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Introduction

The trigonometric functions (cosinus and sinus) were historically discovered as real and imaginary
parts of the complex exponential function which solves the first order partial equations. In addition,
the hyperbolic functions are the results of the trigonometric function with imaginary arguments. Even
if the trigonometric functions were find before the hyperbolic ones, try to imagine that this is the
trigonometric which cames from the trigonometric ones.

Because the exponential function is defined as

ez =

∞∑
k=0

zk

k!
(0.1)

It seems to be natural to generalized the exponential function as

ep(z) =

∞∑
k=0

zpk

(pk)!
(0.2)

that we have call the p-exponential function in [1]. Here we recognize the hyperbolic cosinus if we take
p = 2. In comparaison with the hyperbolic functions, we remarks that the p-th exponential (0.2) can
be written as

ep(z) =
1

p

(
p−1∑
k=0

eω
k
p z

)
(0.3)

where ωp is the p-th root of unity.

Hence the hyperbolic and the trigonometric functions each satisfie a partial equation

y2 −
(
∂y

∂z

)2

= 1 (0.4)

for the hyperbolic functions and the sames with a minus for the trigonometric ones.

By the way those functions are viewed as the unique solutions of two manifolds whom defining
equations are

x2 − y2 = 1 (0.5)

which defines a hyperbol for the hyperbolic functions and the sames with a minus which defines a
circle for the trigonometric ones.

As a consequence, we searched for the partial equation solved by the third exponential.
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To this end, we showed the equivalent addition relation for the case p = 3. In the same way we
find (0.4) when we put b = −a in the trigonometric addition formulae (cosh(a + b)), we have put
b = ja, c = j2a in this equivalent trigonometric addition formulae (ε3(a+ b+ c)) and we have find the
partial equation (

y(z)

)3

+

(
∂y

∂z

)3

+

(
∂2y

∂z2

)3

− 3

(
y(z)

)(
∂y

∂z

)(
∂2y

∂z2

)
= 1 (0.6)

Thereby, the third exponential is the unique parametric solution of the orbifold defined by the implicit
equation

x3 + y3 + z3 − 3xyz = 1 (0.7)

The generalization of (0.6) leads to the equation

p−1∏
q=0

( p−1∑
k=0

ω −kpp y(k)(z)

)
= 1 (0.8)

for each p ∈ N with y(z) = ep(z).

In a first time, we recall definitions of the third exponential and we give some expressions of this
one. In a second time we give generalized hyperbolic parity and addition formulaes of this third
exponential. In a third time, we arbitrarly put 0 in the argument of the generalized hyperbolic addition
relations to obtain the defining equation of the emerging orbifold and the partial equation solved by
the third exponential. In a fourth time, we give a defintion of the hypercomplex number which are
a generalization of the complex ones. Finally, we completely solve the case of the fourth exponential
and give the orbifold and the partial equation solved in the general case.
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1 The p-exponential

We recall the definition of the p-exponential given in [1] by :

ep(z) =
∞∑
k=0

zpk

(pk)!
=

1

p

(
p−1∑
k=0

eω
k
p z

)
(1.1)

where ωp is the p-th root of unity. We have shown in [1] that the p-exponential is solution of the
partial equation

∂pep
∂zp

= ep(z) (1.2)

and
p−1∑
k=0

∂kep
∂zk

= ez (1.3)

Example : For p=3, the set of 3-exponential are

e3(z) =
∞∑
k=0

z3k

(3k)!
(1.4)

e′3(z) =
∞∑
k=1

z3k−1

(3k − 1)!
(1.5)

e′′3(z) =
∞∑
k=1

z3k−2

(3k − 2)!
(1.6)

which can also be written

e3(z) =
ez + ejz + ej

2z

3
(1.7)

e′3(z) =
ez + jejz + j2ej

2z

3
(1.8)

e′′3(z) =
ez + j2ejz + jej

2z

3
(1.9)

or
since j = e

2iπ
3 = −1+i

√
3

2 is the 3th root of unity

2 Trigonometric relations for the third exponential

For p=3, we generalized the parity relations for the third exponential

Proposition 1. The parity relations are given by

e3(jz) = e3(z) e3(j
2z) = e3(z) (2.10)

e′3(jz) = j2e′3(z) e′3(j
2z) = je′3(z) (2.11)

e′′3(jz) = je′′3(z) e′′3(jz) = je′′3(z) (2.12)
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Figure 1 – The 3-exponential and its two derivatives

