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1. Introduction 
 
 Nowhere is the power of differential forms geometry to determine physical results in 
spacetime more apparent than for the magnetic monopole equation of classical electrodynamics.   
One postulates a gauge potential one-form A A dxµ

µ=  with an energy-dimensioned vector, 

defines from this a field strength two-form 1
[ ]2!F dA A dx dxµ ν
µ ν= = ∂ , and applies the 

fundamental result dd=0 of exterior calculus that the exterior derivative of an exterior derivative 
is zero, to obtain 0dF ddA= =  which contains Gauss’ and Faraday’s classical laws for 
magnetism.  Then, one applies an open triple integral to the monopole equation three-forms, also 

applies the Gauss / Stokes theorem 
M M

dH H
∂

=∫ ∫�  where H is a generalized p-form and M∂  is 

the closed exterior boundary of a p+1-dimensional manifold, and thereby obtains 

( )0 0dF F= = =∫∫∫ ∫∫ ∫∫∫�  which are the classical magnetic equations in integral form.  Good 

reviews of the underlying exterior calculus and differential forms are provided, for example, in 
[1] Chapter 4 and [2] Chapter IV.4. 
 
 The result that dd=0 does not, however, stop with its use to obtain 0ddA= .  It applies to 
any p-form of any rank.  In this paper, we shall demonstrate that by starting with a dimensionless 
scalar potential s which is a zero-form, defining a one form U ds≡ , next obtaining the two-form 

0dU dds= = , and finally integrating with Gauss / Stokes via ( )0 0dU U= = =∫∫ ∫ ∫∫� , the 

energy-dimensioned vector Uµ  in U U dxµ
µ=  turns out to behave like the internal energy of a 

thermodynamic system, and the resulting integral form equations when studied in detail, turn out 
to be synonymous with the second (entropy) law of classical thermodynamics, for reversible and 
irreversible processes. 
 

In a nutshell: just as dd=0 when applied to a one-form potential via 0dF ddA= =  and 
then integrated contains the classical Gauss and Faraday laws for magnetism, this same dd=0 
when applied to a zero-form potential via 0dU dds= =  and then integrated contains the second 
law of classical thermodynamics. 
 
2. The Reversible Entropy Equation 
 
 As just introduced, the equation from which we will proceed is the two form equation: 
 

0dU dds= =  (2.1) 
 
as well as its integral formulation 
 

0dU U= =∫∫ ∫�  (2.2) 

  
which uses Gauss / Stokes.  Let us start by developing (2.1). 
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 First, we may expand the differential forms to extract the tensor equation: 
  

0U U s sµ ν ν µ µ ν ν µ∂ − ∂ = ∂ ∂ − ∂ ∂ = . (2.3) 

  
We define the four components of the prospective internal energy vector as ( ),U Uσ ≡ u , and of 

course the spacetime gradient operator ( ),tµ∂ = ∂ ∇  with /t t∂ = ∂ ∂ .  We shall work throughout 

in flat Minkowski spacetime with the metric tensor ( ) ( )diag 1, 1, 1, 1µνη = − − −  used to raise and 

lower indexes. 
 

For the space components, with 1µ = , 2ν =  we obtain 1 2 2 1 1 2 2 1 0U U τ τ∂ − ∂ = ∂ ∂ − ∂ ∂ = , 

and once all three components are obtained, this readily generalizes to: 
    

0τ× = × =u∇ ∇ ∇ . (2.4) 
 
The latter 0τ× =∇ ∇  of course is the mathematical identity that the curl of the gradient of a 
scalar is zero.  The former contains the physical content 0× =u∇ , which tells is that the curl of 
the prospective internal energy three-vector u is zero. 
 

With 0µ = , 1, 2,3kν = =  we obtain 0 0 0 0 0k k k kU U τ τ∂ −∂ = ∂ ∂ − ∂ ∂ = , which becomes:   

 

0t U
t t

ττ∂ ∂−∂ − = − =
∂ ∂

u ∇ ∇ ∇ . (2.5) 

 
The latter equation is simply the commutator identity [ ], 0t τ∂ =∇ , which together with 

0τ× =∇ ∇  is the expansion of 0ddτ = . 
  
