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A new paradigm is emerging in fundamental physics. We know this because there is so much 

controversy about what is valid science, but what is the true nature of the new thinking? It may be too 

early to give a full answer but I think that an important part of it is in the way that we understand the 

vacuum and how it relates to particle physics. Thirty years ago all physicists would have assumed that 

the cold flat vacuum is a unique solution of the fundamental laws. The standard model of particle 

physics is now known to be successful beyond the wildest dreams of physicists back then and it has a 

single lowest energy state of broken symmetry from which all known laws other than gravity are 

known to follow. It was thought that a full unified theory was within our grasp. A fuller unification 

would be found at the GUT scale from a bigger but simpler gauge symmetry. Beyond that 

supersymmetry would provide the final unification with gravity. All the laws of the standard model 

including its 21 constants would be derived from some unique theory with fewer free parameters, or 

perhaps even none. 

Today the more progressive physicists take a different view. Space and time are seen as emergent 

from a yet unknown new way of looking at the universe that must go beyond the bounds of standard 

quantum field theory, but that much is widely accepted and therefore is not the defining feature of the 

new paradigm. What is harder to accept is the multiplicity of the vacuum – the idea that there may 

be more than one stable solution for cold empty space and that the one we know is nothing special or 

unique. This concept bruises the egos of particle physicists who thought that the laws of physics they 

were unveiling were special in a very fundamental sense. They felt that their science as superior in a 

way that is different from other fields such as biology or geology. These are understood to be merely 

studies of one particular solution to the consequences of the laws of physics while many different 

solutions may be realized elsewhere. Surely the laws of particle physics could not turn out to be just 

as parochial.     

Problems with the univacuum assumption have been around for a long time. It has been observed for 

years that the nature of physical laws appears fine-tuned for the convenience of life. With different 

values for the masses of particles and physical constants, chemistry and astronomy and therefore 

biology would not be present in the universe. Almost every natural occurring element of the periodic 

table plays some essential role in the making of multicellular life forms. How can this be explained if 

there is no alternative possibility for the values of those parameters? This question of anthropic 

principle was popularised in books by John Barrow and Frank Tipler in the 1980s [1] but physicists 

had grown used to the form of nature and took it for granted until they learnt from astronomy that the 

cosmological constant has a small positive value. More recently it was the failure to find 

supersymmetry in the first run of the LHC that rung alarm bells. SUSY is a natural consequence of 

string theory and would account for fine-tuning of the Higgs mechanism, but when the Higgs boson 

was found in its absence it was another feature of string theory that seemed to better provide an 

explanation, namely the multiplicity of the vacuum. When gravity and quantum theory come together 

we learn that there can be higher dimensions curled up with some undetermined topology and 

stabilised with fluxes. This provides a landscape of different solutions from which the vacuum we 

know may be selected almost at random. This might not be just a consequence of string theory but 

may also appear in the so-called alternatives such as spin-foams and Loop Quantum Gravity (I say 

“so-called” not because I do not accept their viability but rather because I still think they will turn out 

in the end to be aspects of the same theory from which strings emerge) 



At this stage the multiplicity of vacua remains only a hypothesis, but eventually we will surely 

understand the theory of quantum gravity well-enough to know if it is correct. In the meantime it is 

normal and healthy that theorists will build more layers of speculation upon the idea to try and 

understand the range of possible consequences. It is equally predictable and healthy that such ideas 

will be criticised. It is all part of the entrance exam that a new paradigm must go through. If there is 

indeed a class of many possible solutions for the vacuum, is only one of these real?  I think it is more 

parsimonious to accept that all solutions exist in some higher sense, whether inside or outside our 

universe. Some physicists have speculated that there is an eternal process of inflation with vacua 

decaying to different solutions so that our own universe is just one bubble inside a larger arena. 

Others have looked at evolving universes where the laws of physics evolve in leaps where new 

universes are born from old. We can learn a lot from thinking about such possibilities whether they 

are eventually testable or not but we should not get carried away by thinking they are less speculative 

or more testable than they really are. 

Some physicists protest that this new way of thinking is “giving up” on fundamental physics. Nothing 

could be further from the truth. The only thing that is given up is the dream of a natural unified model 

of particle physics that explains it all from simple equations. There is still plenty of work to be done to 

understand dark matter and how inflation works. Experiments will probe higher energies, the stability 

of the proton, gravitational waves and we will learn more. Theorists still do not understand quantum 

field theory properly and there are plenty of unexplained patterns in the standard model. It is just 

going to take longer than expected at the end of the millennium to learn our place in the universe. 