Proof :
From de definition (5.53), we obtain these relations.
For example, to show e′′3(jz) = je′′3(z)

3e′′3(jz) = ejz + j2ej(jz) + jej
2(jz)

= ejz + j2ej
2z + jez

= j(j2ejz + jej
2z + ez)

3e′′3(jz) = 3je′′3(z) (2.13)

From (2.13), we obtain the other relation of (2.12) by successive derivations or by doing the same
reasonment.

�

Now, we generalized the addtion relations for the third exponential

Proposition 2. The addition relations are given by

e3(a+ b) = e3(a)e3(b) + e′3(a)e′′3(b) + e′′3(a)e′3(b) (2.14)

e′3(a+ b) = e′′3(a)e′′3(b) + e′3(a)e3(b) + e3(a)e′3(b) (2.15)

e′′3(a+ b) = e′3(a)e′3(b) + e3(a)e′′3(b) + e′′3(a)e3(b) (2.16)

Proof :
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Developping the expression of e3, e
′
3, e
′′
3 from their definition (5.53), we have the relations

9e3(a)e3(b) = ea+b + ea+jb + ea+j
2b + eja+b + eja+jb + eja+j

2b + ej
2a+b + ej

2a+jb + ej
2a+j2b

9e′3(a)e′3(b) = ea+b + jea+jb + j2ea+j
2b + jeja+b + j2eja+jb + eja+j

2b + j2ej
2a+b + ej

2a+jb + jej
2a+j2b

9e′′3(a)e′′3(b) = ea+b + j2ea+jb + jea+j
2b + j2eja+b + jeja+jb + eja+j

2b + jej
2a+b + ej

2a+jb + j2ej
2a+j2b

(2.17)

and

9e3(a)e′3(b) = ea+b + jea+jb + j2ea+j
2b + eja+b + jeja+jb + j2eja+j

2b + ej
2a+b + jej

2a+jb + j2ej
2a+j2b

9e3(a)e′′3(b) = ea+b + j2ea+jb + jea+j
2b + eja+b + j2eja+jb + jeja+j

2b + ej
2a+b + j2ej

2a+jb + jej
2a+j2b

9e′3(a)e′′3(b) = ea+b + j2ea+jb + jea+j
2b + jeja+b + eja+jb + j2eja+j

2b + j2ej
2a+b + jej

2a+jb + ej
2a+j2b

(2.18)

and

9e′3(a)e3(b) = ea+b + ea+jb + jea+j
2b + jeja+b + jeja+jb + jeja+j

2b + j2ej
2a+b + j2ej

2a+jb + j2ej
2a+j2b

9e′′3(a)e3(b) = ea+b + ea+jb + ea+j
2b + j2eja+b + j2eja+jb + j2eja+j

2b + jej
2a+b + jej

2a+jb + jej
2a+j2b

9e′′3(a)e′3(b) = ea+b + jea+jb + j2ea+j
2b + j2eja+b + eja+jb + jeja+j

2b + jej
2a+b + j2ej

2a+jb + ej
2a+j2b

(2.19)

Using (2.18) and (2.19), we have

9(e′3(a)e′′3(b) + e′′3(a)e′3(b)) = 2ea+b − ea+jb − ea+j2b − eja+b

+2eja+jb − eja+j2b − ej2a+b − ej2a+jb + 2ej
2a+j2b

= 3(ea+b + eja+jb + ej
2a+j2b)− (ea+b + ea+jb + ea+j

2b

+eja+b + eja+jb + eja+j
2b + ej

2a+b + ej
2a+jb + ej

2a+j2b)

9(e′3(a)e′′3(b) + e′′3(a)e′3(b)) = 9e3(a+ b)− 9e3(a)e3(b)

which gives
e3(a+ b) = e3(a)e3(b) + e′3(a)e′′3(b) + e′′3(a)e′3(b) (2.20)

which the first relation of (2.16).