 Putting (2.4) and (2.5) together showing only U σ  gives us a pair of differential equations 
which analogize via the differential forms to Maxwell’s 0⋅ =B∇  and 0t∂ + ∇× =B E , namely: 

 
0       

0t U

× =
∂ + =

u

u

∇
∇

. (2.6) 

 
Now let’s turn to the integral equation (2.2). 
 
 Expanding the forms in (2.2) we obtain: 
 

( )1
2! 0U U dx dx U dxµ ν σ

µ ν ν µ σ∂ − ∂ = =∫∫ ∫� . (2.7) 

 
Separating space and time components and accounting for all index permutations yields: 
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( )
( ) ( ) ( )

0
0 0

1 2 2 3 3 1
1 2 2 1 2 3 3 2 3 1 1 3

0
0 0

k
k k

k
k

U U dx dx

U U dx dx U U dx dx U U dx dx

U dx U dx

∂ − ∂

+ ∂ − ∂ + ∂ − ∂ + ∂ − ∂

= + =

∫∫

∫∫ ∫∫ ∫∫

∫ ∫� �

. (2.8) 

 
The covariant (lower-indexed) ( ),kU U= −u , and of course the differential elements 

anticommute dx dx dx dxµ ν ν µ= − .  So separating the time integral from the space integral in the 
top line and being careful with the signs, this may be written as:  
 

( )( ) ( )d d d d d 0t U l t U t l∂ + ⋅ − × ⋅ = − ⋅ =∫ ∫ ∫∫ ∫ ∫u u S u� �∇ ∇ . (2.9) 

 
 Now, let us spend a moment on the term dU t∫� , which is something of an oddity because 

it represents a closed loop line integral over time of the prospective state variable for internal 
energy.  We of course know that the ability to travel a closed time loop is fictive in the natural 
world, but so too is a reversible thermodynamic process.  So let’s follow this through:  The 
integral dU t∫�  says that we start with the prospective internal energy U at time t=0, then move 

forward in time, but then eventually loop around and come back to t=0.  So whatever we do 
between the first time 0 and the second time 0 will be reversed, because we arrive right back at 
time 0.  So the integral dU t∫�  is, in many ways, the very definition of a reversible process.  And 

this, of course, is fictive, because time is only experienced in one direction.  This is the first 
indication we have of some thermodynamic possibilities.  Shortly, we shall break this time loop 
to establish Eddington’s “arrow of time,” but before we do so, we will want to make a 
connection to entropy S while (2.9) still represents a reversible process, because in a reversible 
process, dT S Qδ=  is an equality rather than an inequality, where T is the temperature, Q is the 
heat, and δ  which operates on heat is an inexact differential which reminds us that the heat upon 
which it operates is not a thermodynamic state function.  Once the process becomes irreversible, 
then the entropy law becomes dT S Qδ≥ , but this inequality should be naturally supplied by the 
spacetime geometry, not inserted by hand. 
 
 We start with the first law of thermodynamics which we shall write as 
 
dU Q Wδ δ= − . (2.10) 
 
The exact differential form for internal energy is ( )1

2!dU U U dx dxµ ν
µ ν ν µ= ∂ − ∂  which we can 

compact using a commutator to 1
[ ]2dU U dx dxµ ν
µ ν= ∂ , while Qδ  and Wδ  are the inexact 

differential forms for heat and work and therefore are not state functions.  We can write these in 
expanded form as 1

[ ]2Q Q dx dxµ ν
µ νδ δ=  and 1

[ ]2W W dx dxµ ν
µ νδ δ= .  By putting a negative sign in 

front of the work differential in (2.10) we are representing systems which gain heat, but perform 
work on (lose work energy to) the environment.  To represent the components of the 
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contravariant heat and work four-vectors we may employ ( ),Q Qµ ≡ q  and ( ),W Wµ ≡ w .  The 

exact differential as already noted is ( ),tµ∂ = ∂ ∇ .  And we shall use ( ),tµδ δ≡ δ  to represent the 

components of the inexact differentials.  So expanding dU Q Wδ δ= −  and using the foregoing, 
we may write the first law in tensor format as: 
 

[ ] [ ] [ ]U Q Wµ ν µ ν µ νδ δ∂ = − . (2.11) 

 
The 0, k components of the above, contrast (2.5), are: 
 

( )0 0 0 0 0 0k k k k k t t tU U Q Q W W U Q Wνδ δ δ δ δ δ∂ − ∂ = − − − = −∂ − = − − + +u q w∇ δ δ . (2.12) 

