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Abstract: Just as Maxwell's magnetic equations gmamtirely from applying dd = 0 of exterior
calculus to a gauge potential A, so too does tleorse law of thermodynamics emerge from
applying dd=0 to a scalar potential s. If we repeat this as dds = dU = 0, then when the Gauss
/ Stokes theorem is used to obtain the integrahtdation of this equation, and after breaking a
time loop that appears in the integral equation,fime that U behaves precisely like the internal
energy state variable, and that the second lavhefrhodynamics for the entropy of irreversible
processes naturally emerges.

PACS: 05.70.-a, 02.40.Hw
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1. Introduction

Nowhere is the power of differential forms geomeain determine physical results in
spacetime more apparent than for the magnetic naaauuation of classical electrodynamics.

One postulates a gauge potential one-foAwr A dX’ with an energy-dimensioned vector,
defines from this a field strength two-fornk =dA=39 A, dX dX, and applies the

fundamental resulid=0 of exterior calculus that the exterior derivatonf an exterior derivative
is zero, to obtaindF =ddA=0 which contains Gauss’' and Faraday’s classical l&ws
magnetism. Then, one applies an open triple iatégrthe monopole equation three-forms, also

applies the Gauss / Stokes theorﬁMrrdH :cﬁaM H whereH is a generalizeg-form and oM is
the closed exterior boundary of @+l-dimensional manifold, and thereby obtains
jﬂdF :gjg F :0(:jjj O) which are the classical magnetic equations ingnmateform. Good
reviews of the underlying exterior calculus andeténtial forms are provided, for example, in
[1] Chapter 4 and [2] Chapter IV.4.

The result thatild=0 does not, however, stop with its use to obthdA=0. It applies to
anyp-form of any rank. In this paper, we shall demaatstthat by starting with a dimensionless
scalar potentials which is a zero-form, defining a one fotth= ds, next obtaining the two-form

dU =dds=0, and finally integrating with Gauss / Stokes \ﬁldu =<JSU =O(=ﬁ0), the

energy-dimensioned vectdt, in U =U dx’ turns out to behave like the internal energy of a
thermodynamic system, and the resulting integnahfequations when studied in detail, turn out
to be synonymous with the second (entropy) lawlagsical thermodynamics, for reversible and
irreversible processes.

In a nutshell: just add=0 when applied to a one-form potential \d& = ddA=0 and
then integrated contains the classical Gauss aradd&wa laws for magnetism, this samé@=0

when applied to a zero-form potential W& = dds=0 and then integrated contains the second
law of classical thermodynamics.

2. The Reversible Entropy Equation

As just introduced, the equation from which wel wibceed is the two form equation:
dU =dds=0 (2.1)
as well as its integral formulation
jjdu:gSu:o (2.2)

which uses Gauss / Stokes. Let us start by devejdg.1).



First, we may expand the differential forms toragt the tensor equation:

9,U,-0,U,=0,0,5-0,0,5=0. (2.3)

We define the four components of the prospectiterival energy vector dg“ E(U ,u) , and of
course the spacetime gradient operalplz(at,lil) with 0, =d/0t. We shall work throughout

in flat Minkowski spacetime with the metric tens«ﬁlag(fyw) = (1,— 1- 15 ) used to raise and
lower indexes.

For the space components, with=1, v =2 we obtaind,U,-0J,=09 7-007=0,
and once all three components are obtained, thdilyegeneralizes to:

Oxu=0x0r=0. (2.4)
The latter OxO7 =0 of course is the mathematical identity that the ofi the gradient of a

scalar is zero. The former contains the physioatent (0xu =0, which tells is that the curl of
the prospective internal energy three-vects zero.

With =0, v =k =1,2,3we obtaind U, -0U,=00,7-0,07 =0, which becomes:

-0,u-0uU =2DT—D£=O. (2.5)
ot ot
The latter equation is simply the commutator idgntﬁat,lil] r =0, which together with

OxOr =0 is the expansion afidr =0.

