of freedom increases, 

power will increase as well, all else being equal. 

To summarize the described effects on power to detect model misfit, power increases as 

sample size, degrees of freedom, difference between null and alternative RMSEA values, and 

degree of model misfit increase. It is important to keep in mind that all of the aforementioned 

effects were described in the context of all other influences being held constant. It is critical to 

note that in reality, all of these elements interact with one another to produce statistical power, 

and consequently, it is possible to have several of the elements oriented towards low power, but 

to have a single element that is so strong as to compensate for the weakness of the other elements 

in producing power, or vice versa.

To give an extreme example in order to illustrate the principle, suppose a researcher 

sought to find power of a model that had extremely few degrees of freedom (5) and null and 

alternative RMSEA values that were both small and close together (.00 and .01). While these 

elements would generate low power in most situations, a researcher that obtained a sample size 

of 50,000 would obtain a power coefficient of .98. Conversely, suppose a researcher sought to 

find power about a model that had 70 degrees of freedom, a sample size of 500, and an 

alternative RMSEA value that had a fairly higher degree of misfit (.08). While these elements 

would generate high power in most situations, if the null RMSEA was set at .07, power would 

only be 0.53. 

Ultimately, it is our desire for researchers to understand the main influencers of power, so 

that researchers can more easily ascertain power in different scenarios, appreciate what might 
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need to be done to obtain more power in a particular research setting, and ultimately engage in 

meaningful power analysis at the planning stages of the research process.

Rationale for Quantitative Review

Hypothesis testing and power estimation for overall model fit is conceptually identical to 

hypothesis testing for less technically-complicated statistical analyses such as bivariate 

correlation or analysis of variance (ANOVA). Unfortunately, until relatively recently, no 

computational algorithm or computer program has been available from the literature to allow 

practicing researchers to easily compute a priori power values for the RMSEA index (see 

Preacher & Coffman, 2006). Moreover, the technical documentation of the RMSEA hypothesis 

testing procedure was presented in a very technical way by MacCallum et al. (1996). We believe 

that the combined influence of both of these factors have contributed to the relative neglect of 

power vis-à-vis overall model fit in structural equation modeling. 

As opposed to the use of hypothesis testing, SEMs in the literature are usually evaluated 

on the basis of commonly accepted point estimate “cut-offs” such as .05 for “excellent” or .08 

for “adequate” fitting models (Chen, Curran, Bollen, Kirby, & Paxton, 2008). The use of cut-off 

values are necessary, however, using only cut-off values and omitting hypothesis tests altogether 

does not allow a researcher to account for sampling variability, as we note above. For example, 

our confidence in a model with a RMSEA of .06 and a standard error of .01 is very different 

from the same RMSEA value with a standard error of .05. In particular, a RMSEA with a smaller 

standard error will, in the long run, be more similar to the result just obtained than an identical

RMSEA value with a larger standard error. Hence, our certainty about the true value of the 

RMSEA, and thus the true fit of the model to the data, is necessarily different.
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An implication of the relative neglect of power in SEM is the potential for models to have 

acceptable RMSEA values, yet high levels of sampling variability—suggesting the possibility 

that the value a study’s fit index obtained is merely due to chance. The issue of chance values of 

fit is an important one, as obtaining a RMSEA value that is deemed “adequate” in magnitude but 

not “adequate at beyond chance levels” in terms of its confidence intervals is much like a large 

correlation that is not sufficiently larger than 0 to be statistically significant. In our view, the 

current lack of attention to overall model fit sampling variability casts doubt on the fidelity of the 

results obtained in our literature for SEMs. Stated differently, owing to the neglect of power-

related issues in SEM, it is possible that published research using SEMs does not have acceptable 

levels of power to differentiate failing from adequate models and, thus, do not have adequate 

power to make an accurate decision about model fit based on the data. Although it is possible 

that our SEMs in the organizational sciences do not have acceptable levels of power, and thus are 

not particularly informative about model fit, the extent of the problem is an empirical question. 

Therefore, in order to evaluate the possibility that SEMs in the organizational sciences do not 

offer adequate information about model fit, we conduct an extensive survey of the organizational

science literature to ascertain the state of the field regarding power of SEMs in influential 

research from top-tier journals. Specifically, the current survey will consider many important 

aspects to the topic of power in SEM, such as the distribution of power across all studies 

included, differences in power between models that are ultimately deemed to be the best model 

in a study vs. those models that are not deemed to be the best model, differences in power across 

different types of model configurations (i.e., measurement vs. structural models), and we also 

incorporate information regarding sample size issues—as sample size is directly linked to 

statistical power. Finally, our study seeks to contribute to the discourse regarding good practice 
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in SEM, and therefore will conclude by make recommendations related to “best practices” for 

power in SEM.

Variables to be Reviewed

We have reason to believe that there are several critical issues to examine vis-à-vis power 

in structural equation modeling. We list these factors, with emphasis on why we think these 

factors are important to examine in the quantitative review. These are the exploratory variables 

we will review, as we do not have a specific hypothesis associated with these variables.   

Distribution of Power. The first and most important attribute that we wish to review is 

the distribution of power across models in Industrial-Organizational Psychology journals. Of 

particular interest in the percentage of studies that exhibit low levels of power, which in this case 

would correspond to inadequately falsifiable models. This is important because models that lack 

falsifiability have the potential to lead researchers down incorrect paths with respect model fit 

and the understanding of psychological relationships.