At the same time, theorists will desire to look beyond the laws of particle physics that depend on a 

particular vacuum state and ask what are the meta-laws to which they are a solution. If the challenges 

that face particle physics are already hard then this deeper problem may sound like something beyond 

the possibility of resolution but that seems not to be the case. It is known that the combination of 

quantum theory and general relativity imposes tough constraints on the possible range of consistent 

space-time models. Taking perturbations around a flat vacuum we find that the requirements of 

consistency in quantum field theory limits us to a range of particles with half integer spin up to the 

spin-two graviton. We can extend to higher spin states using string theory and it is highly likely (but 

not quite proven) that there is no other way to describe a consistent theory of quantum gravity in 

perturbation theory. Other approaches such spin foams and Loop Quantum Gravity approach the 

quantisation of general relativity from a different direction and tell us more about how to understand 

space-time in terms that transcend any particular space-time background or particle spectrum. 

The ability of theorists to see so far beyond what experiment reveals directly is due to what Wigner 

called “the unreasonable effectiveness of mathematics in the natural sciences” [2] It is not hard to 

accept that mathematics can describe measurements we make and tell us what results we will get 

when we make different but similar measurements, but why is it that mathematics can take us from 

what we have observed to completely new phenomena not previously looked at? Wigner asked these 

questions in 1960 citing the use of complex numbers and matrices in quantum mechanics and 

differential geometry in relativity as examples of the way that ideas from pure mathematics have 

proved useful in physics. Fifty years later this mysterious power of mathematics is even clearer. Even 

new ideas from number theory and algebraic geometry have applications in advanced physics. 

Critics will say that physicists have been carried away by the beauty of mathematical ideas and used 

them in ways that are not justified by experiment. This is not the case. Applications of advanced and 

abstract mathematical ideas appear to arise unexpectedly in physics research and are used as they are 

needed. Sometimes the physics even moves ahead of what has been previously known in mathematics 



and advances concepts that mathematicians had been struggling with. Today we might equally well 

ask why physical science is so effective in mathematics. A striking example is the proof by Richard 

Borcherds of the Monstrous Moonshine Conjectures for which he won the Fields Medal. 

Mathematicians had noticed mysterious and unexpected relationships between numbers and series that 

arose in unrelated areas of pure mathematics which they called Monstrous Moonshine. Borcherds 

eventually proved the connection using a clever construction based in string theory from physics. This 

remarkable connection leaves us to wonder how mathematicians would have proceeded if string 

theory had not been known. Would they simply have been stuck or would they have invented some 

purely mathematical form of string theory just to solve this problem? Whatever the answer it is clear 

that there are deep relations between ideas from physics and mathematics. It is this unity that lends 

hope to the idea that we really can come to understand the meta-laws that govern physics despite the 

limitations of our technical ability to measure phenomena at the relevant physical scales. 

According to Tegmark’s Mathematical Universe Hypothesis [3] our universe is just one 

mathematical structure of many whose existence is equally valid even if they are outside our own 

universe. I think it is unnecessary to concern ourselves with whether the words “exist” and “outside” 

have any meaning here. Such ideas are about concepts beyond our ordinary experience for which we 

do not have predefined words. To think about them we can only use metaphors with meaning that we 

understand within our own limits. In this sense we can build a picture of this mathematical universe 

and try to use it to comprehend the nature of reality. 

In this spirit I offer a metaphorical chart of the mathematical ontology. It is a map of all things that 

are logically possible including us and our own universe. It is timeless and spaceless because these 

things are emergent features of our particular universe. In the mathematical ontology there are just 

relationships between mathematical objects. An ontology is a view of being, of how and why anything 

exists. I take it as self-evident that logical possibilities exist even if only in some metaphorical sense 

that we don’t understand. It is just a way of saying that some things are possible.  

Philosophers sometimes debate whether mathematical structures are invented or discovered. This is 

a key question and the answer is both on a sliding scale. A work of fiction has a logical structure both 

in the language it uses which is represented by a sequence of symbols in a book, and in the 

relationships and characteristics of the characters and objects in the plot. Mathematicians don’t 

normally regard a story as a work of mathematics because it has a very arbitrary structure that is 

clearly invented. However, there is no sharp line between such an invention and the more 

mathematically interesting structures that most mathematicians would describe as discovered. An 

intermediate structure would be something like the game of chess. It has a very clear mathematical 

definition and can be analysed mathematically, yet its rules were invented. If we came across an alien 

civilisation and they played chess we would suspect that there had been some cultural communication 

that had passed the rules from us to them or vice versa. On the other hand, if the same aliens proved 

theorems about prime numbers we would assume they probably discovered them independently just 

as mathematicians often do. What about games with simpler rules like tic-tac-toe or Nim? Somewhere 

the distinction between invention and discovery blurs and depends on how much time people have 

had to think of new things to study. 

