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Abstract

Calculating the radius and interval of convergence with power series at infinity. By
using non-reversible arithmetic, either by factoring, comparison or application of the
logarithmic magnitude relation, convergence or divergence may be determined. We
interpret uniform convergence with a convergence sum.

1 Introduction

While convergence testing for power series is straight forward, we mirror the tests with
convergence sums [2]. The theory is general as it calculates in a different way the radius of
convergence, intervals and theorems.

In power series convergence sums we find application of non-reversible multiplication, The-
orem 1.3.

‘Convergence sums’ theory extensively uses power series at infinity. By threading a contin-
uous curve through a monotonic sequence and interchanging between the continuous form
and the sequence. This one idea leads to the integral test in both directions [2, Theorem
8.1]. We also use power series at infinity to describe a derivative of a sequence [3].

The power series representation at infinity is interesting because historically the power series
has played a role in applications, continuity, uniform convergence, limit interchanges, partial
differentiation, solution validity, and many other matters.

For example, we can represent a trigonometric function at infinity. As power series are
analytic, the property is applicable over the infinite domain too.

With power series, a generalization of the geometric series is extensively used for function
representation and approximation. Fourier series, partial differential equations and other
applied topics also appear in number theory of partitions with generating functions.

It happens that simplifying a sum at infinity, by reasoning of magnitude of
∑
anx

n|n=∞, is a
different experience, and is another way of determining convergence. The reasoning is often
algebraic, arguing with magnitudes and factoring.

A power series is a geometric series; we know that 1+x+x2 + . . . is convergent when |x| < 1.
The convergence can also be derived at infinity by comparing against a convergent p-series.
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Intuitively a fraction less than one multiplied by another fraction less than one infinitely
many times, is infinitely small.

Theorem 1.1. If |x| < 1 then
∑
xn|n=∞ = 0 converges, and has radius of convergence

r = 1.

Proof. Comparing against the convergent p-series.
∑
xn z

∑
1
nα
|n=∞ converges when α > 1.

x = 0 is a solution. Solving for x, xn z 1
nα
|n=∞, xnnα z 1|n=∞, ln(xnnα) (ln z) ln 1|n=∞,

n lnx + α lnn (ln z) 0|n=∞, n lnx (ln z) 0|n=∞, lnxn (ln z) 0|n=∞, xn z e0|n=∞, xn z 1|n=∞,
z = < then |x| < 1 . (Solving for z = ≤ leads to x = 1 which in the sum diverges hence this
case is excluded).

Proposition 1.1.
∑
xn|n=∞ diverges when |x| > 1.

Proof. For convergence,
∑
an|n=∞ requires an|n=∞ = 0. When |x| > 1 then xn|n=∞ 6= 0.

Definition 1.1. The radius of convergence is absolute convergence of
∑
anx

n|n=∞, solving

Theorem 1.2, |a
1
n
n r||n=∞ < 1 about the origin. x is absolutely convergent about the origin

within (−r, r).

Definition 1.2. The interval of convergence includes the radius of convergence, and the end
points which need to be tested separately.

A power series convergence test, Theorem 1.2 transforms the series at infinity to evaluate
the radius of convergence, a distance about which the sum converges. Unimportant terms
in the sums product, which are not required to determine convergence or divergence, be-
come transients. Applying non-reversible arithmetic, these variables and constants can be
removed.

Since a power series about a point can be translated to the origin, the calculation of the
radius of convergence and the interval of convergence may be applied to infinite series of the
form

∑∞
k=1 ak(x− c)k.

While solving absolute convergence finds the general interval, the end points of the inter-
val need to be tested separately for the interval of convergence [4, Properties of functions
represented by power series, p.431].