Putting (2.4) and (2.5) together showing obl§ gives us a pair of differential equations
which analogize via the differential forms to Maxige OB =0 and0,B +[IxE =0, namely:

Oxu=0 2.6)
ou+0U =0’ '
Now let’s turn to the integral equation (2.2).
Expanding the forms in (2.2) we obtain:
[[%(6,u, -0,u,)dxdX = U, df =0. 2.7)

Separating space and time components and accodotialj index permutations yields:



[[(80uy —0,U,) X
+[(91, oM ) dxdx +[[(0,U;-0,,U,) d¥ dx+ [[ (8 ;U0 ,U) di db. (2.8)
= U +pU, dt =0

The covariant (Iower-indexed)Uk:(U,—u), and of course the differential elements

anticommutedxdx =-dX dX. So separating the time integral from the spategral in the
top line and being careful with the signs, this rbaywritten as:

[(J(u+0u)@)a - [[(Oxu)ms=fud-fumd = (2.9)

Now, let us spend a moment on the tejxlﬂdt , Which is something of an oddity because

it represents @&losed loop line integral over timef the prospective state variable for internal
energy. We of course know that the ability to élaa closed time loop is fictive in the natural
world, but so too is a reversible thermodynamiccpss. So let's follow this through: The

integral qSUdt says that we start with the prospective intermargyU at time t=0, then move
forward in time, but then eventually loop aroundlamome back ta=0. So whatever we do
between the first time 0 and the second time O vgllreversed, because we arrive right back at
time 0. So the integral:ﬁUdt is, in many ways, the very definition of a rev@esprocess.And
this, of course, is fictive, because time is orkperienced in one direction. This is the first
indication we have of some thermodynamic possiédit Shortly, we shall break this time loop
to establish Eddington’s “arrow of time,” but befowe do so, we will want to make a

connection to entrop$ while (2.9) still represents a reversible procéssiause in a reversible
process,TdS= 0 Q is an equality rather than an inequality, wh€ns the temperatur&) is the

heat, andd which operates on heat is an inexact differemttach reminds us that the heat upon
which it operates is not a thermodynamic statetfanc Once the process becomes irreversible,
then the entropy law becom&dS= 0 Q, but this inequality should be naturally suppldthe

spacetime geometry, not inserted by hand.
We start with the first law of thermodynamics whige shall write as

dU =5Q-6W. (2.10)

The exact differential form for internal energy d¢) :%(ONUV —OVUN)dX" dX which we can
compact using a commutator w@U =39,U,dx'dX, while 6Q and W are the inexact

differential forms for heat and work and therefare not state functions. We can write these in
expanded form a®Q =349,Q,dX' dX and dW =34 W, dx dx. By putting a negative sign in

front of the work differential in (2.10) we are repenting systems which gain heat, but perform
work on (lose work energy to) the environment. Tfepresent the components of the



contravariant heat and work four-vectors we may lejn®” =(Q,q) and W* =(W,w). The

exact differential as already notedds =(d,,0). And we shall useJ, =(&,,8) to represent the

components of the inexact differentials. So expandU = J5Q -JW and using the foregoing,
we may write the first law in tensor format as:

Oy =4,Q ~q W, - (2.11)
The 0, k components of the above, contrast (2rB), a

0, —0,U,=3Q =0, Q~(OW -0 W) =-0u-0U=-0g-8 Q+dw +5 W\, (2.12)
The 1, 2 components aggU, -9 U, =90Q,-9Q,-d W+ W. and this generalizes to:
-Oxu=-06xq+dxw. (2.13)
We then use (2.12) and (2.13) in (2.9) to obtain:

[([(aa+3Q-aqw-aw))dt - [[(5xq-&xw) @S =¢ Udt-Gud = C. (2.14)

Now that we have a reversible equation which dostdq+dQ we turn to entropy. As
already noted after (2.9), whenever a processvexrsile as is (2.14) because of the closed time
loop in qSUdt , the entropy is related to heat and temperatut@éyifferential forms:

TdS=45C. (2.15)

Here, the entropyS= S, dX is also a one-form with four-vector componentat ttve shall

represent as” :( Ss) . From the above we extract the tensor expression:

10,9,=9,Q- (2.16)
The 0, k relationship is then:

T(0,5-0,$9)=9,Q-9,Q=- [os+0 $=-59-3 ¢ (2.17)
while the 1, 2 index equatio‘ﬁ(alg -0, 5) =0, Q-9, ( generalizes for all space indexes to:
-TOxs=-8x(. (2.18)

We then use (2.17) and (2.18) to replace all tlz ime(2.14) with entropy, thus advancing to:



[([T((05+D0S)-aw-8W) @ ) ot - [[( TIxs-xw)@S= Ut ~urd = C (2.19)

Now that we have included the reversible entragationship in this reversible equation,
it is time to see what happens when we make theesipversible.

3. The Irreversible Entropy Equation

As we observed at (2.9), the integ[ﬁiUdt which still appears in (2.19) informs us that

this equation is for a fictive reversible proce3sis is why we were able to properly utilize the
reversible entropy relationshipdS= 06 C of (2.15) in (2.19). Now let us break this tineop

and establish an arrow of time. To do so we replﬁbldt - I;Udt with anirreversibletime

integral. What can we say abquUdt and I;Udt in relation to 0 and to one another? Ulf

represents an internal energy which is always pesitr zero, thenU (t)zO at all timest.