In the same way, using (2.18) and (2.19), we have

9(e3(a)e′′3(b) + e′′3(a)e3(b)) = 2ea+b − j2ea+jb − jea+j2b − j2eja+b

+2jeja+jb − eja+j2b − jej2a+b − ej2a+jb + 2j2ej
2a+j2b

= 3(ea+b + jeja+jb + j2ej
2a+j2b)− (ea+b + j2ea+jb +

jea+j
2b + j2eja+b + jeja+jb + eja+j

2b + jej
2a+b + ej

2a+jb + j2ej
2a+j2b)

9(e3(a)e′3(b) + e′3(a)e3(b)) = 9e′3(a+ b)− 9e′′3(a)e′′3(b)

which gives
e′3(a+ b) = e′′3(a)e′′3(b) + e′3(a)e3(b) + e3(a)e′3(b) (2.21)

which the second relation of (2.16).
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In the same way, using (2.18) and (2.19), we have

9(e3(a)e′′3(b) + e′′3(a)e3(b)) = 2ea+b − jea+jb − j2ea+j2b − jeja+b

+2j2eja+jb − eja+j2b − j2ej2a+b − ej2a+jb + 2jej
2a+j2b

= 3(ea+b + j2eja+jb + jej
2a+j2b)− (ea+b + jea+jb + j2ea+j

2b + jeja+b

+j2eja+jb + eja+j
2b + j2ej

2a+b + ej
2a+jb + jej

2a+j2b)

9(e3(a)e′′3(b) + e′′3(a)e3(b)) = 9e′′3(a+ b)− 9e′3(a)e′3(b)

which gives
e′′3(a+ b) = e′3(a)e′3(b) + e3(a)e′′3(b) + e′′3(a)e3(b) (2.22)

which the third relation of (2.16).

�

3 Orbifold emerging of the trigonometric relations

Example :
For p=3, we have

Proposition 3. The vector (x, y, z) = (e3, e
′
3, e
′′
3) is the solution of the equation such that

x3 + y3 + z3 − 3xyz = 1 (3.23)

The equation (3.23) defines an orbifold.

Proof :
From the addition relation, we have

e3(a+ b+ c) = e3(a)e3(b+ c) + e′3(a)e′′3(b+ c) + e′′3(a)e′3(b+ c)

= e3(a)

(
e3(b)e3(c) + e′3(b)e

′′
3(c) + e′′3(b)e′3(c)

)
+e′3(a)

(
e′3(b)e

′
3(c) + e3(b)e

′′
3(c) + e′′3(b)e3(c)

)
+e′′3(a)

(
e′′3(b)e′′3(c) + e′3(b)e3(c) + e3(b)e

′
3(c)

)
(3.24)

6



If we impose b = ja and c = j2a and using (2.12), we find

e3(a+ ja+ j2a) = e3(a)

(
e3(a)e3(a) + je′3(a)e′′3(a) + j2e′′3(a)e′3(a)

)
+e′3(a)

(
e′3(a)e′3(a) + j2e3(a)e′′3(a) + je′′3(b)e3(c)

)
+e′′3(a)

(
e′′3(a)e′′3(a) + j2e′3(a)e3(a) + je3(b)e

′
3(c)

)
1 =

(
e3(a)

)3

+

(
e′3(a)

)3

+

(
e′′3(a)

)3

+ (j + j2 + j + j2 + j + j2)e3(a)e′3(a)e′3(a)

So we find (
e3(a)

)3

+

(
e′3(a)

)3

+

(
e′′3(a)

)3

− 3e3(a)e′3(a)e′3(a) = 1 (3.25)

So y(z) = e3(z) is the solution of the partial equation(
y(z)