Example 1.1. Determine the radius of convergence of
∑
n(x

2
)n|n=∞ = 0.
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Transform the power series by bringing the n term into the product and simplifying.∑
n(
x

2
)n|n=∞

=
∑

(n
1
n
x

2
)n|n=∞ (n

1
n |n=∞ = 1)

=
∑

(
x

2
)n|n=∞ = 0 (for convergence)

|x
2
| < 1, |x| < 2 (Theorem 1.1)

radius of convergence r = 2

Theorem 1.2. Transform the sum
∑
anx

n =
∑

(bnx)n|n=∞. For convergence
∑

(bnx)n|n=∞ =
0, solving for |bnx| < 1, the radius of convergence r = 1

|bn| |n=∞ If r exists x = (−r, r) con-
verges. For the interval of convergence the end points need to be tested.

Proof. Let bn = a
1
n
n ,
∑
anx

n|n=∞ =
∑

(a
1
n
n x)n|n=∞ = 0 by Theorem 1.1 when |a

1
n
n x||n=∞ < 1

The end points bnx|n=∞ = 1 evaluated separately using the Criteria E3 [2].

A primary technique in simplifying products is to apply the inverse log and exponential
functions, then non-reversible arithmetic.

ab = eln(ab) = eln a+ln b = eln a when ln a � ln b

Example 1.2.
∑
n(x

2
)n|n=∞ =

∑
elnn+n ln x

2 |n=∞ =
∑
en ln x

2 |n=∞ =
∑

(x
2
)n|n=∞, |x

2
| < 1,

|x| < 2, radius of convergence r = 2.

By application of ‘logarithmic magnitude’ we can directly simplify the product. Given pos-
itive functions and relation f z g, when ln f ≺ ln g then by definition we say f ≺≺ g. We
then apply a non-reversible product theorem, if a ≺≺ b then ab = b [1, Part 5]. For power
series, this allows the simplification of product terms.

Theorem 1.3. For positive a and b, if a �� b|n=∞ then
∑
ab =

∑
a|n=∞

Proof. (
∑
ab =

∑
eln(ab) =

∑
eln a+ln b =

∑
eln a =

∑
a)|n=∞ since a �� b means ln a �

ln b.

Example 1.3. As
(
x
2

)n �� n|n=∞,
∑
n(x

2
)n|n=∞ =

∑
(x
2
)n|n=∞.

To establish the logarithmic magnitude relationship, solve the comparison. n z (x
2
)n|n=∞,

lnn (ln z) n lnx
2
|n=∞, (ln z) = ≺ then by definition z = ≺≺.
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Smaller infinities in the product/division may be simplified, thereby making the sum easier
to solve for convergence. It is not always easy to identify the dominant term. From [1, Part
5], products can be converted to sums by taking the logarithm, and solving the relation.

Example 1.4. Show
∑
cnpxn =

∑
xn|n=∞.

∑
cnpxn|n=∞ =

∑
eln(cn

pxn)|n=∞ =
∑
eln c+p lnn+n lnx|n=∞

=
∑
en lnx|n=∞ =

∑
xn|n=∞, because n lnx � p lnn+ ln c|n=∞.

Proposition 1.2. When p and c are constant then
∑
cann

pxn =
∑
anx

n|n=∞

Proof. By similar argument to Example 1.4.
∑
cann

pxn|n=∞ =
∑
eln(cann

pxn)|n=∞. ln(cann
pxn)|n=∞

= ln c+ln an+p lnn+n lnx|n=∞ = ln an+n lnx|n=∞ = lnanx
n|n=∞, as n lnx � ln c|n=∞ and

n lnx � p lnn|n=∞. Reversing the exponential and logarithmic operations,
∑
eln(cann

pxn)|n=∞
=
∑
elnanx

n|n=∞ =
∑
anx

n|n=∞

Example 1.5. Find the radius and interval of convergence for
∑∞

n=1
(x−5)n
(n+2)3n

.∑ (x− 5)n

(n+ 2)3n
|n=∞ (Need only consider the point at infinity)

=
∑ (x− 5)n

3n
|n=∞ (as 3n �� n+ 2|n=∞)

=
∑

(
x− 5

3
)n|n=∞ = 0 (for convergence)

|x− 5

3
| < 1

|x− 5| < 3 (radius r = 3)

2 < x < 8

Test the intervals end points. Case x = 2,
∑

(2−5
3

)n|n=∞ =
∑

(−1)n|n=∞ = ∞ diverges.
Case x = 8,

∑
(8−5

3
)n|n=∞ =

∑
1|n=∞ =∞ diverges. Radius of convergence is 3, interval of

convergence is x = (2, 8).

