FINITE AND INFINITE BASIS IN P AND NP

KOJI KOBAYASHI

1. Abstract

This article provide new approach to solve P vs NP problem by using cardinality of bases function. About NP-Complete problems, we can divide to infinite disjunction of P-Complete problems. These P-Complete problems are independent of each other in disjunction. That is, NP-Complete problem is in infinite dimension function space that bases are P-Complete. The other hand, any P-Complete problem have at most a finite number of P-Complete basis. The reason is that each P problems have at most finite number of Least fixed point operator. Therefore, we cannot describe NP-Complete problems in P. We can also prove this result from incompleteness of P.

2. Difference of basis between P and NP

By using SAT and these verification, we prove that some NP-Complete problems have infinite basis of P-Complete problems.

Definition 1. We will use the term " $v_i \in V$ " as problem which verify formula with special valuation *i*.

That is, if $t \in SAT$ then $v_i(t) = \top \leftrightarrow t(i) = \top$

Theorem 2. $v_i \in P - Complete$

Proof. First, we show that $v_i \in P$. A Polynomial DTM can verify valuation i to a given formula f and accept if $f(i) = \top$.

Next, we show that $CIRCUIT - VALUE \leq_L v_i$. $CIRCUIT - VALUE \in P - Complete[1]$, therefore if $CIRCUIT - VALUE \leq_L v_i \in P$ then $v_i \in P - Complete$. If we modify $C \to C'$ to match $x \to i$, v_i compute C' as $\langle C, x \rangle$. We can modify $C \to C'$ to negate some C variables that x mismatch i. This modification can compute in L.

Therefore,
$$CIRCUIT - VALUE \leq_L v_i \in P$$
 and $v_i \in P - Complete$.

Theorem 3. V is basis of SAT

Proof. To think about relation between SAT and $v_i \in V$, SAT is disjunction of V, i.e.

 $SAT = \bigcup V = \bigvee_{i=0}^{\infty} v_i$

Each v_i is independent of each other in disjunction because every input p have another input q that change only v_i output.

 $\forall p \exists q ((v_0(p), \cdots, v_i(p), \cdots)) \rightarrow (v_0(q) = v_0(p), \cdots, v_i(q) = \neg v_i(p), \cdots))$

If $v_i(p) = \top$ then $q = p \land (\neg i)$ else if $v_i(p) = \bot$ then $q = p \lor (i)$ That is, $V \setminus \{v_i\}$ cannot compute *SAT* problems. Therefore V is basis of *SAT*.

From descriptive complexity, P = FO + LFP[1, 2, 3]. This means that every P problem have at most a finite number of LFP operators in finite first-order logic model. Therefore P problem have at most a finite number of P-Complete basis.

Theorem 4. Any $p \in P$ have at most a finite number of P-Complete basis.

Proof. To prove it by using reduction to absurdity. We assume that $p \in P$ have infinite number of basis of P-Complete. These basis independent of each other and have independent LFP operators. But P = FO + LFP have at most finite number of LFP operators. Therefore we cannot describe p in finite length FO + LFP. \Box

Theorem 5. $P \neq NP$

Proof. Mentioned above 3, *SAT* have infinite P-Complete basis. But mentioned above 4, any $p \in P$ have finite P-Complete basis. Therefore *SAT* is not any $p \in P$.

3. FROM VIEW OF COUNTABLE AND CONTINUUM

We show another proof from the view of completeness.

Theorem 6. $P \neq NP$

Proof. Let $\langle v, i \rangle$ be a code number of v_i . To assign this number after the decimal point, $0, \langle v, i \rangle$ correspond to number within [0, 1], and $[0, 0, \langle v, i \rangle] + \bigcup V = [0, 0, \langle v, i \rangle] + \bigvee_{i=0}^{\infty} v_i$ correspond to Dedekind cut of P.

If $[0, 0, \langle v, i \rangle] + \bigvee_{i=0}^{\infty} v_i$ also P then P become isomorphic as real number and contradict that P is countable. Therefore $NP \ni \bigcup V \notin P$ and $P \neq NP$. \Box

References

- [1] Michael Sipser, Introduction to the Theory of Computation 2nd ed., 2005
- [2] Neil Immerman, Descriptive and Computational Complexity, 1995
- [3] Neil Immerman, Relational Queries Computable in Polynomial Time, 1982
- [4] M. Vardi, Complexity of Relational Query Languages, 1982