Sample Size Issues. A second and related issue to be analyzed is the sample size 

associated with models to be tested in structural equation modeling. This is important because 

sample size is a somewhat controllable issue in model testing, and directly related to a model’s 

ability to be falsified with respect to overall model fit. It is our suspicion that in some cases, 

models possess a sample size that is grossly inadequate to meet a reasonable level of falsifiability 

and power. If this is true, it could signal the needs for researchers to increase the sample size 

involved in testing their models, in order to achieve power that signifies a reasonable level of 

falsifiability.

Moderators
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We have reason to believe that several methodological artifacts will have an influence on 

the overall power of tested models in this quantitative review. We will list these variables and 

associated hypotheses now, with emphasis on why we think these artifacts will influence power. 

Model Type. We have reason to believe that the type of model researchers conducting 

structural equation modeling on will have an impact on the power of the tested model. 

Specifically, we believe that measurement models will possess higher levels of power as 

compared to models that are purely structural in nature. This is because measurement models 

tend to have greater degrees of freedom than structural models, owning primarily to the use of 

multiple indicators in modeling a single latent variable. It seems unlikely that on average, 

structural models will have enough variables to counteract the degrees of freedom obtained 

through the use of multiple indicators in measurement of latent variables. All else being equal, 

lower degrees of freedom for tested models equates to lower overall power. Therefore, our first 

hypothesis is:

Hypothesis 1: Power will be associated with model type such that measurement models 

will have significantly more power than structural models.

Main Models vs. Competing Models. We also have reason to believe that the model 

selection process in and of itself could lead to differing levels of power. Often, researchers will 

choose the best fitted model as their model of choice after adding pathways suggested by 

modification indices (MacCallum & Austin, 2000). Additionally, many researchers will judge 

models on the basis of overall model fit, and chose the best fitted model as their final model. If 

this is true, degrees of freedom in competing models will be lower than in the final model, which 

would in turn cause lower power, all else being equal. Additionally, if researchers are choosing 

models that have the best fit as their best models, it is possible that because power to detect 
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misfit is negatively associated with fit (all else being equal), that main models will have best fit, 

but only because of lower power. Our hypothesis is therefore:

Hypothesis 2: Power will be associated with main models such that main models will 

have significantly less power than competing models.

Teams/Groups Models vs. Other Models. The previous two hypotheses dealt with 

methodological artifacts that could reduce power via reduction in the number of degrees of 

freedom of the tested model. We believe that power is also susceptible to being lower in models 

that deal with team and group topics than other types of models through sample size reduction. It 

is common in teams/groups studies to reduce the tested sample size in terms of N, because 

team/group variables usually required the original sample size to be divided by some factor in 

order to produce teams or groups to study. For example, a sample size of 600 individuals might 

be reduced to 200 teams composed of three individuals each. This process means that it is much 

harder for these studies to obtain sample sizes on which the final tested model will have an 

appreciably high N, than non-group/teams studies where the division of sample size does not 

take place, all else being equal. Because sample size is a factor that influences power, we 

hypothesize that:

Hypothesis 3: Power will be associated with teams/groups models such that 

teams/groups models will have significantly less power than non-teams/groups models.

Fit Index Values. A third issue to be analyzed is the relationship between fit indices and 

power in models published in I/O Psychology journals. This is important because model fit index

values are one of the main standards on which the value of a model is judged. To the degree that 

model fit is associated with power is the degree to which there is potential for fit indices to be 

artificially high and not reflective of true population values. Logically, because fit indices are all 
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based on the degree of model misfit in some way, it follows that the degree to which the model is 

powered to detect misfit is the degree to which the model fit index will be worsened. It could be 

the case that for some models, fit is only seen as acceptable because the power to detect misfit is 

low. This review seeks to quantify these issues. We therefore hypothesize:

Hypothesis 4: Power will be associated with fit index quality such that as power 

increases, fit index quality decreases.

Journal Quality. Finally, we believe that journal quality may be related to overall power 

in that higher quality journals may be associated with more highly powered models. If higher 

powered models are more scientifically sound, and higher quality journals publish more 

scientifically sound researcher than lower quality journals, then there seems to be reason to 

believe that all else being equal, higher quality journals would present findings related to more 

falsifiable models. Our specific hypothesis is:

Hypothesis 5: Power will be associated with journal quality such that as journal quality 

increases, model power increases.

Method

Sample of Studies                                                                                                                             

As the goal of the present work was to review trends of power in Organizational 

Psychology we conducted a comprehensive literature search of studies using SEM in journals 

frequently referenced in organizational psychology. Literature searches were conducted using the

PSYCINFO, ProQuest, ERIC, AB-INFORM databases. Journals included were Journal of 

Applied Psychology, Personnel Psychology, Academy of Management Journal, Human 

Performance, International Journal of Selection and Assessment, Journal of Management, 

Journal of Organizational Behavior, Organizational Behavior and Human Decision Processes, 
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and Journal of Vocational Behavior. As such, we only included studies using SEM from each of 

these 9 journals. We limited our search from 1996 to 2012, as 1996 is the year in which 

MacCallum et al.’s (1996) article was disseminated to the research community. In all databases, 

we used the keywords “covariance models,” “confirmatory factor analysis,” “structural equation 

modeling,” and “SEM” to identify articles that used SEM.                        

