
THE METHOD OF STRUCTURIZATION
OF A SET OF POSITIVE INTEGERS

AND ITS APPLICATION TO THE
PRIMALITY TESTING ALGORITHM

ALEXANDER FEDOROV

December 2008

Abstract

In this paper is offered and theoretically is based the algorithm
permissive with the help of small number of arithmetic operations
with arbitrary positive integer (N) to answer a question : is N
composite or prime? The algorithm has a high operational speed
which depends a little on value N ,and is based on The method of
structurization of a set of positive integers (Np) developed by the
author. In limits of a framework of this method is defined a special
set of the structured integers (Ns) in which it becomes possibility
for testing of any structured integers (Sn) on a membership of
a set of composite structured integers (Nsc). Between by Np and
Ns is established one-to-one correspondence : composite structured
integers (Snc) are corresponded to composite positive integers (Nc).
Prime structured integers (Snp) are corresponded to prime positive
integers (Npr). Thus for testing arbitrary (N) it is necessary to
map it into Ns. Then we test obtained Sn on a membership of
Nsc. If Sn is a member of Nsc then the output follows that tested
N is also composite.If Sn is not a member of Nsc then the output
follows that tested N is also prime , since if Sn is not composite
then it is prime ,tertiary is not given.

1 Introduction

The most of existent primality testing algorithms [1] require considerable
quantity of arithmetic operations and operate with numbers considerably

1

2

greater than tested N . With increase N the speed of algorithm diminishs.
The Author has put before itself a problem of creation of algorithm, the
speed of which depends a little on value of tested N . The method of
structurization of a set of positive integers given below allows theoretically
and practically to solve this problem.

2 General conception

remark 2.1 The accepted abbreviations in this paper see on page 16.

Definition 2.1 The structurization of a set of positive integers (Np) is
its fragmentation on K ordered segments which follow one by one on the
numerical axis without skips.The amount of numbers in each segment is
identically and is equal B , which we shall term as a length of a seg-
ment.There are 1

2
B of the even and 1

2
B of the odd positive integers in each

segment.Among of the odd integers can be as composite so prime.By ele-
ments of a set of the structured integers (Ns) are structured integers (Sn)
which uniquely are determined by three integer variables K, r, B. And a
position Sn on the numerical axis is congruent with a position of corre-
sponding N .

Example 2.1 Let be N = 54 , B = 10 , then K = 5 , r = 4 ;
N = 156 , B = 10 , then K = 15 , r = 6 ; N = 7 , B = 10 , then K = 0
r = 7 ;

Theorem 2.1 Between Np and Ns there is a bijection.

N = (BK + r) (1)

Where: B is a length of segment (see theorem 7.1) and K = NdivB is a
number of segment; r = NmodB is an offset of N inside of segment.

Proof 2.1 Let is given Sn(K, r, B) then coordinate of a segment on a nu-
merical axis is equal BK. And offset is equal r then a coordinate Sn is
equal BK +r. Taking into account that positions N and Sn are congruent
it follows that N = BK+r

Definition 2.2 A Composite structured integer (Snc) is multiplication of
two arbitrary Sn: (BK1 + r1); (BK2 + r2);, each of which can be as com-
posite so prime.

Snc = (BK1 + r1)(BK2 + r2) (2)

Where: K1, K2 = 0, 1, 2, 3, ...; r1, r2 = 0, 1, 2, ..., B − 1; (numbers of seg-
ments and offsets of multipliers).

3

Theorem 2.2 Between a set of composite positive integers (Npc) and a
set of composite structured integers (Nsc) there is a correspondence.

Nc = (BK1 + r1)(BK2 + r2) (3)

Proof 2.2 Let be Nc = ab where a,b ∈ Np then by theorem 2.1 we have
ϕa = BK1 + r1; ϕb = BK2 + r2; ϕab = (BK1 + r1)(BK2 + r2); whence
follows that Nc = (BK1 + r1)(BK2 + r2) ;

3 The course-of-value functions for a set of

composite structured integers

Propose 3.1 The course-of-value function (CVF)for Nsc is expression
of the following view: K = BK1K2 + K1r2 + K2r1 + (r1r2)divB where :
K1, K2 = 0, 1, 2, 3, ...; r1, r2 = 0, 1, 2, ..., B − 1(numbers of segments and
offsets of multipliers); B (see theorem 7.1); and K = NdivB -number of
segment in which is located an arbitrary Snc.