  



 



What is it that distinguishes the good mathematical concepts that are discovered from the less 

interesting ones that seem invented? You might be excused for thinking that the answer lies in 

simplicity or mathematical beauty and elegance. Those qualities play their part in discovery but they 

are not the answer. The real answer is something more mysterious. It is referred to as universality. If 

you were a newcomer to mathematics you might expect that the field would consist of a mixture of 

methods and formula tailored to solve specific problems. If that were the case mathematics would be 

useful, but it would not be very interesting. What delights mathematicians is when they find 

connections between problems that had previously seemed unrelated. A mathematical concept like 

complex numbers or matrices originally formulated to solve one problem in analysis or algebra can 

turn out to be useful in unexpected areas such as number theory, or of course in physics. We don’t 

really know why this happens so frequently but it seems to be a feature of universality, something that 

appears in the study of complexity rather than the study of simplicity.    

Our understanding of universality is incomplete, but there are examples of it that give a good general 

idea. The most revealing is universality found in statistical physics which describes the behaviour of 

systems consisting of many particles in terms of temperature and entropy which do not depend on the 

specific microscopic properties of the system. Similar types of universality can be found in quantum 

field theory where scaling behaviour near a critical point in the phase diagram washes out the small 

scale description of the fields, a feature used in lattice gauge theories to approach a continuum limit. 

What then would happen if we treat the whole of mathematics as a statistical physics system or as a 

path integral over the moduli space of all possible theories [4]? Would some universal behaviour 

emerge that could describe the meta-laws of physics? 

That is essentially what I suspect happens on our ontological chart. The realm of all logical 

possibilities that includes all consistent things whether invented or discovered has a critical point 

around which universal behaviour can be found. This explains the unity of mathematics and why 

some concepts seem more discovered than invented, making them of interest to mathematicians. The 

precise theory of this universality would be algebraic rather than something that can be calculated 

using statistical physics, but thermodynamic metaphors help to understand it. As well as explaining 

the unity of mathematics this universality principle would also explain why mathematics is so 

effective in natural science. It also explains conversely why physics is so important in 

mathematicians, even to those who are not interested in practical applications. In my metaphorical 

chart I show how mathematical concepts funnel towards this critical point of where universality and 

the meta-laws of physics emerge. 

The meta-laws themselves are depicted on the chart as an elephant in honour of the ancient metaphor 

of the elephant and the blind men which is popular in Asian philosophy, especially in India. The 

moral is that physicists are like blind men (and women) who feel something important as they touch 

different aspects of the fundamental laws of physics. In reality they are sensing a grand whole which 

is represented by the elephant. They see string theory when they look at how quantum perturbations of 

spacetime should propagate as gravitons and they see loop quantum gravity when they apply 

background independent methods of quantisation to gravity. Other features of the elephant appear as 

the amplituhedron, non-commutative geometry, spin-foams or twistors. Some of these things are 

known to be connected but the whole picture still eludes discovery. 

Below the elephant we see the cascade of vacua which depicts the landscape of solutions to the meta-

laws of which our universe is one example. The elephant is not to be envisaged as something that 

existed before the big bang. Geometry and time are part of specific vacua which can have different 



dimensions. The emergence of different vacua is ontological rather than temporal [5]. It is possible 

that different vacua exist in the same universe but a simpler picture is to see them as disconnected 

possible universes. 

Uncovering the meta-laws is now the most important goal in our quest to understand the universe. 

New empirical data would help but theorists have to work from what they have and the need to 

combine quantum theory and general relativity under one roof appears to already be a tight constraint. 

To get answers they must pull together what they know from all the different approaches to quantum 

gravity and perhaps also from the nature of universality in mathematics. 

From string theory there is the idea of M-theory from which consistent string theories may be derived 

as different vacuum solutions. M-theory is thought to be a theory of two and five dimensional 

membranes in eleven dimensions. However, there is also F-theory with an extra time dimension and 

also the bosonic string theories in 26 dimensions. M-theory may therefore be too restrictive to 

describe the full meta-laws. Instead we should regard M-theory as one aspect of a split in the cascade 

of vacua, albeit one that is quite high up in the hierarchy. 