Selection Criteria                                                                                                                       

In order to be included in the present quantitative review, each study was required to 

report information needed to ascertain power of at least one model. Specifically, degrees of 

freedom and sample size for a structural equation model estimated was necessary. We also 

collected information on overall fit indexes such as the chi-square, RMSEA, CFI, and NFI. We 

identified a total of 365 studies across the 9 journals that met initial inclusion criteria. However, 

after reviewing each of the articles we excluded 25 for a grand total of 340 usable studies. In 

general, the articles that were excluded were measurement equivalence studies. We elected to 

exclude measurement equivalence studies due to the fact that these studies did not include 

information necessary for model comparison in that they rarely had a “main model” for coding.

Additionally, measurement equivalence studies are generally less focused on absolute fit index 

values, and more focused on parameter equivalence between groups. Since the focus of the 

present study was on statistical power of overall model fit, we elected to discard measurement 

equivalence studies. Within the valid articles, 1,692 individual SEMs were included in the 

present study.

Article Coding
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Once we had identified a set of usable studies, we coded each article for relevant 

variables. First, we coded features of the articles such as the year, authorship, and journal where 

the article appeared.

Second, each SEM within each article was coded for its reported degrees of freedom (df)

and sample size (n). Using information on df and n, we calculated the power coefficient for the 

tests of exact, close, and not-close fit, using software available from Preacher and Coffman 

(2006). In addition, we calculated the sample size that would be required to obtain a power 

coefficient of .80 and recorded the difference between this sample size and the actual, reported

sample size. 

Third, we recorded aspects of each SEM. The first coding task was to evaluate whether 

the model was a measurement only, structural only (i.e., with no estimated measurement-related 

parameters), or combination of measurement and structural model. The second coding task 

focused on whether the model in question was a model that evaluated phenomena about team 

and/or group functioning by dispersing the original sample size across teams or groups. This 

variable was included because we hypothesized that the necessary reduction in sample size to 

study variables at a team-level as opposed to individual level would decrease n and thus decrease 

power, all else being equal. 

Fourth, we evaluated each reported SEM within an article to arrive at the “main” 

model(s) of the article. We considered the main models of the article to be models that were 

either most justified by theory presented earlier in the article and the focus of the study’s 

hypotheses or the model that the study’s authors deemed the “final” model either explicitly or 

indirectly in the language included in their discussion and results sections. The final model was 

always deemed to be the model that the authors declared their “final” model, even when the 
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deemed “final” model differed from the model hypothesized in the introduction section of the 

article in question.

Finally, we included information about each of the overall fit indices of the SEMs. We 

coded for all possible fit indices, including a category of “other”, for fit indices that are not 

traditionally reported in I/O Psychology, such as the Akaike Information Criterion (AIC). 

Each of 1,692 structural equation models was double coded for accuracy. Descriptive 

statistics are presented in Table 1. The most problematic area with respect to coding was 

identification of main models, with an interrater agreement statistic of .76. Full interrater 

agreement statistics are displayed in Table 2. While no individual category possessed 

unacceptable, or even mediocre degrees of agreement, the difficulties in reliability centered 

almost exclusively on identification of the main model of the article. Specifically, there were 

instances in studies where the language used by authors made it unclear what the final model was 

meant to be. Often, these difficulties arose in studies where it appeared the authors engaged in 

post-hoc modeling while not explicitly stating they were doing so. In these cases, we carefully 

examined the introduction sections of the studies in order to ascertain the likelihood of authors 

truly supporting a particular post-hoc model vs. simply arriving at a post-hoc model through 

model modification. 

A second area of importance with respect to judgment calls in coding came from 

identification of whether the model in question was a measurement model, structural model, or 

combination measurement/structural model. While this may seem surprising, we encountered 

studies that depicted misleading model figures (i.e., graphics) along with misleading text in 

indicating what model actually went into a particular statistical program. Often, this was 

indicated by degree of freedom figures that were dramatically misaligned with information 
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presented in pictures and text. The most common feature of this idea was when authors only 

presented information in graphics relating to structural models, but in fact simultaneously tested 

a measurement/structural model, while neglecting to include this information in a footnote or 

text. In the instances where the degrees of freedom were dramatically misaligned with what 

would be a structural or measurement model in isolation and otherwise had no strong textual 

evidence to indicate what type of modeling was actually conducted, we elected to code the model 

as a combined measurement/structural model.

Power Calculations

This quantitative review followed suggestions from MacCallum et al. (1996) by using

values of 0.00 and 0.05 for testing exact fit, 0.05 and 0.08 for testing close fit, and 0.05 and 0.01

for testing not close fit; each value corresponding to єo and єa, respectively. However, because 

the general trend of power associated with the types of hypothesis tests were strongly correlated

(r = .99), we elected to report the results of the close fit test, following recommendations from 

MacCallum et al. (1996). 

Exploratory Review

Distribution of Estimated Power. A primary goal of this quantitative review was to 

examine the distribution of estimated power coefficients in I/O Psychology. The distribution of 

estimated power coefficients can be seen in Table 3. Across all studies and models, 

approximately 22 % of models had a power coefficient less than .50. Therefore, 22% of all 

SEMs tested in Organizational Psychology have less than a 50 % chance of correctly rejecting an 

invalid model again where the null RMSEA of .05 and the alternative RMSEA of .08. Also, the 

majority of the power coefficients fell in the range above .90. Therefore, although most models 
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have high levels of power, a non-trivial percentage of models have unacceptably liberal levels of 

power.