However, inqSUdt we are starting at a given tirtred, moving somewhere else in time, and then
fictively returning to the same time=0 at which we started. So the time loop integral

qSUdt =IOOUdt = 0 irrespective of the energy, because of the closeersible time loop. On the
other hand, if the definite timeat the upper bound iﬁUdt Is greater than or equal to zero, i.e.,

if t=0, then so too:[;Udt = 0. Therefore:
[ludt=fud =0 (3.1)
0 - ) .

So if we now substitut@Udt - _[;Udt with t=0 into (2.19), then the term on the right

will become greater than or equal to 0, and towapthis, we need tsimultaneouslyeplace the
final =0 with a>0. Doing so, we obtain:

[([(T(05+D08)-aw-aw)m@i)dt- [[(TDxs-8xw)@S= [ Ud-furd > C. (3.2)

Above, we have also maintained the equality betvieerirst expression which includes entropy
termsI(I(T (0,s+09))d I) dt —H TOxs[S and the seconﬁUdt —qSU [l > 0 which includes

the time loop broken into an arrow of time. Consgsgly, the>0 inequality now naturally
applies to these entropy terms as well. Thus,litnew be important to see if the second law
relationsTdS= d Q and / ordS= 0 are included in (3.2) in some clear form.

In this regard, it is important to point out thae weliberately waited to break the time
loop until we had arrived at (2.19) which contaargropy, even though it would have been
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possible to do so earlier at (2.14) which contdieat or (2.9) which contains internal energy.
This is because the second law in the fards=> o Q tells us thatvhen an inequality arises, it

does so between the entropy and the .h&dtterefore, if we had broken the time loop al42,
we would also have had to disconnect the first @sgion which include§(f(dq +6Q) Elll)dt

from the second expressioijdt—gﬁu fdl . By waiting until (2.19) to establish the arroW o

time rather than doing so earlier, we have alresfthctively embedded a variant 38S>0Q

into (3.2). We shall review this in more detaibdly, but before we do so, it is better to reduce
(3.2) into a simpler and clearer form.

First, as is done at this stage of developing Maksvintegral equations from differential
forms, let us multiply through all of (3.2) by/ dt, thus:

df([(T(as+ I:IS)—5tw—6W)Eil)—%”(TDxs—éxw)mS:%j;Udt—gcﬁu @ >0. (3.3)

In what is now(d / dt) I; Udt we have an offsettingt / dt =1. And we may also appIyJ' =1to
both this and the first term. So we then have:

d d
[(T(a;s+08)-qw-3aW) —ajj(mxs—axw)ms:u —agﬁu [l >0. (3.4)

Now let’s look at the terms to the left of the abjsign. On the right we have an integral
_U (TD ><s—6><w) [dS over anopensurface. The open surface is bounded by a closgd yet
the line integral[ (T (9,s+0S)~dw-8Wd on the left is also evaluated over @penpath.

This does not match up, so what do we do? Thisessitnation is encountered in Maxwell’s
equations. For example, the boundary for Gause ta magnetismﬁ)B [dS=0 is a closed

surface. But if one actually develops Faraday'sv ldrom the differential forms
_U dF :#F =0, the equation first arrived at @EE}II =-(d /dt)@BEdjS containing the
same#B [dS. But here too the boundaries are mismatchedto $eatch them up we convert

the closed surface to an open surface, and thevbtayn qSEmI :—(d /dt)j B &S which is

Faraday's law. Then, the path of the closed Iiriegral can be identified with the boundary of
the open two-dimensional surface through which riegnetic field is flowing. The same
situation also occurs when developing Ampere’s la8o in (3.4), we need to match up the

perimeter of the open boundary irﬂ(Tst—wa)mS with a closed loop in

J'(T (0,s+09-w~-& V\) [dl , just as is done for Maxwell's equations. Here, meed to turn
the open line integral into a closed line integrliaking this boundary change, (3.4) is now:



$(T(0,5+0S)-qw -5 W) —%H(mes—axw)ms:u —%cﬁuml >0. (3.5)

Following this change, there are now closed ladpgrals orboth sidesof the above, so
we need to see if any terms might mutually cancel. Writing (2.12) as

-ow-8W =-5q-6Q+0,u+0U we replace the work terms in the loop integral arse
0, =0/0t to obtain:

9 d _,y_d
gS[T(ats+Ds)—5tq—5Q+Eu+D u}m |—ajj(mxs—6xw) [@S=U —th’m @l > 0. (3.6)

Surely enough, the time-dependenj')(alat)u @l term now on the left of the equality is

equivalent to the terr(ld / dt)cﬁu [dl on the right of the equality. But because ofitrexjuality
>0, we need to be careful how we work with this eglence.