Proof 3.1 Unclosing a parentheses in (3) we get :

Nc = B2K1K2 + BK1r2 + BK2r1 + r1r2 (4)

By theorem 2.1 we have: K = (B2K1K2 +BK1r2 +BK2r1 +r1r2)divB
whence we compute number of a segment K in which arbitrary
Sn is composite:

K = BK1K2 + K1r2 + K2r1 + (r1r2)divB (5)

Next by theorem 2.1 we compute offset r : r = (B2K1K2 +BK1r2 +
BK2r1 + r1r2)modB whence we get the condition of membership of
arbitrary Sn to one of the classes of CVFs:

r = (r1r2)modB (6)

Fix in (5) r1, r2 and we shall change of K1, K2 from 0 up to ∞ . Thus
we shall cover the some subset of Nsc. We shall term (5) as a Course-
of-Value Function(CVF) of Nsc. Each CVF differs from another by pair
of values (r1, r2) (B is constant for all CVFs of the class which belong
to arbitrary Sn). Then the number of CVFs covering Nsc will be equally
to (F)- number of all possible pairs formed from all positive integers less
than B i.e. the number of all possible CVFs. F = B×B = B2.

4

remark 3.1 For the some values K1, K2, r1, r2 in (5) CVF is undefined
(K = 0) or mixed type (prime and composite).

Example 3.1 If in (5) put K1 = 0, r1 = 0 then K = 0 i.e. CVF is
undefined. If in (5) put K2 = 0, r2 = 0 then K = 0 i.e. CVF is undefined.
If in (5) put K1 = 0, r1 = 1 then K = BK2 + r2 i.e. CVF is mixed type.
If in (5) put K2 = 0, r2 = 1 then K = BK1 + r1 i.e. CVF is mixed type.

For exclusion of these shortcomings it is necessary to test in algorithm
the conditions r1 > 1 ; r2 > 1 . If these conditions are not fulfil then
(K1 or K2 or K1 and K2) = 1, 2, 3, ... ;

4 The classification of the course-of-value

functions

Propose 4.1 There are following classes of CVFs :
BK + 0, BK + 2, BK + 4, ..., BK + 2m for Snce
and BK + 1, BK + 3, BK + 5, ..., BK + (2m + 1) for Snco
where: m = 0, 1, 2, 3, The mean number of CVFs in each class is

equal to Fm = B ;

Proof 4.1 For a beginning we shall separate CVFs for even and odd Sn.
For this is necessary that B = 10(m + 1). where m = 0, 1, 2, 3, Then
Snmod10 = (BK + r)mod10 = rmod10 , whence follows that if Sn is odd
structured integers then r is also odd . If Sn is even structured integers
then r is also even. This allows neatly to separate CVFs on two subsets:
for even and odd Sn. By condition (6) if r is odd then permissible values
r1, r2 are also odd. If r is even then permissible values r1, r2 are both of
even or one of them is odd. Thus for structured composite odd integers
(Snco) permissible values r1, r2 are all odd N less than B. And permissible
values r1, r2 for structured composite even integers (Snce) all N less than
B. Since r gets values from 0 up to (B-1) then the number of classes is
equal to B. Including 1

2
B classes of Snce and 1

2
B classes of Snco. By (1)

each class has a following view :BK + r then for Snce we get following
classes: BK+0, BK+2, BK+4, ..., BK+2m where m=0,1,2,3,... and for
Snco we get following classes: BK +1, BK +3, BK +5, ..., BK +(2m+1)
. The mean number of CVF in each class is equal to Fm = F

B
;

By proof 3.1 F = B2 then Fm = B2

B
= B ;

Example 4.1 Let is given arbitrary structured integer (K; r; B;). Then
we generate all possible pairs (r1; r2;) of integers less than B . For each

5

pair (r1; r2) we test the condition r = (r1r2)modB .If the condition is true
then value of pair (r1; r2) are saved to array of CVFs of the class. When
all pairs are sorted out in the array are saved all the CVFs of the class to
which belongs Sn .