Sample Size Issues. A goal of this quantitative review was to evaluate the degree to 

which models were judged to have too small a sample size, relative to the number of degrees of 

freedom of the model, in order to obtain a certain level of power. For this study, we used a power 

coefficient of .80 as the definition of a properly “powered” study. The distribution of sample size 

differences can be seen in Figure 2. Interestingly, approximately 27% of models needed at least 

100 more participants to reach a power coefficient of .80, while approximately 11% of models 

needed at least 500 more participants to reach a power coefficient of .80. In general, our results 

suggest that a nontrivial amount of models have sample sizes that are grossly inadequate to test 

their theoretical models. The results of the sample size analysis can be seen in Figure 1.

Fit Index Values. Because statistical power is likely to predict the fit of SEMs, we used 

obtained power coefficients as a predictor of model fit for the RMSEA, CFI, NNFI, and Chi-

Square. Because we were concerned with SEMs in published articles, we limited our analysis to 

values of fit indices that were in the range of values likely to be published, and within the 95 

percent confidence interval for models included in this review. Therefore, we examined the 

relationship between power and fit for values of RMSEA that were between 0.00 and 0.08, 

values of CFI between 0.90 and 1.00, and values of NFI between 0.90 and 1.00 (additionally, 95 

percent of observations fell between these values for each fit index). We also examined Chi-

Square via the probability value associated with the Chi-Square test statistic.

Results indicated that for all fit indices, statistical power was associated with worsened

fit, as judged by the fit index in question. This finding held for RMSEA r(784) = .25, p < .05, 

CFI r(889) = -.27, p < .05, and NFI r(278) = -.20, p < .05. The correlation coefficient associated 
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with the Chi-Square probability value was significantly associated with power, r(1547) = .29, p < 

.05, which indicates that as power increases, the likelihood of finding nonsignificant misfit

decreases. These correlations were all statistically significant at the .05 level. In terms of 

interpretation, this means that within published studies and fit index values commonly seen in 

the literature, power is negatively related to fit index quality—liberally powered SEMs are more 

likely to obtain better fitted models as compared to conservatively powered SEMs, as judged by 

common fit indices.

Moderators

Differences in Model Power across Model Type. A goal of this quantitative review was 

to examine power across SEM types, specifically measurement vs. structural models. For 

measurement and structural models, the average estimated power coefficients for the test of close 

fit were .84 for measurement and .65 for structural models. The distributions of estimated power 

are indicated in Tables 4 and 5 for both model types. Across all studies, approximately 17% of 

measurement and 39% of structural models had a power coefficient less than .50 under the test of 

close fit. Stated differently, 16% of measurement and 39% of structural models tested have less 

than a 50% chance of correctly rejecting close fit. Further analysis indicated that the power of 

structural models was indeed significantly less than the power of measurement models, t(1028) = 

9.36, p < .05, d = .64. The difference between measurement and structural models was most

driven by the difference in degrees of freedom between measurement models and structural 

models, as the median value for degrees of freedom was 33 for structural models and 104 for 

measurement models. Thus, on average, structural models had a 19% less chance of correctly 

rejecting invalid models, compared to measurement models—owing to fewer degrees of freedom 

observed in studies focusing on evaluation of structural models. As such, structural models close 
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to RMSEA of .08 in reality may appear—simply owing to chance—to be sufficiently close to a 

true RMSEA of .05 to accept the model as “good fitting.”

Differences in Model Power across Main Models. A goal of this quantitative review

was to determine the degree of difference in power between models that were deemed to be the 

final accepted model by the researcher and models that were deemed not to be the final accepted 

model of the researcher. This analysis was conducted on independent samples across studies.

The average difference in estimated power coefficients between final (M = 0.73, SD = 0.31) and 

competing models (M = 0.81, SD = 0.28) was statistically significant, t(1430) = 4.36, p < .05, d = 

.27. The main driving force between the power differences between main and non-main models 

was degrees of freedom, with main models being more associated with less complex models and 

lower degrees of freedom (median = 50) than competing models (median = 96). This means that 

within the population of SEM, models that were interpreted as the ‘correct” model in a given 

study had an 8% less chance of being correctly rejected as invalid, compared to models that were 

interpreted as incorrect models. Because the power between “main” and “non-main” models 

differ, it is entirely possible that the reduction in statistical power between the models is a 

contributing factor in the reason that the “main” model was the accepted model in the final 

published article.

Difference in Models Teams/Groups vs. Others. An additional goal of this quantitative 

review was to determine the degree of difference in power between models that aggregated 

participants to team or group levels using composition models, and models that did not. It was 

our expectation that aggregation would lower the final sample size, thus lowering power 

compared to models that did not aggregate. The average difference in estimated power 

coefficients between team/groups models (M = 0.65, SD = 0.33) and other models (M = 0.80, SD
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= 0.29) was statistically significant, t(1672) = 5.63, p < .05, d = .48. The difference between 

aggregated and non-aggregated models was driven by the difference in sample size between 

team/groups models (median = 155) and other models (median = 288). Thus, on average, 

team/group models that aggregated responses at the team or group level had a 12% less chance 

of correctly rejecting invalid models, compared to models that did not aggregate—owing to 

smaller sample sizes observed in studies focusing on the team-level of aggregation. Therefore, 

these types of models tend to be less falsifiable than other types of models in organizational 

psychology, and may warrant special attention in both model construction and experimentation 

before the statistical testing of the model, as well as evaluation of the model after testing.

Journal Quality. The final hypothesized variable to impact power is journal quality. We 

specifically hypothesized that journal quality would be positively associated with power such 

that as quality increased, power increased. Journal quality was indeed statistically significantly 

related to power, although the effect size was extremely modest r(1420) = .06, p < .05.  