)3

+

(
∂y

∂z

)3

+

(
∂2y

∂z2

)3

− 3

(
y(z)

)(
∂y

∂z

)(
∂2y

∂z2

)
= 1 (3.26)

Figure 2 – Implicit plot of x3 + y3 + z3 − 3xyz = 1
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4 Hypercomplex numbers

From the definition of the orbifold emerging of the third exponential

x3 + y3 + z3 − 3xyz = 1 (4.27)

and because of the identity

x3 + y3 + z3 − 3xyz =
1

2
(x+ y + z)

[
(x− y)2 + (y − z)2 + (z − x)2

]
(4.28)

we obtain
1

2
(x+ y + z)

[
(x− y)2 + (y − z)2 + (z − x)2

]
= 1 (4.29)

Now we expand the second factor which gives

(x+ y + z)

[
x2 + y2 + z2 − xy − yz − xz

]
= 1

(x+ y + z)

[
x2 + y2 + z2 + (j + j2)xy + (j + j2)yz + (j + j2)xz

]
= 1

(x+ y + z)

[
x2 + j2 xy + j xz + y2 + j yx+ j2 yz + z2 + j2 zx+ j zy

]
= 1

(x+ y + z)

[
(x+ j y + j2 z)(x+ j2 y + j z)

]
= 1 (4.30)

So if we parametrize 
x = e3(θ)
y = e′3(θ)
z = e′′3(θ)

(4.31)

We can write (4.30) as

eθ ejθ ej
2θ = 1 (4.32)

since

eθ = e3(θ) + e′3(θ) + e′′3(θ) (4.33)

ejθ = e3(θ) + j2 e′3(θ) + j e′′3(θ) (4.34)

ej
2θ = e3(θ) + j e′3(θ) + j2e′′3(θ) (4.35)

(4.36)

Then we can define the hypercomplex numbers

S =

{
x+ j y + j2 z ∈ C with x, y, z ∈ R

}
(4.37)
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5 Generalization

Theorem 1. The p-exponential y(z) = ep(z) is the solution the p− 1 order partial equation

p−1∏
q=0

( p−1∑
k=0

ω −kpp y(k)(z)

)
= 1 (5.38)

This relation defines an orbifold O :

p−1∏
q=0

( p−1∑
k=0

ω −kpp xk

)
= 1 (5.39)

where (x0, ..., xn−1) =

(
ep(z), e

′
p(z), ..., e

(n)
p (z)

)
.

Proof : From the definition of the p-exponential, we have

ep(z) =
1

p

p−1∑
k=0

eω
k
p z

e′p(z) =
1

p

p−1∑
k=0

ω k
p eω

k
p z

...

e (q)
p (z) =

1

p

p−1∑
k=0

ω qk
p eω

k
p z

...

e (n)
p (z) =

1

p

p−1∑
k=0

ω nk
p eω

k
p z (5.40)

with ωp the p-th root of unity. Now we deduce from (5.40) the generalized parity relation

e (q)
p (ωpz) = ω q(p−1)

p e (q)
p (z) (5.41)

or
e (q)
p (ωpz) = ω −qp e (q)

p (z) (5.42)
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From (5.42), we obtain

ez =

p−1∑
k=0

e (k)
p (z)

eωpz =

p−1∑
k=0

ω −kp e (k)
p (z)

...

eω
q
p z =

p−1∑
k=0

ω −qkp e (k)
p (z)

...

eω
n
p z =

p−1∑
k=0

ω −nkp e (k)
p (z) (5.43)

Using (5.58) we obtain

e

(
1−ω p

p
1−ωp

)
z

= 1

e
∑p−1
q=0 ω q

p z = 1
p−1∏
q=0

eω
q
p z = 1

p−1∏
q=0

(
p−1∑
k=0

ω −qkp e (k)
p (z)

)
= 1 (5.44)

which is the relation (5.38).