  
The 1, 2 components are 1 2 2 1 1 2 2 1 2 1 1 2U U Q Q W Wδ δ δ δ∂ − ∂ = − − +  and this generalizes to: 

 
− × × ×u q w∇ = −δ + δ . (2.13) 
 
We then use (2.12) and (2.13) in (2.9) to obtain: 
 

( )( ) ( )d d d d d 0t t tQ W l U t lδ δ − ⋅ = − ⋅ =+ − − ⋅ × ×∫ ∫ ∫∫ ∫ ∫q w q w S u� �δ δ δ − δ . (2.14) 

 
 Now that we have a reversible equation which contains t Qδ +q δ  we turn to entropy.  As 

already noted after (2.9), whenever a process is reversible as is (2.14) because of the closed time 
loop in dU t∫� , the entropy is related to heat and temperature by the differential forms: 

 
TdS Qδ= . (2.15) 
 
Here, the entropy S S dxµµ=   is also a one-form with four-vector components that we shall 

represent as ( ),S Sµ = s .  From the above we extract the tensor expression: 

 

[ ] [ ]T S Qµ ν µ νδ∂ = . (2.16) 

 
The 0, k relationship is then: 
 

( ) ( )0 0 0 0k k k k t tT S S Q Q T S Qδ δ δ∂ − ∂ = − = − ∂ + = − −s q∇ δ , (2.17) 

 
while the 1, 2 index equation ( )1 2 2 1 1 2 2 1T S S Q Qδ δ∂ − ∂ = −  generalizes for all space indexes to: 

  
T− ∇ × = − ×s qδ . (2.18) 

 
We then use (2.17) and (2.18) to replace all the heat in (2.14) with entropy, thus advancing to: 
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( )( )( ) ( )d d d d 0dt tT S W l Tt U t lδ − ⋅ = − ⋅ =∂ + − − ⋅ ∇× ×∫ ∫ ∫∫ ∫ ∫s w s w S u� �∇ δ − δ . (2.19) 

 
 Now that we have included the reversible entropy relationship in this reversible equation, 
it is time to see what happens when we make the above irreversible. 
 
3. The Irreversible Entropy Equation 
 
 As we observed at (2.9), the integral dU t∫�  which still appears in (2.19) informs us that 

this equation is for a fictive reversible process.  This is why we were able to properly utilize the 
reversible entropy relationship TdS Qδ=  of (2.15) in (2.19).  Now let us break this time loop 

and establish an arrow of time.  To do so we replace 
0

d d
t

U t U t→∫ ∫�  with an irreversible time 

integral.  What can we say about dU t∫�  and 
0

d
t
U t∫  in relation to 0 and to one another?  If U 

represents an internal energy which is always positive or zero, then ( ) 0U t ≥  at all times t.  

However, in dU t∫�  we are starting at a given time t=0, moving somewhere else in time, and then 

fictively returning to the same time t=0 at which we started.  So the time loop integral  
0

0
d d 0U t U t= =∫ ∫�  irrespective of the energy, because of the closed reversible time loop.  On the 

other hand, if the definite time t at the upper bound in 
0

d
t
U t∫  is greater than or equal to zero, i.e., 

if 0t ≥ , then so too, 
0

d 0
t
U t ≥∫ .  Therefore: 

 

0
d d 0

t
U t U t≥ =∫ ∫� . (3.1) 

  

So if we now substitute 
0

d d
t

U t U t→∫ ∫�  with 0t ≥  into (2.19), then the term on the right 

will become greater than or equal to 0, and to capture this, we need to simultaneously replace the 
final 0=  with a 0≥ .  Doing so, we obtain: 
  

( )( )( ) ( )
0

d d d d 0d
t

t t t UW T t lT S lδ −∂ + − − ⋅ = −× ≥∇× ⋅⋅∫ ∫ ∫∫ ∫ ∫s w s S uw �∇ δ − δ . (3.2) 

 
Above, we have also maintained the equality between the first expression which includes entropy 

terms ( )( )( )d d dt tT S l T−∂ + ⋅ ∇× ⋅∫ ∫ ∫∫s s S∇  and the second 
0

d d 0
t
U t l− ⋅ ≥∫ ∫ u�  which includes 

the time loop broken into an arrow of time.  Consequently, the 0≥  inequality now naturally 
applies to these entropy terms as well.  Thus, it will now be important to see if the second law 
relations dT S Qδ≥  and / or 0dS≥  are included in (3.2) in some clear form.   
 