5 Testing of arbitrary structured integer on

a membership of a set of composite struc-

tured integers

Theorem 5.1 Sn(K, r, B) is composite if for anyone K, K2, r1, r2, B is
fulfilled one of the following conditions :

(K−(r1r2)divB)modr1 = 0; (K−K2r1−(r1r2)divB)mod(BK2 +r2) = 0;

Proof 5.1 From (5) we compute to K1

K1 =
K −K2r1 − (r1r2)divB

BK2 + r2

(7)

Since K1 is integer variable then a numerator in (7) should is divided on a
denominator without a residual. The condition for this purpose as follows:

(K −K2r1 − (r1r2)divB)mod(BK2 + r2) = 0 (8)

This condition cannot be used in the case when K1 = 0 since condition
(K −K2r1 − (r1r2)divB) < (BK2 + r2) K1 does inaccessible it . In this
case it needs the numerator in (7) is equated to a zero:

(K −K2r1 − (r1r2)divB) = 0

Whence follows that:

K2 =
K − (r1r2)divB

r1

(9)

Since K2 is integer variable then a numerator in (9) should is divided on a
denominator without a residual. The condition for this purpose as follows:

(K − (r1r2)divB)modr1 = 0 (10)

At first we test condition (10). If it is true then the output follows that
tested Sn is composite. And if it is false then we test condition (8) for each
value of the CVF, varying K2 in the range 0, 1, 2, If for anyone value of

6

K2 the condition (8) is true then the output follows that tested Sn is com-
posite. If by the time of when (K −K2r1− (r1r2)divB) < (BK2 + r2) and
the condition (8)still is false then make a jumper to the next CVF of the
class and process is iterated as above. After testing of all CVFs of the class
and if the condition (8) still is false then the output follows that tested Sn is
not composite (is prime).

6 The dead zone of algorithm

Definition 6.1 The fixed database (FDB) represents a subset of the set
of positive integers composed of the all primes lees than Nh (Maximal limit
of the dead zone of algorithm).

Lemma 6.1 The dead zone of algorithm is located in the range Nl ≤ N ≤
Nh where :Nl = 2; Nh = 189;

Proof 6.1 By definition 2.2 the negative values of K1, K2 in (8),(10) are
not permissible. However for the definite values of K, K2, r1, r2, B the
numerators of (8),(10) get a negative values. Since the case of K1 = 0
is considered by separately then minimal value for K1 = 1. It follows
that K − K2r1 − (r1r2)divB = BK2 + r2 then for Km (the value of K
corresponding to the maximal limit of the dead zone of algorithm) we
shall get Km = BK2 + r2 + K2r1 + (r1r2)divB.Further we compute the
value of Km for the following minimal values of B = 10; K2 = 0; r1 = 1;
and maximal value r2 = 9 (in order to get maximal value of (r1r2)divB).
We get for Km = 9 + 9 = 18. By the theorem 2.1 we have for N =
BK + r = BK + (r1r2)divB for K = Km we get for maximal limit of
dead zone Nh = 10 · 18 + 9 = 189. The minimal limit of the dead zone of
algorithm (Nl) is determined by the least integer more than ”1”. Hence
Nl=2.

Theorem 6.1 For N ≤ 189 if N ∈ FDB then N is prime,if N /∈ FDB
then N is composite.

Proof 6.2 By definition 6.1 and lemma 6.1 if N ≤ 189 is prime then it
coincides with one of elements FDB and the output follows that tested N is
prime. If N ≤ 189 is composite then it is not a one of elements FDB and
the output follows that tested N is composite.

7

7 The optimal value of B

Definition 7.1 We shall make an estimate of speed of algorithm by a
number of cycles of testing (V). By the number of cycles of testing (V0)
is understood a testing Sn on a membership of Nsc for one CVF of the
class. By the number of cycles of testing (Vc) is understood a testing Sn

on a membership of Nsc for all CVFs of the class.

