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1. Abstract

This article provide new approach to solve P vs NP problem by using cardi-
nality of bases function. About NP-Complete problems, we can divide to in�nite
disjunction of P-Complete problems. These P-Complete problems are independent
of each other in disjunction. That is, NP-Complete problem is in in�nite dimen-
sion function space that bases are P-Complete. The other hand, any P-Complete
problem have at most a �nite number of P-Complete basis. The reason is that each
P problems have at most �nite number of Least �xed point operator. Therefore,
we cannot describe NP-Complete problems in P. We can also prove this result from
incompleteness of P.

2. Difference of basis between P and NP

By using SAT and these veri�cation, we prove that some NP-Complete problems
have in�nite basis of P-Complete problems.

De�nition 1. We will use the term �vi ∈ V � as problem which verify formula with
special valuation i.

That is, if
t ∈ SAT
then
vi (t) = > ↔ t (i) = >

Theorem 2. vi ∈ P − Complete

Proof. First, we show that vi ∈ P . A Polynomial DTM can verify valuation i to a
given formula f and accept if f (i) = >.

Next, we show that CIRCUIT −V ALUE ≤L vi. CIRCUIT −V ALUE ∈ P −
Complete[1], therefore if CIRCUIT−V ALUE ≤L vi ∈ P then vi ∈ P−Complete.
If we modify C → C ′ to match x → i, vi compute C ′ as 〈C, x〉. We can modify
C → C ′ to negate some C variables that x mismatch i. This modi�cation can
compute in L.

Therefore, CIRCUIT − V ALUE ≤L vi ∈ P and vi ∈ P − Complete. �

Theorem 3. V is basis of SAT

Proof. To think about relation between SAT and vi ∈ V , SAT is disjunction of V ,
i.e.

SAT =
⋃
V =

∞∨
i=0

vi

Each vi is independent of each other in disjunction because every input p have
another input q that change only vi output.

∀p∃q ((v0 (p) , · · · , vi (p) , · · · ) → (v0 (q) = v0 (p) , · · · , vi (q) = ¬vi (p) , · · · ))
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If vi (p) = > then q = p ∧ (¬i)
else if vi (p) = ⊥ then q = p ∨ (i)
That is, V \ {vi} cannot compute SAT problems.
Therefore V is basis of SAT . �

From descriptive complexity, P = FO + LFP [1, 2, 3]. This means that every
P problem have at most a �nite number of LFP operators in �nite �rst-order logic
model. Therefore P problem have at most a �nite number of P-Complete basis.

Theorem 4. Any p ∈ P have at most a �nite number of P-Complete basis.

Proof. To prove it by using reduction to absurdity. We assume that p ∈ P have
in�nite number of basis of P-Complete. These basis independent of each other and
have independent LFP operators. But P = FO+LFP have at most �nite number
of LFP operators. Therefore we cannot describe p in �nite length FO + LFP . �

Theorem 5. P 6= NP

Proof. Mentioned above 3, SAT have in�nite P-Complete basis. But mentioned
above 4, any p ∈ P have �nite P-Complete basis. Therefore SAT is not any
p ∈ P . �

3. From view of countable and continuum

We show another proof from the view of completeness.

Theorem 6. P 6= NP

Proof. Let 〈v, i〉 be a code number of vi. To assign this number after the dec-
imal point, 0. 〈v, i〉 correspond to number within [0, 1], and [0, 0. 〈v, i〉] +

⋃
V =

[0, 0. 〈v, i〉] +
∞∨
i=0

vi correspond to Dedekind cut of P .

If [0, 0. 〈v, i〉] +
∞∨
i=0

vi also P then P become isomorphic as real number and

contradict that P is countable. Therefore NP 3
⋃

V /∈ P and P 6= NP . �
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