From work on Matrix-theory, the amplituhedron and even Loop Quantum Gravity we get the idea 

that space and time are emergent so the meta-laws should not be given directly in geometric terms. It 

has been said that geometry is an angel and algebra is a demon [6], but if so then the signs are that the 

devil rules at the deepest levels of existence. Perhaps the chart should be turned upside-down. How 

then can we understand the unholy alliance between these demons and angels that brings into being 

the graces of space and time from the devilish rules of algebra? 

In the 17
th

 century Descartes provided the first components of an answer by defining coordinates so 

that geometric curves could be analysed using algebraic equations. This was followed by vector 

algebra, matrices, complex numbers, quaternions, tensor analysis and group theory bringing us to the 

beginning of the twentieth century. Physicists have made use of all those algebraic concepts to 

understand the geometry of space-time, but during the twentieth century mathematicians such as 

Grothendiecke moved on to new concepts of algebraic geometry that were more abstract and seemed 

further removed from physics. In the present century physicists have reconnected with the latest 

mathematical innovations after finding that some of the constructs from algebraic geometry arise 

naturally in quantum field theories. One of these ideas that I find particularly promising is the 

application of iterated integrals [7] to map algebraic structures like necklace algebras [8] to the 

geometry of particle worldliness, Feynman diagrams, string states and even path integrals. These 

things are new for both mathematicians and physicists so they will take time to assimilate. 

There are people who argue that physicists are misguided and use sophisticated concepts just because 

of their mathematical beauty which has nothing to do with physical concepts and is not linked to 

experiment. I think those detractors are wrong and seem to be driven by a desire that the laws of 

physics should be simple so that more people can understand them. In fact all physicists would be 

more comfortable if simpler mathematics was all that was needed to find deeper laws of physics 

because it requires a huge effort to keep learning new things, but what really happens is that they 

study quantum field theory and relativity together and find that the hard mathematics just turns up 

naturally in the analysis. The reason for this confluence of mathematics and physics is mysterious but 

a possible explanation is that mathematicians and physicists are attracted towards the same critical 

point of universality. On the mathematicians side it is because the universal constructs are useful 

across different types of problems which makes them seem more discovered than invented. On the 

physicists side it is because the point of universality defines the meta-laws of which our own universe 



is one solution. Of course new experimental input will be needed to confirm that theories built in this 

way are right but theorists will have to explore the mathematical aspects of quantum field theory 

combined with relativity in all its forms to know what possibilities can work and which are 

inconsistent. 

What is the role of symmetry in the meta-laws? It used to be conventional wisdom that symmetry is 

the key principle that determines the laws of physics. Group invariance is central to both general 

relativity and gauge fields so 30 years ago it made sense to look for larger symmetries that unified the 

forces. Now there is a growing movement among physicists that thinks symmetry is not so 

fundamental. They say that gauge fields can be regarded as redundant variables that just make the 

theory look simpler [9]. Different groups control different quantum field theories that are known to be 

dual to each other so how can the symmetry be what really counts? Many present day physicists 

prefer to think that symmetry is emergent just as space and time are. To some extent I agree. The 

fundamental principle that determines the laws of physics is universality, not symmetry, but I contend 

that symmetry is emergent at the critical point of universality and that it emerges as a huge symmetry 

present in the meta-laws of physics. As we descend the cascade of solutions this universal symmetry 

is broken by vacuum states and the symmetries we observe at the low energies are residual 

symmetries, not emergent symmetries. Different dual theories have different symmetries because the 

universal symmetry is broken in different ways according to the limit taken. 

The big clue that this huge hidden symmetry exists is the holographic principle that is required to 

resolve the black hole information loss puzzle. The principle says that the laws of physics can be 

defined by variables on the surface of a region of space rather than the bulk volume. This must mean 

that the when we define the laws of physics in terms of field variable over space-time, those variables 

must in fact be redundant so that they can be replaced by variables on the boundary. The only 

mechanism that can realise this is a complete symmetry where there is one degree of symmetry for 

every field variable. In other words, the physical state is given by the adjoint representation of a 

symmetry Lie-algebra. Although the universal symmetry is hidden by the selection of the vacuum 

state the equations of motion for the fields still respect its gauge invariance and can be replaced by an 

infinite number of gauge charges on the boundary. 

Does this mean that the algebraic form of the meta-laws is just a Lie-algebra? The largest and most 

general Lie-algebra is the free Lie-algebra whose universal enveloping algebra is the free associative 

tensor algebra. It is easy to see that this algebra may play a key role because it takes the form of a 

necklace algebra (a structure I first encountered in my work on event-symmetry [10]) which can be 

mapped through iterated integrations to both open and closed geometric string states.  All other Lie-

algebras can be derived from the free Lie-algebra over an infinite dimensional vector space through 

homomorphic mappings which are the analogue of solution selection in geometry. Could the 

principles of universal algebra be what governs the meta-laws? 