In this regard, it is important to point out that we deliberately waited to break the time 
loop until we had arrived at (2.19) which contains entropy, even though it would have been 
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possible to do so earlier at  (2.14) which contains heat or (2.9) which contains internal energy. 
This is because the second law in the form dT S Qδ≥  tells us that when an inequality arises, it 
does so between the entropy and the heat.  Therefore, if we had broken the time loop at (2.14), 

we would also have had to disconnect the first expression which includes ( )( )d dt l tQδ + ⋅∫ ∫ q δ  

from the second expression d dU t l− ⋅∫ ∫ u� � .  By waiting until (2.19) to establish the arrow of 

time rather than doing so earlier, we have already effectively embedded a variant of dT S Qδ≥  
into (3.2).  We shall review this in more detail shortly, but before we do so, it is better to reduce 
(3.2) into a simpler and clearer form. 
 
 First, as is done at this stage of developing Maxwell’s integral equations from differential 
forms, let us multiply through all of (3.2) by /d dt , thus: 
 

( )( )( ) ( )
0

d dd d 0t

t

t

d d d
d T S U t l

dt dt d
l T

t
Wδ∂ + − ⋅ = − ⋅− ∇× × ≥− ⋅∫ ∫ ∫∫ ∫ ∫S us w s w �∇ δ − δ . (3.3) 

 

In what is now ( )
0

/ d
t

d dt U t∫  we have an offsetting d / d 1t t = .  And we may also apply 1d =∫  to 

both this and the first term.  So we then have:  
 

( )( ) ( ) d dd 0t tT S W
d d

U l
dt dt

l Tδ∂ + − − ⋅ ∇×− × ⋅ = − ⋅ ≥∫ ∫∫ ∫s w S us w �∇ δ − δ . (3.4) 

 
 Now let’s look at the terms to the left of the equal sign.  On the right we have an integral 

( ) dT∇ × × ⋅∫∫ s w S− δ  over an open surface.  The open surface is bounded by a closed loop, yet 

the line integral ( )( ) dt tT s S W lδ∂ + − − ⋅∫ w∇ δ  on the left is also evaluated over an open path.  

This does not match up, so what do we do?  This same situation is encountered in Maxwell’s 
equations.  For example, the boundary for Gauss’ Law for magnetism d 0⋅ =∫∫ B S�  is a closed 

surface.  But if one actually develops Faraday’s law from the differential forms 

0dF F= =∫∫∫ ∫∫� , the equation first arrived at is ( )d / dl d dt⋅ = − ⋅∫ ∫∫E B S� �  containing the 

same d⋅∫∫ B S� .  But here too the boundaries are mismatched.  So to match them up we convert 

the closed surface to an open surface, and thereby obtain ( )d / dl d dt⋅ = − ⋅∫ ∫∫E B S�  which is 

Faraday’s law.  Then, the path of the closed line integral can be identified with the boundary of 
the open two-dimensional surface through which the magnetic field is flowing.  The same 
situation also occurs when developing Ampere’s law.  So in (3.4), we need to match up the 
perimeter of the open boundary in ( ) dT∇ × × ⋅∫∫ s w S− δ  with a closed loop in 

( )( ) dt tT s S W lδ∂ + − − ⋅∫ w∇ δ , just as is done for Maxwell’s equations.  Here, we need to turn 

the open line integral into a closed line integral.  Making this boundary change, (3.4) is now: 
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( )( ) ( ) d dd 0t tT S W
d d

U l
dt d

T
t

lδ∂ + − − ⋅ ∇×− ⋅ = − ⋅ ≥×∫ ∫∫ ∫s w w S us� �∇ δ − δ . (3.5) 

 
 Following this change, there are now closed loop integrals on both sides of the above, so 
we need to see if any terms might mutually cancel.  Writing (2.12) as 

t t tW Q Uδ δ− − = − − + ∂ +w q uδ δ ∇  we replace the work terms in the loop integral and use 

/t t∂ = ∂ ∂  to obtain: 

 

( ) ( ) dd d 0t t

d d
T S Q U l T

t
U l

dt dt
δ ∂ ∂ + − − + + ⋅ ∇× × ∂

−


⋅ = − ⋅ ≥∫ ∫∫ ∫s q u s w S u� �∇ δ ∇ − δ . (3.6) 

 
Surely enough, the time-dependent  ( )/ dt l∂ ∂ ⋅∫ u�  term now on the left of the equality is 

equivalent to the term ( )/ dd dt l⋅∫ u�  on the right of the equality.  But because of the inequality 

0≥ , we need to be careful how we work with this equivalence. 
 