Basic arithmetic is used in solving these problems, abc = (ab)c = (ac)b. Where the raised
powers are interchanged. The best way is to evaluate the triple from the base upwards. E.g.
215 = 23·5 = (23)5 = (25)3 = 32768. If we write without correct bracketing, the order can be
ambiguous, evaluating from the top down, 235 = 2(35) = 2243, 253 = 2(53) = 2125.

Example 1.6. [4, 11.7.10]. Determine the radius of convergence for
∑∞

n=1 3n
1
2 zn

n
.
∑

3n
1
2 zn

n
|n=∞

=
∑

(3
1
2 )n z

n

n
|n=∞ =

∑
(3

1
2 z)n 1

n
|n=∞ =

∑
(3

1
2 z)n|n=∞ when |3 1

2 z| < 1|n=∞, |z| < 1

3
1
2

, r = 1

3
1
2

Example 1.7. [4, 11.7.12 ]. Determine the radius of convergence for
∑∞

n=1(1 + 1
n
)n

2
zn.∑

(1 + 1
n
)n

2
zn|n=∞ =

∑
((n+1

n
)nz)n|n=∞ =

∑
(ez)n|n=∞ = 0 when |ez| < 1, r = 1

e

By Stirling’s formula we know (n!)
1
n |n=∞ = e−1n. This can be used in determining radius of

convergence with factorial expressions.
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Example 1.8. [5, Example 5, p.795]. Determine the radius of convergence.
∑ (2n)!

(n!)2
yn|n=∞

=
∑

( ((2n)!)
1
n

(n!)
2
n
y)n|n=∞ =

∑
( (((2n)!)

1
2n )2

((n!)
1
n )2

y)n|n=∞ =
∑

( (2n)
2

n2 y)n|n=∞ =
∑

(4y)n|n=∞ = 0 when

|4y| < 1, |y| < 1
4
, r = 1

4

Example 1.9. [6, 3.3.7.c, p.98], given
∑
anx

n|n=∞ has radius of convergence R, R ≺ ∞.
Solve the radius of convergence r for

∑
nn

n!
anx

n|n=∞.

Solving for R.
∑
anx

n|n=∞ =
∑

(a
1
n
n x)n|n=∞ = 0 when |a

1
n
n x| < 1|n=∞, |x| < 1

|a
1
n
n |
|n=∞, R =

1

|a
1
n
n |
|n=∞.

∑
nn

n!
anx

n|n=∞ =
∑

( n

(n!)
1
n
a

1
n
n x)n|n=∞ =

∑
(ea

1
n
n x)n|n=∞ = 0 when |ea

1
n
n x| < 1|n=∞,

e|x| < R, |x| < R
e

radius of convergence r = R
e

Example 1.10. [6, 3.3.7.d, p.98] given
∑
anx

n|n=∞ has radius of convergence R, as above
R = 1

|a
1
n
n |
|n=∞, R ≺ ∞. Solve the radius of convergence r for

∑
a2nx

n|n=∞.

∑
a2nx

n|n=∞ =
∑

(a
2
n
n x)n|n=∞, |a

2
n
n x| < 1|n=∞, |x| < |a−

2
n

n ||n=∞, |x| < R2 then radius of
convergence r = R2.

Considering power series with the Alternating Convergence Theorem(ACT), we can deter-
mine convergence with functions that can be represented with these power series, for example
log and trigonometric functions.