�

Remark 1. If we define the Armian of a vector e = (e1, ..., en) ∈ Rn :

Arm(e) =
n∏
q=1

eq (5.45)

we can write (5.38) as
Arm ( W ep ) = 1 (5.46)
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with

ep =



ep(z)
e′p(z)
...

e
(q)
p (z)
...

e
(n)
p (z)


(5.47)

and W = (ω
−(k−1)(q−1)
p )1≤k,q≤p or

W =



1 . . . 1 . . . 1

1 . . . ω
−(k−1)
p . . . ω

−(p−1)
p

...
...

...
...

...

1 . . . ω
−(k−1)(q−1)
p . . . ω

−(p−1)(q−1)
p

...
...

...
...

...

1 . . . ω
−(k−1)(p−1)
p . . . ω

−(p−1)(p−1)
p


(5.48)

Using the Vondermonde determinant formula, we can check

det(W) =
∏

1≤i<j≤p

(
ω −(j−1)p − ω −(i−1)p

)
(5.49)

Example :
For p=4, the set of 4-exponential are

e4(θ) =
eθ + eiθ + e−θ + e−iθ

4
(5.50)

e′4(θ) =
eθ + ieiθ − e−θ − ie−iθ

4
(5.51)

e′′4(θ) =
eθ − eiθ + e−θ − e−iθ

4
(5.52)

e′′′4 (θ) =
eθ − ieiθ − e−θ + ie−iθ

4
(5.53)

or

e4(θ) =
1

2
( cos(θ) + cosh(θ) ) (5.54)

e′4(θ) =
1

2
( − sin(θ) + sinh(θ) ) (5.55)

e′′4(θ) =
1

2
( − cos(θ) + cosh(θ) ) (5.56)

e′′′4 (θ) =
1

2
( sin(θ) + sinh(θ) ) (5.57)
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We have

eθ = e4(θ) + e′4(θ) + e′′4(θ) + e′′′4 (θ)

eiθ = e4(θ)− ie′4(θ)− e′′4(θ) + ie′′′4 (θ)

e−θ = e4(θ)− e′4(θ) + e′′4(θ)− e′′′4 (θ)

e−iθ = e4(θ) + ie′4(θ)− e′′4(θ)− ie′′′4 (θ)

(5.58)

Here we can see the W matrix

W =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 (5.59)

Using 
x = e4(θ)
y = e′4(θ)
z = e′′4(θ)
t = e′′′4 (θ)

(5.60)

we can write

eθe−θ = 1

(x+ y + z + t)(x− y + z − t) = 1

(x+ z)2 − (y + t)2 = 1 (5.61)

and

eiθe−iθ = 1

(x− iy + z + it)(x+ iy + z − it) = 1

(x− z)2 + (y − t)2 = 1 (5.62)

Combining (5.61) and (5.63), we obtain

eθe−θeiθe−iθ = 1[
(x− z)2 + (y − t)2

] [
(x+ z)2 − (y + t)2

]
= 1

the defining equation of the fourth exponential

(x2 − z2)2 + (y2 − t2)2 + 4(xy − zt)(zy − xt) = 1 (5.63)
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Conclusion

In fact there is a probleme with the parametrization of x3 + y3 + z3 − 3xyz = 1 with the curve
(e3(x), e′3(x), e3(x)). It is because why I have written this paper using z ∈ C because e3(z) is two
dimentional like x3 + y3 + z3 − 3xyz = 1. At the time I am writting those lines, I do not have solved
this problem.

The dimension of the emerging orbifold seems to depend on the independance of the p-th root of
unity back the previous roots of unity. You can see it in the fourth exponential case where

ω2
4 = i2 = −1 = ω2 (5.64)

Hence we have two defining equations for the orbifold emerging of the fourth exponential whereas we
find only one implicit equation for the orbifold emerging of the third exponential case. This gives us the
good dimensional number since the generalized exponential are defined on C which is two dimensional.

Furthermore, I choose to give the generalized theorem for each p ∈ N to say that it is true for each
p but I only formally prove it only for the third and the fourth exponential.

By the way, if somebody want to study the topology or the metric of the orbifold x3+y3+z3−3xyz =
1, please contact me, I would be happy to work on it.
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