 The best approach is to now separate (3.6) into its two inequalities, and then to isolate 
this matching term in each, thus: 
 

( )( ) ( ) d

d                                                                                              

d

    

d

  

t tl T
d

dt
d

U l

S Q U T

dt

l
t

δ∂ ⋅ ∂ + − − + ⋅ ∇ ≥ − + ⋅

 ≥ ⋅

× ×
∂



∫ ∫ ∫∫

∫

Ss w

u

u s q� �

�

∇ δ ∇ − δ
. (3.7) 

 
Then, we may again recombine these two inequalities, and also compact ( )/ tt∂ ∂ → ∂u u , thus:  

 

( )( ) ( )d ddt t tT S Q
d

U l
dt

U l Tδ≥ ∂ ∂ + − − + ⋅ ∇×⋅ ≥ − + ⋅×∫ ∫ ∫∫s q s wu S� � ∇ δ ∇ − δ . (3.8) 

 
 Next, from (2.12) we may separate the time-dependent relationship t t tδ δ∂ = −u q w  from 

the space-dependent U Q W= −∇ δ δ .  Inserting this into (3.8), cancelling a 0Q Q− =δ δ , and 
distributing the minus sign from outside the latter loop integral yields: 
 

( ) ( ) ( )d ddt t t tT T S WU T
d

dt
llδ δ δ≥ ⋅ ≥ +− − ∂ − + + ⋅ ∇× × ⋅∫ ∫ ∫∫q w s q s w S� � ∇ δ − δ . (3.9) 

 
Then, adding ( ) dt tT lδ∂ − ⋅∫ s q�  to all sides yields: 

 

( ) ( ) ( ) ( )ddd dt t t tT l T T S W l
d

U l
dt

Tδ δ+ ≥ ⋅ ≥∂ − ⋅ ∂ − − + ⋅ ∇× ×+ ⋅∫ ∫ ∫ ∫∫s q s w s w S� � � ∇ δ − δ . (3.10) 
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 Next, the term containing ( ) dT∇ × × ⋅∫∫ s w S− δ  above originated in and is equal to the 

term ( ) d× ⋅∫∫ u S∇  in (2.9).  But in (2.4) we found that by mathematical identity, 

0τ× = × =u∇ ∇ ∇ .  So this term 
 

( ) ( ) ( ) ( )d d d d 0
d

T
d

dt dt
T∇× × ∇×⋅ = × ⋅ = ⋅ = ⋅ =× ×∫∫ ∫∫ ∫∫ ∫∫S u S S Ss s w uw ∇δ ∇− − δ  (3.11) 

 
is always and everywhere zero in all Lorentz frames by 0τ× =∇ ∇ .  We could have zeroed this 
out back at (2.9), but kept this in place so that we would be able to obtain this identity (3.11) and 
properly match up all the integral boundaries as we did earlier.  So (3.10) simplifies to: 
 

( ) ( ) ( ) dddt t t tT l TlT S W lU δ δ∂ − ⋅ ∂ − −+ ≥ + ⋅⋅ ≥∫ ∫ ∫s q s w� � � ∇ δ . (3.12) 

 

The above is a precise restatement of the original reversible 0dU U= =∫∫ ∫�  of (2.2) 

following full development and cancellation of terms, and after replacing the time loop integral 

with an arrow of time integral via 
0

d d
t

U t U t→∫ ∫� .  If one were to revert the inequalities in the 

above back to equalities, then this would be completely the same as 0dU U= =∫∫ ∫� , and (3.12) 

would then describe a fictive reversible process.   
 