The best approach is to now separate (3.6) isttwib inequalities, and then to isolate
this matching term in each, thus:

0 d
ggau @l > ~(T (0,s+0S) -4 -5Q+0 U) el +aﬁ(Tst—6xw) @S .
U zigSu [l
dt

Then, we may again recombine these two inequaliied also compao{ﬁ/@t)u - d,u, thus:
d
U >outdl =-¢(T(9,s+0S)-4q-8Q+0U ) +ajj(mxs—5xw)ms. (3.8)

Next, from (2.12) we may separate the time-depenggationshipd,u =3, -Jw from

the space-dependemU =dQ—-d0W. Inserting this into (3.8), cancelling & -8Q=0, and
distributing the minus sign from outside the lattap integral yields:

U>¢(da-dw) @l = (-Tos-TOS+aq+8 W)l +%”(mes—6xw) [@S. (3.9)
Then, addingﬁ(Tats—dtq) [l to all sides yields:

d
U +§(Tos-aa) @l = (To,s-ow) @l = §(-TOS+E W @ Haﬂ(mxs—axw)ms.(am)



Next, the term containingﬂ(TD xs-3xw)[@S above originated in and is equal to the

term ﬂ(l:lxu)ms in (2.9). But in (2.4) we found that by matheroaki identity,
Oxu=0x0r=0. So this term

S I(roxs-xw) @s= <[] (0xu)res = [[(T0xs-8xw) 5= [[(Oxu) 8= 0 (3.11)

is always and everywhere zero in all Lorentz frammg$1x[7 =0. We could have zeroed this
out back at (2.9), but kept this in place so thatwould be able to obtain this identity (3.11) and
properly match up all the integral boundaries aglidesarlier. So (3.10) simplifies to:

U +(To,s-30q)dl = p(To,s-qw) @l = p(-TOS+EW)d | (3.12)

The above is a precise restatement of the origegrsible ﬂdU zchU =0 of (2.2)
following full development and cancellation of texnand after replacing the time loop integral

t
with an arrow of time integral vigSUdt - IOUdt. If one were to revert the inequalities in the

above back to equalities, then this would be cotepléhe same aﬂdu zchU =0, and (3.12)
would then describe a fictive reversible process.

4. The Second Law of Thermodynamics

At this point, let us ad«j)(TEIS—GW) [d | to all sides of the above so that a zero is on the
very right. Thus:

U+$(To,s+TOS-3q-8 W 2 §( Bs+ T S qw-8W)0dl 0. (4.2)

This now separates into two inequalities, namely:

Uz gS(th —ow) ! . (4.2)
and
$(To,s+TOS-gw-8W)dl 0. (4.3)

Now, let us return spacetime indexes so we can gxacovariant behaviors in spacetime
using diag(nw) = (1,— 1- 1 ). to make sure the signs are correct. For (4.2pbtain:

Uy 2 p(-0Q +IW,) & == 5,(Q, - W) dx =, (W- Q. (4.4)



Here we have use the fact thﬁ(—é’OQo+50WO) dX =0 for what is once again a closed time

loop integral J'OO(—é'tQ+é;W) dt=0 which must always be zero no matter what the wahfe

-0Q+J9W may be. The above compacts into a differentaifvia Q—W:(Q, - V\[,) dx,

and it states that the time component of the iadeenergy will always be greater than or equal
to the inexact time differential of work minus héaten over a closed loop,, = cﬁ % (W-0Q).

Next, for (4.3) we have:
$(-To,S + 10, §+3, W-3, Wi =¢( a, $ 9, Wix =0. (4.5)

Let us also now compact this into a differentiahio The expression,,S, is a time component
(and really, the time bivector) of a second rantisgmmetric tensop,, S, . Similarly for § W,

, except this contains an inexact differential.gémeral, if we only contract one index of such a
tensorS, =-§,, then§, = §, dX and therefore§, = §,, dX is the time component of a four-
vector of differential forms. So in view of thigl.5) compacts fully to:

(Tds -oW)=0. (4.6)

When the inexact work differentia\\, = 0, this reduces to:

ngs) >0. (4.7)

This is thesecond law of thermodynamics for an irreversiblegass Importantly, at no
point along the way did we have to put this ineduahto this equation by hand. This inequality
was a natural result of developing the differenf@mms equationdU =dds=0 (2.1) in the

integral form ”dU :c]SU =0 of (2.2) and converting the emergent reversibigetioop to an

arrow of time,é)Udt - _[;Udt. Were we to turn_[;Udt back tquUdt, everything would again

become reversible, and (4.7) would become the/éaﬁ d§ =0.