Further we shall examine a possibility of a diminution v and speeding up
of algorithm.

Lemma 7.1

V0 =
4N − 3B2

6B2

Proof 7.1 From (8) follows that V0 = K2 for the condition:

K −K2r1 − (r1r2)divB = BK2 + r2

Whence we get

V0 =
K − r2 − (r1r2)divB

B + r1

We substitute r1, r2 its mean values: r1, r2 = 1
2
B . Whence we get:

V0 =
K − 1

2
B − 1

4
B

B + 1
2
B

=
4K − 3B

6B

But as K = N
B

then

V0 =
4N − 3B2

6B2

Lemma 7.2

If B1 = BD; then V01 ≈
V0

D2

Proof 7.2 Let B1 = DB then

V01 =
4N − 3B2

1

6B2
1

=
4N − 3D2B2

6D2B2

Finally

V01 ≈
V0

D2

8

Lemma 7.3

Vc =
4N − 3B2

6B

Proof 7.3 Since by Propose 4.1 the number of CVFs equals B then Vc =
V0B .Whence by lemma 7.1 we get:

Vc = V0B =
4N − 3B2

6B

Lemma 7.4

If B1 = BD; thenVc1 ≈
Vc

D

Proof 7.4 Let B1 = DB then

Vc1 =
4N − 3B2

1

6B1

=
4N − 3D2B2

6DB

Finally

Vc1 ≈
Vc

D

Definition 7.2 The optimal value of B is such value for the which Vc

depends a little from N and all necessary conditions of testing (8),(10)
also are fulfilled.

Theorem 7.1 For speeding up of algorithm and realization of conditions
of testing it is necessary to increase B with growth N as follows

B = 10; for N < 10000
B = 100; for N ≥ 10000
B = 1000; for N ≥ 1000000
...
B = B*10; N=N*100;

Proof 7.5 By lemma 7.3 the number of cycles of testing Vc increases
with growth of N , that reduces to a diminution of speed of algorithm.
By lemma 7.4 for a diminution of the number of cycles of testing and
increase of speed of algorithm it is necessary to increase of B. In an ideal
it would be possible with the help of increase of B coupled with increase of
Vc (B = (Ndiv105 + 1)10) but then for some N the conditions of testing
(8), (10) will not be fulfilled (B ≥ K). In accordance with the stated above

9

by one of the best values of B depending on N will be as follows:
B = 10; for N < 10000
B = 100; for N ≥ 10000
B = 1000; for N ≥ 1000000
..
B = B*10; N=N*100;

8 The Fedorov’s algorithm for the testing of

arbitrary N with the answer a question:

is it composite or prime?

Offered algorithm is based on the following definitions, lemmas, theorems
and proposes which belong to the ” THE METHOD OF STRUCTUR-
IZATION OF A SET OF POSITIVE INTEGERS” stated above. For
the step 8.1:definition 2.1 . For the step 8.2:theorem 2.1,theorem 7.1 .
For the step 8.3:propose 4.1 . For the step 8.4:theorem 6.1 For the step
8.5:proof 3.1,proof 4.1 . For the step 8.6:theorem 5.1,proof 5.1 . For the
step 8.7:theorem 5.1,proof 5.1 .

Step 8.1 Enter tested positive integer N then goto step 8.2.

Step 8.2 We map N into Ns , computing K = NdivB; r = NmodB;
B by theorem 7.1; then goto step 8.3.

Step 8.3 We separate obviously composite numbers checking conditions
rmod2 = 0; rmod5 = 0; . If these conditions are true (separately) then
the output follows that ” N is composite ”. If the both conditions is false
then goto step 8.4.

Step 8.4 If N ≤ 189 (hit in an dead zone of algorithm) then we test N
on membership of FDB: if N is identical with anyone element of FDB
the output follows that ”N is prime” . If N is not identical not with one
of element of FDB then the output follows that ”N is composite” . If
N > 189 then goto step 8.5.