4. The Second Law of Thermodynamics 
  
 At this point, let us add ( ) dT S W l− ⋅∫� ∇ δ  to all sides of the above so that a zero is on the 

very right.  Thus: 
 

( ) ( ) dd 0t t t tT T S W l T T SU lWδ δ+ ≥∂ + − − ⋅ ∂ + − − ⋅ ≥∫ ∫s q s w� �∇ δ ∇ δ . (4.1) 

 
This now separates into two inequalities, namely: 
 

( ) dt tU lδ δ−≥ ⋅∫ q w� . (4.2) 

 
and 
 

( ) 0dt tT T S W lδ∂ − − ≥+ ⋅∫ s w� ∇ δ . (4.3) 

 
Now, let us return spacetime indexes so we can examine covariant behaviors in spacetime 

using ( ) ( )diag 1, 1, 1, 1µνη = − − −  to make sure the signs are correct.  For (4.2) we obtain: 

 

( ) ( ) ( )00 0 0 0
k

k kQ W d W QU x Q dx Wµ
µ µδ δ δ δ≥ = − =− + − −∫ ∫ ∫� � � . (4.4) 
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Here we have use the fact that ( ) 0

0 0 0 0 0Q W dxδ δ− + =∫�  for what is once again a closed time 

loop integral ( )0

0
0t tQ W dtδ δ− + =∫  which must always be zero no matter what the values of 

t tQ Wδ δ− +  may be.   The above compacts into a differential form via ( )Q W Q W dxµµ µ− = − , 

and it states that the time component of the internal energy will always be greater than or equal 
to the inexact time differential of work minus heat taken over a closed loop, ( )00 WU Qδ≥ −∫� . 

 
 Next, for (4.3) we have: 
 

( ) ( )0 0 0 0 [ 0] [ 0] 0k
k k k k dx dxT S T S W W T S Wµ µ

µδ δ δ− ∂ + ∂ + − ∂= ⋅ ≥−⋅∫ ∫� � . (4.5) 

 
Let us also now compact this into a differential form.  The expression [ 0]Sµ∂  is a time component 

(and really, the time bivector) of a second rank antisymmetric tensor [ ]Sµ ν∂ .  Similarly for [ 0]Wµδ
, except this contains an inexact differential.  In general, if we only contract one index of such a 
tensor S Sµν νµ= − , then S S dxµν µν=  and therefore 0 0S S dxµµ=  is the time component of a four-

vector of differential forms.  So in view of this, (4.5) compacts fully to: 
 

( )0 0 0TdS Wδ− ≥∫� . (4.6) 

 
When the inexact work differential 0 0Wδ = , this reduces to: 

 

0 0dS ≥∫� . (4.7) 

 
This is the second law of thermodynamics for an irreversible process.  Importantly, at no 

point along the way did we have to put this inequality into this equation by hand.  This inequality 
was a natural result of developing the differential forms equation 0dU dds= =  (2.1) in the 

integral form 0dU U= =∫∫ ∫�  of (2.2) and converting the emergent reversible time loop to an 

arrow of time, 
0

d d
t

U t U t→∫ ∫� .  Were we to turn 
0

d
t
U t∫  back to dU t∫� , everything would again 

become reversible, and (4.7) would become the fictive 0 0dS =∫� . 

 
 Finally, having found the second law (4.7), let us return to where we left off after (3.2) 
and look for some form of its variant dT S Qδ≥ .  It will be appreciated that (3.12) is entirely 
equivalent to (3.2); it is simply (3.2) after complete reduction of terms.  In turn, (3.2) is the 
irreversible version of the reversible (2.19), and for a reversible process (2.19) is equivalent to 
(2.14) and to (2.9).  And, to get from (2.14) to (2.19) we used the reversible entropy relationship 

(2.15).  Therefore, if we now return to (2.14) and (2.9) and break the time loop 
0

d d
t

U t U t→∫ ∫�  

in these equations rather than waiting for (2.19), we can embed the second law variant dT S Qδ≥  
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if we disconnect what is then 
0

d d 0
t
U t l− ⋅ ≥∫ ∫ u�  from the equations on the left side of the (2.14) 

and (2.9) equalities.  That is, merging together (3.2) and (2.14) and (2.9) but keeping the latter 

two equal to zero, then after breaking the time loop 
0

d d
t

U t U t→∫ ∫� , we may write: 

 

( )( )( ) ( )

( )( ) ( )

( )( ) ( )

d d

d d

d d d

d

d

0

t t

t t

t

T S W l T

Q W l

t

t

U l t

δ

δ δ

∂ + − − ⋅ ∇× ×

+ −

− ⋅

− ⋅ × ×≥ − ⋅

= ∂ + ⋅ − × ⋅ =

∫ ∫ ∫∫

∫ ∫ ∫∫

∫ ∫ ∫∫

s w s w

q w q w

S

S

u u S

∇ δ − δ

δ δ

∇ ∇

δ − δ . (4.8) 

 
We know from (4.6) that the inequality in the above makes the top line synonymous with 

( )0 0 0TdS Wδ− ≥∫�  after all reductions are carried out.  But by keeping the bottom two lines 

equal to zero as they originally were, even after 
0

d d
t

U t U t→∫ ∫� , we are effectively embedding  a 

form of dT S Qδ≥  that we shall now make explicit.  
 