Finally, having found the second law (4.7), letragirn to where we left off after (3.2)
and look for some form of its variafdS=>J Q. It will be appreciated that (3.12) is entirely

equivalent to (3.2); it is simply (3.2) after cora@d reduction of terms. In turn, (3.2) is the
irreversible version of the reversible (2.19), dada reversible process (2.19) is equivalent to
(2.14) and to (2.9). And, to get from (2.14) tol@ we used the reversible entropy relationship

(2.15). Therefore, if we now return to (2.14) d8®) and break the time Ioof;Udt - _[;Udt

in these equations rather than waiting for (2.98),canembedhe second law variaidS= 0 Q
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if we disconnect what is theﬁUdt —gSu [d = O from the equations on the left side of the (2.14)
and (2.9) equalities. That is, merging togethe2)(and (2.14) and (2.9) but keeping the latter
two equal to zero, then after breaking the timepl(ﬁdet - I;Udt , Wwe may write:
[([T((2:s+D08)-qw-aW)m@t | dit - [[( TIxs-8xw) s

> [([(aa+38Q-gw-dw)ml)dt - [[(5xq-8xw)ES . (4.8)
=[([(ou+DU)wm)d - [[(Oxu)s=0

We know from (4.6) that the inequality in the abawakes the top line synonymous with
@(Td%—JW)ZO after all reductions are carried out. But by kegpthe bottom two lines

eqgual to zero as they originally were, even acgimjdt - I;Udt , we are effectively embedding a
form of TdS= 0 Q that we shall now make explicit.

If we now do all of the same reductions we useddbfrom (2.14) or (2.9) to (4.3) but
keep everything in terms of heat or internal eneadlyer than entropy, the counterpart we obtain
to (4.3) is:

$(aa+3Q-gw-8W)dl = (9,u+0U)H =0. (4.9)
Comparing the latter equality to (4.3), this metad:

$(Tos+TOS) 1= (5q+3Q) el . (4.10)
Restoring spacetime indexes as before then yields:

$Top S X =g, Qdx (4.11)
and compacting to differential forms produces:

$Tds 25 Q. (4.12)

This is how the second law variaidS=J Q becomes embedded in the differential forms
eguations.

If we then compact (4.9) into:

P(0Q - W) = P(,Q) -\ ) dX = Ao =§3, U ot =0, (4.13)
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we may combine (4.12) with (4.13) to tie all ofghogether in the relationship:
$(TdS -oW)2$(6 Q-a W) =¢ dy=0. (4.14)

In the abovegj)duo =0 is a conservation law for the internal ener@;(,‘l’ds) ~0W)=0 is one
variant of the second law which becomﬁsls) >0 when work is being neither expended nor

applied, andi)TdS, > 4)5(3 is another variant of the second law.

5. Summary and Conclusion

Summarizing the entire developmeifitthe internal energy) =U _dx’ is taken to be the
one formU =ds obtained from a scalar potentsmhencedU = dds=0, then withU? E(U,u)
(the formU has the same symbol as the time compobenhich are mutually distinguished by
context), and after breaking the time loop to @eat arrow of time viajSUdt =0- I;Ud > (,

the resulting differential forms equatiﬁdu :qSU =0 is equivalent in all respects to the pair
of differential forms equations:

§(7a-oW)=§(3 Q-3 W=Jau, =0

5.1
U024>50(W—Q) oD

with a free time index, as obtained in (4.14) add4). Likewise, the form equation
dU = dds=0 is equivalent to

{Dxuzo
(2.6)

ou+0uU =0

obtained in (2.6). These are the analogues of &5daw of magnetism and Faraday’s law, in
integral and differential representations, respetyi

In conclusion, just as Maxwell's classical magnetiquations emerge entirely from
applyingdd=0 of exterior calculus to a gauge potenfiako too does the second law of classical
thermodynamics together with other related relatgms emerge from applyirdp=0 to a scalar
potentials. If we represent this adds= dU=0, thenU behaves precisely as the internal energy
state variable, and after breaking a time loop thapears in the integral equation

deU:qSU:O to make the this equation irreversible, we obt#ie second law of

thermodynamics in the form]SdSJ =0, which governs the entropy state varial¢ for an
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irreversible system, and are also able to embeecansl law relationshiuﬁngzc.f)JQ
between entropy and heat.
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