Step 8.5 We make an array of CVFs of the class to which belongs N .For
this we form all possible pairs (r1; r2) of the odd integers less than B.
Then for each pair(r1; r2) we test the condition r = (r1r2)modB (it is
the condition of membership of the class). If the condition is true then
values of the pair(r1; r2)are saved into array of CVFs of the class. If the

10

condition is false then values of the pair(r1; r2)are not saved into array of
CVFs of the class. If all pairs of the odd positive integers less than B are
sorted out then goto step 8.6.

Step 8.6 Test of arbitrary N on membership of Nsco (special criterion
K1 = 0). For this we test the first condition (K − (r1r2)divB)modr1 = 0
for pair (r1; r2) of array of the class. If the first condition is true for
pair (r1; r2) then the output follows that ”N is composite” . If the first
condition is false for pair (r1; r2) then goto step 8.7.

Step 8.7 We test of arbitrary N on membership of Nsco (general cri-
terion). For this we read from array of CVFs of the class values of
the first pair (r1; r2) and substitute its in the second condition : (K −
K2r1 − (r1r2)divB)mod(BK2 + r2) = 0; besides substitute computed on
the step 8.2 values of K, B and also initial value K2 = 0; or K2 =
1; if (r1 or r2 or r1 and r2) = 1 . Then we test the second condition.
If the second condition is true then the output follows that ”N is compos-
ite”. If the second condition is false then we increment K2 = K2 + 1 and
a testing is continuing as defined above . This process is repeating until
then while (K −K2r1 − (r1r2)divB) < (BK2 + r2) . If for this time the
second condition is false for all values of K2 then we read from array of
CVFs of the class values of the next pair (r1; r2) . And process defined
above is beginning with testing of the first condition for each CVFs of the
class and is repeating until then while the first or second conditions will
become true for any CVF of the class or false for all CVFs of the class.
In the last case the output follows that ”N is prime” .

9 The detailing of algorithm on TPascal

Step1:
(The enter of tested number)
begin
var
N:longint;
clrscr;
writeln (’Type tested number N then press Enter’);
readln (N);
goto step2;
end;

Step2:

11

(Computation of B , K , r)
label
m1,m2;
var
N,K,r,B,U : longint;
(Computation of optimal value of B)
begin
B := 10; U :=10000;
m1: if N > U then
begin
B := B*10; U := U*100;
goto m1;
end; end else
(Computation of number of segment)
K := N div B;
(Computation of an offset)
r := N mod B;
goto step 3;
end;

Step 3:
(Separating of obviously composite numbers)
label
m1,m2;
var
N,K,r :longint;
begin
if r mod 2 = 0 then
goto m1;
else
if r mod 5 = 0 then
ifN > 5 then
m1: begin
clrscr;
write (’N-composite’);
writeln;
goto m2; end
else
else

12

goto step4;
m2: end;

Step4 :
(Testing of N in dead zone of algorithm)
label
m1;
const
FDB: array [1..44] of integer =
=(3,5,7,11,13,17,...,157,163,167,173,179,181,0,0,0);
var
N,t: longint;
if N ≤ 189 then begin
m1: if FDB [t] = N then begin
clrscr;
write(’N-prime’);
writeln;
end
else
if FDB[t] > 0 then begin
t :=t+1; goto m1;
end
else
begin
clrscr;
write (’N-composite’);
writeln;
end ;
end
else
goto step5;

Step5 :
(Making of an array of CVFs of the class)
label
m1,m2,m3;
const
c=8000;
var
a : array[1..c] of longint;
d: array[1..c] of longint;

13

var
r,r1,r2,i,j,B : longint;
begin
r1 :=1; r2 :=1; i :=1; j :=1;
(Nulling of an array of CVFs of the class)
m1: a[i] :=0 ; d[j] :=0 ;
i :=i+1; j :=j+1;
if i < c then
goto m1
else
(Generation of pairs (r1;r2) for CVFs of the class)
i :=0; j :=0;
m2: if (r1*r2)mod B = r then begin
i :=i+1; j :=j+1;
a[i] := r1; d[j] := r2;
goto m3;
end
else
m3: r2 :=r2+2;
if r2 < B then
goto m2;
else
r1 ;=r1+2; r2 :=1;
if r1 < B then
goto m2;
else
goto step6 ;
end;