Discussion

The primary purposes of the present study were fourfold. First, we attempted to inform 

researchers how sampling variability and power can potentially harm our inferences regarding 

our judgments of SEMs. Second, we attempt to provide guidance as to how power is calculated 

in a structural equation modeling context. Third, we illuminated the main influencers of power so 

as to aid researchers in study design efforts. Fourth, we examined certain methodological 

situations that could signal a need for the researcher to pay special attention to power. We 

conducted a quantitative review of the literature to help address these issues. The summary of 

our findings confirms the need to explicitly consider power in structural equation modeling, as 
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recommended by several methodologists (e.g., Kim, 2005; Kaplan, 1995; MacCallum, Browne, 

& Cai, 2006; MacCallum et al., 1996, MacCallum & Hong, 1997). 

Summary of Findings 

We find our results disconcerting in that nearly one-quarter of SEMs have less than a 

50% chance of correctly invalidating a bad model. As such, we can conclude that it is likely that 

the results obtained from at least some of the models included that fall into the less than 50% 

power category have model fit that is suspect in nature, especially in cases where the model fit in 

the particular study was adequate (i.e., near . 08) and not excellent (i.e., <.05). Related to this 

point, we also discovered that a significant number of studies possessed sample sizes that were 

far removed from what the sample size ought to have been to have a more appropriately powered 

test of the SEM in question. These findings are particularly disillusioning as these models all 

appeared in influential journals for Industrial-Organizational Psychology. Therefore, we

speculate that invalid models have likely been accepted into top journals, and consequently 

accepted by researchers in the scientific community. As was previously discussed, neglect of 

power can slow the advance of scientific progress by leading researchers toward theory that 

departs from reality  as low model fit power reduces the likelihood of rejecting incorrect models. 

Owing to our findings, these errors are possible as essentially none of the sampled studies 

conducted a power analysis on their SEM–in spite of the availability of web-based, power 

analysis tools from Preacher and Coffman (2006).

Finally, the results from this quantitative review pinpoint particular situations where 

overly liberal statistical power is more likely to occur in research. Specifically, research that 

involves the evaluation of structural models or models that evaluate team or group level 

phenomena are more likely to be susceptible with respect to overly liberal statistical power. For 
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structural models, this occurs because of reduced amounts of degrees of freedom, as compared to 

measurement models. For team/groups models, this occurs because of a reduced sample size, as 

compared to most individual-level models. Additionally, we found that models that were seen as 

the correct model for the study in question had significantly more liberal levels of power than 

competing models. It is our intention that bringing light to these situations, and their implications 

for science, will alert researchers and practioners when they need to pay particular attention to 

statistical power. 

Deriving from our discussion of SEM power as well as our quantitative review of current 

practice in organizational psychology, in the coming sections we outline what we believe are 

important recommendations for researchers as a whole, and introduce issues and 

recommendations related to power that will most likely require the combined attention and 

consideration from researchers, consumers, and editorial gatekeepers to better advance scientific 

advancement in organizational psychology via improved research methodology.

Recommendations for the User

Before Data Collection. A desired end in the present study is to prompt researchers to 

conduct a-priori statistical power analysis for SEMs. Given the availability and user-friendly 

nature of statistical power tools (see Preacher & Coffman, 2006); we believe very little stands in 

the way of researchers conducting SEM overall fit index power analysis. As we suggest 

throughout the present work, understanding the level of power of a SEM is instrumental in the 

interpretation of overall model fit. To that end, we attempt to present an ordered list of 

recommendations for the common user of SEMs in research.

First, the researcher should construct a theoretical model of interest and study design. 

Ideally, the model should maximize the tradeoffs amongst explanatory power, parsimony, 



STATISTICAL POWER IN SEM 30

potential for true model fit, and analysis of model misfit. These types of tradeoffs can most likely 

be estimated by reviewing similar styled models in the particular research domain of interest. 

Second, the researcher should determine the sample size they are likely to acquire in 

testing the theoretical model of interest under their current study design. As with all study 

designs, it is important to make allowances for methodological artifacts that will decrease sample 

size over the course of a study.

Third, the user should determine the other elements of the hypothesis test. For this 

quantitative review, we focused our review around what MacCallum and his associates (1996) 

dubbed the “test of close fit”, whereby the null hypothesis was a RMSEA value of .05 and the 

alternative RMSEA value was a value of .08. However, it is important to note that any values can 

be used for the null and alternative RMSEA, even values outside the three tests discussed in the 

MacCallum et al. (1996) paper. Similarly, any value of alpha can be used, theoretically. It might 

not always be the case that the researcher is interested in testing null and alternative RMSEA 

values in line with the tests described by MacCallum et al. (1996). Readers interested in this line 

of thought can consult work on isopower by MacCallum, Lee, & Browne (2010). 

With all of these elements, the researcher should conduct a power analysis before starting 

the study. Provided the researcher knows the model degrees of freedom, sample size, alpha, and 

null/alternative hypothesis tests, power can be calculated for any of the aforementioned power 

tests using tools provided by Preacher and Coffman (2006) or direct R syntax (available from the 

first author upon request). These tools require no programming knowledge and can be done via 

graphical interface (i.e. – “point and click” or “copy and paste”). The user will then have an 

obtained power coefficient. At this point, some recommendations are warranted, depending on 

the level of the power coefficient.
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After Power Analysis. After a-priori power analysis has been conducted, the first

recommendation is that the user should immediately revise their research plan if the power 

coefficient is extremely low. In such situations researchers are particularly susceptible to

accepting invalid models as a result of the lack of falsifiability of the model and lack of ability to 

establish the verisimilitude (i.e. – likelihood of truth) of the theoretical model in a meaningful 

way. This is particularly important in a field that is wed to the use of approximate fit indices and 

rule of thumb interpretations of such fit indices that contain a relative lack of nuance and 

appreciation for how dependent approximate fit indices are to statistical artifacts that are usually 

not even explored, let alone reported (Marsh, Hau, & Wen, 2004; Nye & Drasgow, 2010; 