If we now do all of the same reductions we used to get from (2.14) or (2.9) to (4.3) but 
keep everything in terms of heat or internal energy rather than entropy, the counterpart we obtain 
to (4.3) is:   
 

( ) ( ) 0d dt t t lQ W Ulδ δ ⋅+ − = ⋅ =− ∂ +∫ ∫q w u� �δ δ ∇ . (4.9) 

 
Comparing the latter equality to (4.3), this means that: 
 

( ) ( )d dt tT T lS l Qδ⋅ ≥ ⋅∂ + +∫ ∫s q� �∇ δ . (4.10) 

 
Restoring spacetime indexes as before then yields: 
 

[ 0] [ 0]
k

k
k

kT dx dxS Qδ≥∂∫ ∫� � , (4.11) 

 
and compacting to differential forms produces: 
 

0 0TdS Qδ≥∫ ∫� � . (4.12) 

 
This is how the second law variant dT S Qδ≥  becomes embedded in the differential forms 
equations.   
 

If we then compact (4.9) into: 
 

( ) ( )[ 0] [ 0] [0 0 0 0] 0Q W dx xUUQ W d dµ
µ

µ
µ µδ δδ δ− = = = =− ∂∫ ∫ ∫ ∫� � � � , (4.13) 
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we may combine (4.12) with (4.13) to tie all of this together in the relationship: 
 

( ) ( )0 0 0 0 0 0TdS W Q W dUδ δ δ− ≥ − = =∫ ∫ ∫� � � . (4.14) 

 
In the above, 0 0dU =∫�  is a conservation law for the internal energy, ( )0 0 0TdS Wδ− ≥∫�  is one 

variant of the second law which becomes 0 0dS ≥∫�  when work is being neither expended nor 

applied, and 0 0TdS Qδ≥∫ ∫� �  is another variant of the second law. 

 
5. Summary and Conclusion 
 

Summarizing the entire development, if the internal energy U U dxσ
σ=  is taken to be the 

one form U ds≡  obtained from a scalar potential s hence 0dU dds= = , then with ( ),U Uσ ≡ u  

(the form U has the same symbol as the time component U which are mutually  distinguished by 

context), and after breaking the time loop to create an arrow of time via 
0

d 0 d 0
t

U t U t= → ≥∫ ∫� , 

the resulting differential forms equation 0dU U= =∫∫ ∫�  is equivalent in all respects to the pair 

of differential forms equations: 
 

( ) ( )
( )

0 0 0 0 0

0 0                                      

0

     

TdS W Q W

Q

U

U W

dδ δ

δ

δ − ≥ − = =

−


≥

∫ ∫ ∫

∫

� � �

�

 (5.1) 

 
with a free time index, as obtained in (4.14) and (4.4).  Likewise, the form equation 

0dU dds= =  is equivalent to 
 

0       

0t U

× =
∂ + =

u

u

∇
∇

 (2.6) 

 
obtained in (2.6).  These are the analogues of Gauss’ law of magnetism and Faraday’s law, in 
integral and differential representations, respectively.  
 
 In conclusion, just as Maxwell’s classical magnetic equations emerge entirely from 
applying dd=0 of exterior calculus to a gauge potential A, so too does the second law of classical 
thermodynamics together with other related relationships emerge from applying dd=0 to a scalar 
potential s.  If we represent this as 0dds dU= = , then U behaves precisely as the internal energy 
state variable, and after breaking a time loop that appears in the integral equation 

0dU U= =∫∫ ∫�  to make the this equation irreversible, we obtain the second law of 

thermodynamics in the form 0 0dS ≥∫� , which governs the entropy state variable 0S  for an 
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irreversible system, and are also able to embed a second law relationship 0 0TdS Qδ≥∫ ∫� �  

between entropy and heat. 
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