Step6:
(Testing of N (special criterion for K1=0)
label
m1,m2;
var
r1,r2,i,j,k,B : longint;
begin
i :=1; j :=1;
m1: r1 := a[i]; r2 := d[j];
if r1 > 1 then
if (K-(r1*r2)div B)mod r1 = 0 (the first condition)
then begin

14

clrscr;
write (’N-composite’);
writeln;
goto m2;
end
else else
if a[i] > 0 then
begin
i :=i+1; j :=j+1;
goto m1;
end
else
goto step7;
m2: end;

Step7:
Testing of N (general criterion)
label
m1,m2,m3,m4;
var
r1,r2,i,j,K,B,K2 : longint;
begin
i :=1; j :=1;
m1: r1 := a[i]; r2 := d[j];
if r1 = 0 then goto m4 else
if r2 > 1 then
K2 := 0;
else
if r2 =1 then K2 := 1;
m2: if (K-r1*K2-(r1*r2)div B)mod(B*K2+r2)=0 (the second condition)
then begin
clrscr;
write(’N-composite’);
writeln;
goto m3;
end
else
if (K − r1 ∗K2− (r1 ∗ r2)divB) > (B ∗K2 + r2) then
begin
K2 :=K2+1;
goto m2;

15

end
else
if a[i] > 0 then
begin
i :=i+1; j :=j+1; goto m1;
end
else
m4: begin
clrscr;
write(’N-prime’);
writeln;
goto m3;
end;
m3: end;

10 The approbation of the offered algorithm

For approbation of the offered algorithm the author developed the pro-
gram ” Testpro ”. With the help of this program and the tables of prime
numbers the author has tested positive integers in a range from 3 up to
10000000. Coincidence of results 100 percents.

11 Differences of the offered algorithm from

others

The algorithm uses for testing numbers which considerably less than N
(K = N

B
). The operation of division in algorithm on numbers of the form

(BK2 +r2) is realized with the stride parameter is equal to B , that allows
much faster to obtain the result. From all a set of course-of-value functions
is used only the small part relating to that class CVFs to which belongs
tested number N . There is a possibility of achievement of a maximum
speed of algorithm by union in groups tested numbers with identical B
and r thus the array of CV Fs of the class forms once on the whole group
and it allows to save more than 50 percents of time of testing. All, stated
above and also the increase of B with growth of N allows considerably to
speed up algorithm.

16

APPENDIX

THE ABBREVIATIONS

Np -a set of positive integers .
Ns -a set of structured integers .
Nsc -a set of composite structured integers .
Npc -a set of composite positive integers .
Npr -a set of prime positive integers .
Sn - the structured integers .
Snc -the composite structured integers .
Snco -the odd composite structured integers .
Snce -the even composite structured integers .
Snp -the prime structured integers .
N - the positive integers .
Nc -the composite positive integers .
K - a number of segment in which is located a tested number N .
K1, K2 - the numbers of segments of multipliers in composite structured
integers.
r - an offset which determines a position of tested number N inside of
segment.
r1, r2 - the offsets of multipliers in composite structured integers.
B - a length of segment which determines a quantity of integers in seg-
ment.
CV F - a course-of-value function for Nsc .
CV Fs - the course-of-value functions for Nsc .
FDB - the fixed data base composed of all primes less than 189 .
F - the number of all possible CVFs.
Fm - the mean number of CVFs in each class.
V0 - the number of cycles of testing for one CVF of the class.
Vc - the number of cycles of testing for all CVFs of the class.
Nh - a maximal limit of the dead zone of algorithm.
Nl - a minimal limit of the dead zone of algorithm.

17

References

[1] O.N. Vasilenko: Number-Theoretic Algorithms in Cryptogra-
phy,Translations of Mathematical Monographs, volume 232 , Amer-
ican Mathematical Society, (2006)