Williams & O’Boyle, 2010). This recommendation might beg the question of what power 

coefficients are considered unacceptably low. Since we do not wish to establish a mechanistic 

“rule of thumb” regarding this topic, we would simply encourage researchers to “think 

continuously” as phrased by Cortina & Landis (2011) instead of “thinking discretely” with

respect to power coefficients. In the case of extremely low powered models, researchers can 

remedy low power by obtaining a larger sample size or finding some way to gain degrees of 

freedom (removing added paths or adding variables of interest to the model are two examples), 

or both. We suspect in most cases it would be more methodologically sound to increase sample 

size than degrees of freedom for reasons we will explain later. If a researcher is interested in how 

large a sample size they need to reach a certain level of power, they can refer to the 

aforementioned tool from Preacher and Coffman (2006) for guidance.

In instances where models have sample sizes large enough to generate high power (i.e. –

near 1) in two or more models, cross-validation recommendations are warranted. For example, a 

model with 30 degrees of freedom and a sample size of 2,000 would generate a power coefficient 
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of 1 for a single model, but could also generate power coefficients of 1 for an original model and 

cross-validation model (or even near 1 if two cross-validated models were tested), if the sample 

size was split into two equal groups. While, a larger sample size is always better from a 

statistical standpoint all else being equal, there are issues of diminishing returns with respect to 

sample size and power to detect misfit. Consequently, there are instances where the benefits 

derived from cross-validation vastly exceed the very minor benefits made to statistical power. In 

these instances we recommend cross-validation.

However, not all situations will allow for cross-validation by splitting the original sample 

into multiple groups. One situation that does not allow for cross-validation in such a way is when 

splitting sample size into two groups would compromise power, reducing power from one high 

powered model to two modestly powered models. For example, a model with 17 degrees of 

freedom and a sample size of 500 would have a power coefficient of .80. If that sample size was 

split into two equal groups, the power coefficient for those groups would reduce to .50, which 

means that likelihood of rejecting an invalid model would decrease by approximately 38 percent

from the original model, or framed another way, going from incorrect acceptance of bad models 

(by chance) one out of every five times to one out of every two times, assuming the models are 

bad in the population.

The value of cross-validation depends in part on the falsifiability of the original and 

cross-validated model. There will be cases where the benefits normally associated with cross-

validation do not keep pace with the problems associated with decreasing levels of falsifiability

of the tested models. When this is the case, we recommend testing a single model with the 

collected data and not engaging in any cross-validation efforts with the original data (collecting 

new data to sufficiently cross-validate the model is always welcome however). As is the case 
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with defining “extremely low power”, we do not wish to establish rote, mechanistic rules of 

thumb for when to cross-validate with the original sample. We would simply encourage 

researchers to conduct a-priori power analysis on what power would be both before and after 

cross-validation. To the degree power stays the same and is high; cross-validation should occur. 

To the degree power drops and is low; cross-validation should be avoided. If this situation occurs 

and new data cannot be obtained to cross-validate the model, the researcher should report the 

expected cross-validation index (ECVI; Browne & Cudeck, 1989), which is computed as an 

index of how well a solution obtained in one sample is likely to fit independent samples.

Another time when cross-validation should be avoided is when doing so would 

compromise the stability of parameter estimates. Theoretically, there are cases when splitting a 

sample size into two or more groups could drive down the sample size enough to cause 

parameter estimates to go from sufficiently stable to unacceptably unstable. In order to obtain

stable parameters estimates, the researcher should aim for a ratio of five units for every free 

parameter (Bentler & Chou, 1987). Our recommendation is similar to the previous, in that we 

would encourage researchers to conduct a-priori analysis on the parameter stability of the model 

parameters before and after cross-validation. To the degree stability stays the same and is high; 

cross-validation should occur and to the degree stability drops and is low; cross-validation 

should be avoided.

Model Testing. A final over-arching recommendation is to avoid testing models through 

“two-step” processes (Anderson & Gerbing, 1988; Anderson & Gerbing, 1992) and having final 

evaluations regarding the utility of models determined through separately analyzing 

measurement and structural components. The main reason is that in at least some cases, 

separating one single model evaluation into two smaller models (measurement and structural), 
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has the potential to severely compromise the power to detect model misfit in what would 

otherwise be a more strongly powered model via reduction in the degrees of freedom of the 

tested model in much the same way that cross-validation has the potential to compromise power 

via sample size reduction.

When it comes to ultimate declarations about the utility of a model, we recommend 

testing the entire model (measurement + structural) in a single step in order to determine overall 

model fit, as well as individual parameter values. However, one valid criticism of this one-step

method proposed by some methodologists (Fornell & Yi, 1992a; Fornell & Yi, 1992b; Hayduk 

1996) is that it does not easily lend itself to investigation of model problems and misfit (Bollen, 

2000). To that end, we advise researchers to consider the jigsaw piecewise technique advocated 

by Bollen (2000) in combination with the one-step method. Under this technique, researchers fit 

pieces of the overall model together and then as a whole, ideally evaluating all possible 

subcomponents of the overall model to assess where and when model misfit experiences radical 

upward shifts. 

