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I the LORD search the heart, I try the reins, even to giwe every man according to his ways,
and according to the fruit of his doings. - Jeremiah 17:10

ABSTRACT. I prove some accelerations of the infinite series for the hyperbolic sine, hyperbolic
cosine, Struve and Bessel function of the first kind.

1. INTRODUCTION
In this paper, I demonstrated the following expansions of the infinite series:
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which converges rapidly.

2. ACCELERATION FOR THE HYPERBOLIC SINE, HYPERBOLIC COSINE, STRUVE AND BESSEL
FUNCTION OF THE FIRST KIND.

2.1. Hyperbolic Sine Function.

Theorem 1. For z € R, then
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where sinh( z) denotes the hyperbolic sine function and k! denotes the factorial function.

Proof. In previous paper [1], I demonstrated that
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Eliminate ¢ in the equation above; this completes the proof. O
2.2. Hyperbolic Cosine Function.

Theorem 2. For z€ R, then
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where cosh( z) denotes the hyperbolic cosine function and k! denotes the factorial function.

Proof. In previous paper [1], I demonstrated that
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2.3. Struve Function.
Theorem 3. For R(v) >,1 andz € R, then
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where H,(z) denotes the Struve function, k! denotes the factorial function and T'(z) denotes the
gamma function.
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Proof. I put z— ztin the Eq. (1), multiply by (1 —#2)" "2 and integrate from 0 at 1 with respect
to t, thus
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On the other hand, I know [2, page 328] that
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I substitute the rigth hand side of the Eq. (4) into the left hand side of the Eq. (3)
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Eliminate in both members of the Equation above; this completes the proof. O
2.4. Bessel Function of the first kind.

Theorem 4. For R(v) >f% andz € R, then
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where J,(z) denotes the Bessel function of the first kind, k! denotes the factorial function and T'(z)
denotes the gamma function.
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Proof. I put z— ztin the Eq. (2), multiply by (1 —¢2)"" * and integrate from 0 at 1 with respect
to t, thus

1 1
/0 (1—12)" 2cos(zt)dt (5)
:i . z4k/1 (1- t2)'”_%t4kdt - ﬁ/l (1- t2)v—%t4k+2dt

Z4k+2 1 211 1 Ah42
z 1—t3)" "zt dt
+4k+2A (1=t }

P(v+1)& z4k[ D(2k+2)  220(2k+3)  (2k+1)220(2k+2)

F2k+v+1) T(2k+v+2) (Ak+3)T(2k+v+2) |

=5 Z(4k)!

k=0
On the other hand, I know [2, page 48] that
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I substitute the rigth hand side of the Eq. (6) into the left hand side of the Eq. (5)
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Eliminate in both members of the Equation above; this completes the proof. O
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