No, it is not quite that simple. There are fermionic fields as well as bosonic fields, so complete 

symmetry implies a super-Lie algebra. Then there are other algebraic generalisation of symmetry 

that are likely to be relevant. The knotted nature of Loop Quantum Gravity suggests that quantum 

deformations of symmetry are needed and from higher category theory we know that there are 

higher dimensional n-groups that are also relevant to mathematical physics. In fact it is the language 

of these n-categories and operads that has taken over from universal algebra as tools to understand the 

universal structures of mathematics and there are good indications towards why they also feature in 

physics. 



Universality brings together all the logical possibilities of mathematics under one metaphorical path 

integral that quantised the ensemble, but the structure that emerges from universality is also a 

mathematical structure in its own right. It should also therefore be one of the logical possibilities 

under the path integral. This gives a self-referential and recursive nature to universality so we should 

expect the meta-laws of physics to be not just quantised at one level, but to have the features of 

multiple layers of quantisation. The relationship between classical and quantum in physics is indeed 

more complex than it first appears, not only do we have first and second quantisation followed by 

hints of third and fourth quantisations [11], in addition we find that a given quantum theory can have 

more than one classical limit. For example theories with S-duality have two classical limits with 

different gauge symmetries related by geometric Langlands duality. These are features you would 

expect if physics is the convergent limit of iterated quantisations. When you use Newton-Raphson 

iteration for calculating square roots you converge to the same final answer for any positive choice of 

starting value. At each step of the iteration two values map to one value at the next step. We can 

expect the same to happen with iterated quantisation leading to the same result whether you start from 

a system of one qubit of information or anything else. There are less quantum theories than classical 

theories and the theory you get by recursively iterating quantisation should be unique. 

The second quantisation process we know from quantum field theory is just a pale shadow of the full 

algebraic structure present in the meta-laws above the cascade of vacuum solutions. To understand it 

we need to see quantisation for what it is in its purest form. From one point of view quantisation is the 

process of taking all mappings from one structure to another that respect their operations, i.e. 

homomorphisms or n-functors in the more general language of higher category theory [12]. We see 

this in path-integrals and when we replace classical variables with operators. N-category theory is 

built in layers of abstraction where n-functors are replaced by (n+1) functors. At the first level of set 

theory it is set exponentiation in which we construct all functions from one set to another. This is 

why quantisation appears like a process of exponentiation with the exponential function appearing in 

the path-integral and the number of variables increased as an exponential. Taking this line of reason to 

its logical conclusion we might find that the meta-laws are described by the free weak omega-

category for some suitably definition of that object. To understand the laws of physics we need to 

understand the natural rules of n-category theory and the mappings from algebraic geometry that map 

the algebraic structures to the geometric ones we are familiar with. It is an ambitious project that will 

no doubt occupy the minds of physicists and mathematicians for many decades.  

The deepest questions we can ask about existence are “How do we exist?” and “Why are things as 

they are?” The Mathematical Universe Hypotheses tells us that all logical possibilities are equal. It 

does not require a magic spell to bring one chosen system of equations into reality. Our world is 

quantum because all those things can happen but it is the principle of universality that makes sense of 

what we experience. While all is possible in the quantum realm there is a hierarchy of classical limits 

determined by reversing the self-referential logic of universality. These limits define worlds in which 

mathematical rules are played out according to the law of quantum averages. They form a landscape 

of possible solutions of which our universe is just one. Apart from universality the only other 

constraint is that the solution we experience needs to be such that intelligent life can evolve through 

lazy processes that minimise fine-tuning giving preference to natural structures. Our understanding 

has been able to progress because universality also determines the elements of mathematics that are 

most useful and pleasing to mathematicians. The development of both the theory and the experiment 

is going to be tremendously hard, but during this century we will discover more about the 

relationships between algebra and geometry that determine the emergence of space and time in a 

universe governed by the laws of energy and entropy that are needed for life to evolve. At the same 



time technological progress will enable new empirical observations to help us understand inflation, 

dark matter, proton decay and other subtle phenomena that help to chart our course through the 

ontological realm to where we stand in it. They will enable us to pick out the universe’s particular 

solution to the algebraic meta-laws.   Thus we learn finally that there is no mysterious force that 

defines our consciousness. We have no existence beyond our journey in this material world. This 

universe of beauty is simply our Heaven or Hell according to the rules of universality and chance and 

what we make of them in the brevity of our life. 
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