In models that combined measurement and structural elements, it is particularly important 

to test all aspects of the model, as a model’s overall fit if judged in a single step, could be 

disproportionately influenced by the measurement model (Mulaik et al., 1989). In these cases, 

poor structural fit could be masked by excellent measurement model fit, resulting in an overall 

model fit statistic that is deemed as acceptable, although the lack of structural fit would still 

render the model unsound to the researcher. These problems could be addressed from the 

aforementioned jigsaw piecewise technique approach specified earlier, examination of parameter 

values, examination of the residual matrix for the overall model, and calculation and examination 

of fit indices which focus more on path model relationships (such as the RMSEA-P; Williams & 
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O’Boyle, 2011). A more ambitious approach to this issue could involve the combinatorics 

approach taken by Meehl and Waller (2002), whereby within a path analysis framework, path 

analytic model parameters are estimated using only a subset of the elements of the sample 

correlation matrix, and the resulting parameter estimates are then tested by determining how well

they account for the other unused, elements of the correlation matrix. This procedure is 

conducted for the original model as well as for a set of similar alternative models, and the 

original model is then compared with the alternatives with respect to results of the risky tests. 

Support for verisimilitude of the original path analytic model is enhanced to the degree that it 

outperforms the alternative models. If a researcher finds their original structural model is 

outperformed by another model, this can provide clues about the validity of the proposed 

structural model.

Ultimately, it is important to recognize that there is no single procedure, and certainly no 

single mechanical ritualistic procedure that will address all possible methodological issues within 

structural equation modeling at once, and that a variety of procedures are needed to test the 

utility of an SEM in a rigorous manner.

Limitations

The current study has a number of limitations. First, the approach taken by MacCallum et 

al. (1996) in conceptualizing type I and type II errors can arguably be seen as backwards, given 

that these conceptualizations run contrary to traditional understandings of type I and type II 

errors in Psychology for more traditional statistics such as ANOVA. However, we feel that 

despite the potential confusion over “reversing” the usual terms, there is still a great deal of 

utility in the overall approach. In discussing these issues with colleagues, we have found it useful 

to discuss the issues presented in this paper in terms of “liberal” and “conservative” levels of 
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power, rather than in the language of type I and type II errors. Moreover, the general issues that 

we have discussed and illuminated in this study can also be studied analyzed with type I and type 

II errors that are aligned in more traditional ways (Hancock 2006; Hancock & Freeman, 2001) if 

desired.

Another potential limitation of this study is that it necessarily relies on the RMSEA fit 

index, as well as specific cutoffs for what constitute close fitting models. There are two issues to 

consider here. The first issue revolves around the use of specific cutoffs for close fitting models 

under RMSEA. The second issue revolves around the use of approximate model fit indices in 

SEM in evaluating model fit. We will consider both of these points in turn.

Strict cutoff values for model fit in SEM are oversimplifications of complex statistical 

situations. We do not see much value in the rules of thumb often used to evaluate model fit, as 

they tend to be dependent on statistical issues that are often ignored in practice (Marsh, Hau, & 

Wen, 2004; Nye & Drasgow, 2010; Williams & O’Boyle, 2010). Like Marsh et al. (2004), we 

feel that despite the cautions offered by Hu and Bentler (1999), problems with the rules of thumb 

surrounding model fit have been frequently ignored in the practice of SEM. In fact, a current 

citation count of Hu & Bentler’s study reports approximately 617 overall citations per year. For 

the sake of comparison, Marsh et al. (2004), which signifies the very serious problems associated 

with strict adherence to rules of thumb, averages 59 citations per year, with a large number of 

these citations occurring in methodological journals (Harzing, 2010).

The reason we chose to use the rules of thumb outlined in the introduction is because we 

assumed that these would be the values most salient to the greatest number of researchers, a 

conjecture which has been vetted by the above evidence. Consequently, we thought that our 

findings would resonate with researchers more when using rules of thumb to which most 
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researchers most likely adhered in order to see the interplay between power and focusing solely 

on passing the .08 RMSEA “goodness” threshold. 

Similar reasoning was used with respect to the second issue: the use of approximate 

model fit indices to evaluate model fit in the first place. A lively discussion on the internet 

listserv SEMNET has developed regarding the usefulness of evaluating model fit using goodness 

of fit (GOF) indices. Some researchers argue that the Chi-Square test is the only acceptable fit 

index to use in testing SEMs (Barrett, 2007; Hayduk et al., 2007). The argument for the sole use 

of the Chi-Square in evaluating models is centered on the following points: 1) there are no single 

thresholds for GOF indices that can be applied to any fit index under all possible measurement 

and data conditions, 2) GOF indices often allow for researchers to avoid careful model 

specification and examination, 3) GOF indices can allow rather weak models to make it through 

the peer-review process, 4) the potential for the degree of casual misspecification of models to be 

uncorrelated with GOF indices values, and 5) Chi-Square does a better job at detecting model 

misspecification than does any other fit index.

Readers who are interested in examining the issue of approximate versus exact fit indexes 

at length can examine the above issues and counterarguments in the special 2007 issue of the

Personality and Individual Differences journal (42nd volume 5th edition) that summarizes this 

debate. While we recognize the importance of the fit index debate, the RMSEA fit index is still 

commonly used and evaluated by reviewers as a basis for the adequacy of model-to-data fit. 

