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1. ABSTRACT

This article provide new approach to solve P vs NP problem by using cardi-
nality of bases function. About NP-Complete problems, we can divide to infinite
disjunction of P-Complete problems. These P-Complete problems are independent
of each other in disjunction. That is, NP-Complete problem is in infinite dimen-
sion function space that bases are P-Complete. The other hand, any P-Complete
problem have at most a finite number of P-Complete basis. The reason is that each
P problems have at most finite number of Least fixed point operator. Therefore,
we cannot describe NP-Complete problems in P. We can also prove this result from
incompleteness of P.

2. DIFFERENCE OF BASIS BETWEEN P AND NP

By using SAT and these verification, we prove that some NP-Complete problems
have infinite basis of P-Complete problems.

Definition 1. We will use the term “v; € V” as problem which verify formula with
special valuation i.

That is, if

te SAT

then

v;()=T <t =T

Theorem 2. v; € P — Complete

Proof. First, we show that v; € P. A Polynomial DTM can verify valuation i to a
given formula f and accept if f (i) = T.

Next, we show that CIRCUIT — VALUE <p v;. CIRCUIT —VALUE € P—
Complete[1], therefore if CTRCUIT -V ALUE <y, v; € P then v; € P—Complete.
If we modify C — C’ to match = — ¢, v; compute C’ as (C,z). We can modify
C — (' to negate some C variables that x mismatch i. This modification can
compute in L.

Therefore, CIRCUIT — VALUFE < v; € P and v; € P — Complete. O

Theorem 3. V is basis of SAT

Proof. To think about relation between SAT and v; € V', SAT is disjunction of V,
i.e.

SAT =V =V v,

=0
Each v; is independent of each other in disjunction because every input p have
another input ¢ that change only v; output.

Vp3q ((vo (p) -+ svi (p),-+) = (vo(q) =vo(p), - ,vi(g) = i (p), ))
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If v; (p) =T then ¢ = p A (i)

else if v; (p) = L then ¢ =p V (%)

That is, V' \ {v;} cannot compute SAT problems.

Therefore V' is basis of SAT. 0

From descriptive complexity, P = FO + LFP[1, 2, 3]. This means that every
P problem have at most a finite number of LFP operators in finite first-order logic
model. Therefore P problem have at most a finite number of P-Complete basis.

Theorem 4. Any p € P have at most a finite number of P-Complete basis.

Proof. To prove it by using reduction to absurdity. We assume that p € P have
infinite number of basis of P-Complete. These basis independent of each other and
have independent LFP operators. But P = FFO + LF P have at most finite number
of LFP operators. Therefore we cannot describe p in finite length FO + LFP. O

Theorem 5. P # NP

Proof. Mentioned above 3, SAT have infinite P-Complete basis. But mentioned
above 4, any p € P have finite P-Complete basis. Therefore SAT is not any
p € P. O

3. FROM VIEW OF COUNTABLE AND CONTINUUM

We show another proof from the view of completeness.
Theorem 6. P # NP

Proof. Let (v,i) be a code number of v;. To assign this number after the dec-
imal point, 0.(v,i) correspond to number within [0,1], and [0,0. (v,4)] + UV =

[0,0. (v,4)] + V wv; correspond to Dedekind cut of P.
i=0

If [0,0.(v,5)]+ V w; also P then P become isomorphic as real number and
=0
contradict that P is countable. Therefore NP 5 |JV ¢ P and P # NP. O
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