Example 1.11. Show ln(1 + x) =
∑n

k=0(−1)k x
k+1

k+1
|n=∞ converges when radius of conver-

gence r = 1.
∑

(−1)n x
n+1

n+1
|n=∞ converges by the ACT (See Theorem [3, Theorem 3.1])

if xn+1

n+1
|n=∞ = 0. Solve xn+1

n+1
|n=∞ = 0. When |x| < 1, xn+1

n+1
|n=∞ = xn+1|n=∞ = 0 as

xn+1 �� n + 1|n=∞, radius of convergence r = 1. More simply without ��, xn+1

n+1
|n=∞ =

xn+1 · 1
n+1

= 0 · 0 = 0.

Example 1.12. Determining the radius of convergence of atanx follows the same rea-
soning as Example 1.11, in determining convergence consider atanx at infinity, atanx =∑

(−1)n x
2n+1

2n+1
|n=∞.

For negative x, factoring out the negative sign leaves the positive case, hence need only
consider x = (0,∞).

When x 6= 1 we observe that x2n+1 ‘log dominates’ 2n + 1. x2n+1 z 2n + 1|n=∞, (2n +
1) lnx (ln z) ln(2n + 1)|n=∞, (2n + 1) lnx � ln(2n + 1)|n=∞, then x2n+1 �� (2n + 1). [
ln z = �, z = e� = �� ] Then

∑
(−1)n x

2n+1

2n+1
|n=∞ =

∑
(−1)nx2n+1|n=∞.

Case x > 1,
∑

(−1)nx2n+1|n=∞ = ∞ diverges. Case x = (0, 1),
∑

(−1)nx2n+1|n=∞ = 0
converges. Hence the radius of convergence r = 1.

For the interval of convergence, test the end points. Case x = 1 converges by the ACT.
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∑ (−1)n12n+1

2n+1
|n=∞ =

∑ (−1)n
2n+1
|n=∞ = 0 converges by ACT as 1

2n+1
|n=∞ = 0. Case x = −1,

Case x = 1 converges by the ACT.
∑ (−1)n+1

2n+1
|n=∞ = 0 Interval of convergence is [−1, 1].

Example 1.13. Determine radius of convergence for sinx =
∑n

k=0(−1)k x2k+1

(2k+1)!
|n=∞. Deter-

mine
∑

(−1)n x2n+1

(2n+1)!
|n=∞. Assume x is positive as sign can be factored out. Solve x2n+1

(2n+1)!
|n=∞ =

0, x2n+1 z (2n+1)!|n=∞, (2n+1) lnx (ln z)
∑2n+1

k=1 ln k|n=∞, (2n+1) lnx (ln z)
∫ 2n+1

lnn dn|n=∞,
since

∫
lnn dn = n lnn|n=∞, (2n + 1) lnx (ln z) (2n + 1) ln(2n + 1)|n=∞. (2n + 1) lnx ≺

(2n + 1) ln(2n + 1)|n=∞, ln z = ≺, z = e≺ = ≺, x2n+1

(2n+1)!
|n=∞ = 0, by ACT the series is

convergent for all x. Similarly the same result for cosx.

In considering properties of power series, we again find parallel theorems with the standard
theorems.

Theorem 1.4. [4, Theorem 11.9, pp.432–433] f(x) =
∑∞

n=0 an(x − a)n, the differentiated
series

∑∞
n=1 nan(x− a)n−1 also has radius of convergence r.

The termwise differentiation and integration theorems given in [5, Theorems 3 and 4, pp.643–
644], that the power series differentiated and integrated have the same radius of conver-
gence, follows from a finite number power of n being simplified at infinity, demonstrated by∑
cnpxn =

∑
xn|n=∞.

Our assumption is that if a convergence sum is an infinireal, it can be integrated and differ-
entiated, by treating each term separately.