Indeed, virtually no model in our quantitative review was evaluated strictly on the use of Chi-

Square test. It is also worth noting, that even in the event that a researcher only wants to use the 

Chi-Square to evaluate models, the power analysis of MacCallum et al. (1996) can be extended 



STATISTICAL POWER IN SEM 38

in such a way, by aligning the null hypothesis value of RMSEA to zero, which represents perfect 

fit and is analogous to the Chi-Square test (McIntosh, 2007).

Future Research

There are multiple areas for future research as it relates to this study. First, it could be 

useful for power analysis of SEM to be extended to other areas of psychology. It is possible that 

the problems presented in this quantitative review are more severe in other areas of psychology 

that frequently employ SEM. Second, this line of research could potentially extend to 

comparisons between nested SEMs. Recent work on statistical power as it relates to nested SEM

has been proposed by MacCallum and Browne (2006) and Li & Bentler (2011). Third, this line 

of research could potentially extend to analysis of power about specific parameter estimates. 

Specifically, using the statistical program Mplus, and work introduced by Muthen & Muthen 

(2002), one can calculate the power to detect that a specific parameter will be different than zero.

Conclusions

The present study provides strong evidence for the importance of statistical power in 

SEM in organizational psychology research. Statistical power has been emphasized in 

experimental and correlational research. We believe the emphasis on statistical power should 

extend to SEM vis-à-vis overall model fit, with stricter control of model quality in journals via 

the editors, simple tools that can be used by researchers to actually calculate power coefficients 

for SEMs, and better quality education with respect to the teaching of power in modeling to 

peers and students.
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FOOTNOTES

1. The non-central χ² distribution was chosen by MacCallum et al. (1996) as it does not 

require that the model being estimated fit the data exactly (i.e., the model-to-data 

discrepancy or fit function is exactly 0; e.g., Brown & Cudeck, 1993; Chen, Curran, 

Bollen, Kirby, & Paxton, 2008; Steiger & Lind, 1980) in the population, as does the 

central χ² distribution. As such, the non-central χ² allows for misspecified, yet practically 

or scientifically useful models to still fit the data adequately and is therefore a more 

tenable distribution under most data analytic situations (e.g., MacCallum et al., 1996; 

Saris & Satorra, 1993).
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Table 1.

Descriptive Statistics for Coded Variables

Variable Mean Standard Deviation

Eigenfactor Score 0.0125 0.0092

Degrees of Freedom 71.51 111.28

Sample Size 421.64 448.52

Model Power 0.79 0.29

Chi-Square 841.72 1927.14

RMSEA .08 .06

CFI .90 .10

NFI .90 .10

Sample Size Required 428.77 124.57

Sample Size Difference -12.95 167.86

Team/Groups Model vs. Other Model 1.92 2.78

Measurement vs. Structural Model 1.27 0.44

Main Model vs. Competing Model 1.66 0.94

Note. Codes were as follows: Teams/Groups models = 1, non-team/groups models = 2, structural 

model = 1, measurement model = 2, main model = 1, competing model = 2.
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Table 2. 

Interrater Agreement Statistics

Quantitative Review Category Type of Agreement Agreement Value

Sample Size ICC 0.98
Degrees of Freedom ICC 0.98

Statistical Power Coefficient ICC 0.98
Team Aggregation (yes/no) Cohen’s Kappa 0.98

Model Type (measurement, structural, combined) Cohen’s Kappa 0.85
Main Model (yes/no) Cohen’s Kappa 0.76

Note. ICC = Intraclass Correlation Coefficent
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Table 3. 

Distribution of Power, Test of Close Fit

Power N Proportion Cumulative Proportion

0.00-0.09 21 0.01 0.01

0.10 – 0.19 88 0.05 0.06

0.20 – 0.29 67 0.04 0.10

0.30 – 0.39 124 0.07 0.17

0.40 – 0.49 75 0.05 0.22

0.50 – 0.59 85 0.05 0.27

0.60 – 0.69 47 0.03 0.30

0.70 – 0.79 66 0.04 0.34

0.80 – 0.89 104 0.06 0.40

0.90 – 1.00 1015 0.60 1.00

Note. N = 1692
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Table 4. 

Distribution of Power, Measurement Models, Close Fit

Power N Proportion Cumulative Proportion

0.00 – 0.09 00 0.00 0.00

0.10 – 0.19 33 0.04 0.04

0.20 – 0.29 30 0.04 0.08

0.30 – 0.39 33 0.04 0.12

0.40 – 0.49 30 0.04 0.16

0.50 – 0.59 31 0.04 0.20

0.60 – 0.69 16 0.02 0.22

0.70 – 0.79 30 0.04 0.26

0.80 – 0.89 42 0.06 0.32

0.90 – 0.99 511 0.68 1.00

Note. N = 756; models that were combined measurement and structural models are not included 
but are available upon request from the first author.
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Table 5. 

Distribution of Power, Structural Models, Close Fit

Power N Proportion Cumulative Proportion

0.00 – 0.09 05 0.02 0.02

0.10 – 0.19 32 0.12 0.14

0.20 – 0.29 18 0.06 0.20

0.30 – 0.39 29 0.11 0.31

0.40 – 0.49 24 0.09 0.40

0.50 – 0.59 16 0.06 0.46

0.60 – 0.69 17 0.06 0.52

0.70 – 0.79 09 0.03 0.55

0.80 – 0.89 09 0.03 0.58

0.90 – 0.99 115 0.42 1.00

Note. N = 274; Models that were combined measurement and structural models are not included 
but are available upon request from the first author.
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Figure 1

. 

Note. N = 1692. Labels refer to the sample size required to obtain power coefficient of .80 subtracted from the sample size used to test

the model.
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