Theorem 1.5. Termwise differentiation and integration of the power series have the same
radius of convergence.∑

anx
n|n=∞ =

∂

∂x

∑
anx

n|n=∞ =

∫ ∑
anx

n ∂x|n=∞

Proof. ∂
∂x

∑
anx

n|n=∞ =
∑
annx

n−1|n=∞ =
∑
annx

n|n=∞ =
∑
eln(annx

n)|n=∞ =
∑
eln an+lnn+n lnx|n=∞

=
∑
eln an+n lnx|n=∞ =

∑
anx

n|n=∞. Similarly
∫ ∑

anx
n ∂x|n=∞ =

∑
an

1
n+1

xn+1|n=∞ =∑
an

1
n+1

xn|n=∞ =
∑
eln(an

1
n+1

xn)|n=∞ =
∑
eln an−ln(n+1)+n lnx|n=∞ =

∑
eln an+n lnx|n=∞ =∑

anx
n|n=∞

Example 1.14. Find the radius of convergence of the sum,
∑(

n
2

)
xn|n=∞ =

∑
n!

(n−2)!2!x
n|n=∞

=
∑
n(n− 1)xn|n=∞ [5, Example 1, p.799].∑

n(n − 1)xn|n=∞. =
∑
xn|n=∞, as xn �� n(n − 1), or by bringing the n terms into the

power,
∑
n(n − 1)xn|n=∞ =

∑
(n

1
n (n − 1)

1
nx)n|n=∞ =

∑
xn|n=∞, radius of convergence

r = 1.

By application of Theorem 1.5, partially integrating,
∑
n(n−1)xn|n=∞ =

∫ ∑
n(n−1)xn∂x|n=∞

=
∑
n(n−1) 1

n+1
xn+1|n=∞ =

∫ ∑
(n−1)xn+1∂x|n=∞ =

∑
(n−1)xn+2 1

n+2
|n=∞ =

∑
xn+2|n=∞,

radius of convergence r = 1.
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For general testing, the ratio test is simpler to implement.

Example 1.15. Determine the radius of convergence of
∑ 1·3·5...·(2n−1)

2·4·6...·(2n)
xn

n
|n=∞.

∑∏n
k=1

2k−1
2k
· xn
n
|n=∞ =

∑
(
∏

2n−1
2n
|n=∞) · xn

n
|n=∞ =

∑
(
∏

2n
2n
|n=∞) · xn

n
|n=∞ =

∑
xn

n
|n=∞

=
∑
xn|n=∞ = 0 when |x| < 1 then r = 1

With the ratio test: Let an =
∏n

k=1
2k−1
2k
·xn
n

, |an+1

an
| < 1|n=∞, |

∏n+1
k=1

2k−1
2k
·xn+1

n+1

∏n
k=1

2k
2k−1 ·

n
xn
| <

1|n=∞, |2n+1
2n+2

x| < 1|n=∞, |x| < 1, r = 1

We consider continuity at infinity. By considering The convergence sums, if they differ near
a point and at a point, then the sum is discontinuous at a point.

Example 1.16. [5, Example 2, p.815]. Show
∑

x2

(1+x2)n
|n=∞ is a discontinuous sum.

Case x = 0,
∑

02

(1+02)n
|n=∞ =

∑
0
1n
|n=∞ =

∑
0|n=∞.

Case x 6= 0,
∑

x2

(1+x2)n
|n=∞ =

∑
( x

2
n

(1+x2)
)n|n=∞ =

∑
( 1
(1+x2)

)n|n=∞ =
∑
αn|n=∞, α = 1

1+x2
6=

0.

Comparing the convergence sums,
∑

0 z
∑
αn|n=∞, 0 z αn|n=∞, 0 6= αn|n=∞ as 0 is

not an infinitesimal and αn ∈ Φ is. Alternatively,
∑

0 z
∑
αn|n=∞, 0 z

∫
αn dn|n=∞,

0 6= αnlnα|n=∞.

Both sums converge, as when realized their convergence sum is zero. Since the convergence
sum is not continuous about x = 0, the convergence sum is not uniform continuous about
x = 0. Hence, while the sum is convergent, the sum is not uniformly convergent.
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