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1 Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) random variables
with common distribution function (df) Fk obeying the generalized Maxwell distribution with scale
parameter k > 0, denoted by Fk ∼ GMD(k), and let Mn = max{Xk, 1 ≤ k ≤ n} represent the
partial maximum of {Xn, n ≥ 1}. The probability density of GMD(k) is given by

fk(x) =
k

2k/2σ2+1/kΓ(1 + k/2)
x2k exp

(
−x2k

2σ2

)
, x > 0,

where σ is positive, the scale parameter k is positive and Γ(·) represents the Gamma function. As
k = 1, GMD(k) are reduced to the ordinary Maxwell distribution.

Vadă(2009) introduced the generalized Maxwell distribution when he studied a modified Weibull
hazard rate. It has plenty of important applications in a large number of areas which include:
statistics, physics, statistical mechanics and so on. Some recent examples of applications contain:
constructing fractional rheological constitutive equations (Schiessel et al., 1995); be friction model
suitable for quick simulation and control (Farid et al., 2005); forecasting the temporal change
of opening angle in multiple time scales and electroscalar wave (Zhang et al., 2008; Arbab and
Satti, 2009); project of the time related to behavior of viscoelastic materials (Monsia, 2011). The
asymptotic properties of this distribution have been investigated in recent literature. For more
details, see Liu and Liu (2013) and Huang et al.(2014).

One very important problem in extreme values analysis, the asymptotic expansions of moments
of extremes from given distributions have been considered in plenty of literature in past decades.
Mocord(1964) and Pickands (1968) investigated the problems on moments convergence of normal-
ized extremes. Withers and Nadarajh(2011) considered expansions for quantiles and multivariate
moments of extremes for distributions of Pareto type. Our objective is to establish asymptotic
expansion of the moment of normalized maximum from independent and identical GMD(k) ran-
dom variables, from which we can obtain the convergence rate of the moment of maximum tending
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to the moment of the corresponding extreme value distribution. For more study, see Hill and
Sptuill(1994), Hüsler et al. (2003), Peng et al. (2010) and Liao et al.(2013).

The rest of this paper are organized as follows. Section 2 gives the main result on asymptotic
expansions for the moment of partial maxima of the GMD(k) with k > 0. Some auxiliary lemmas
needed to prove the main result and related proofs are given in Section 3. The proof of the main
result is given in section 4. In the sequel we shall assume that the parameter k > 0.

2 Main result

In this section, we give the main result. In the sequel, for r > 0 let

mr(n) = E

(
Mn − bn

an

)r

=
∫ +∞

−∞
xr dFn

k (anx + bn)

and

mr = EXr =
∫ +∞

−∞
xr dΛ(x)

respectively represent the rth moments of (Mn− bn)/an and X ∼ Λ(x) = exp(− exp(−x)), and the
norming constans an and bn are defined by (2.1). The following result shows asymptotic expansion
for the moment of GMD(k) extreme.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of iid random variables with common df Fk following
the GMD(k). Then,

b2k
n

[
b2k
n

(
mr(n)−mr

)
+ 2−1k−1σ2r

(
(2k − 1)mr+1 − 2mr

)]

→− rk−2σ4

{[
− 1

8
(2k − 1)2(r + 3) +

1
3
(k − 1)(2k − 1)

]
mr+2 +

1
2

[
(2k − 1)(r + 2)− 1

]
mr+1

+
[
2k − 1

2
(r + 1)

]
mr

}
,

as n →∞, where the normalizing constants an and bn are defined by

1− Fk(bn) = n−1, an = k−1σ2b1−2k
n . (2.1)

Remark 2.1. For the case of k = 1, i.e., the ordinary Maxwell distribution case, the corresponding
result is stated as following:

b2
n

[
b2
n(mr(n)−mr) + 2−1rσ2(mr+1 − 2mr)

]

→ rσ4

[
2−1(r − 3)mr − 2−1(r + 1)mr+1 + 8−1(r + 3)mr+2

]

as n →∞, where the normalizing constants an and bn are determined by

1− F1(bn) = n−1, an = σ2b−1
n .
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Corollary 2.1. Set 4r(n) = E((Mn − bn)/an)r − ∫ +∞
−∞ xr dΛ(x). For the moment of normalized

partial maximum of GMD(k), we have

4r(n) ∼ −
r

(
(2k − 1)mr+1 − 2mr

)

4k log n

for large n.

3 Auxiliary results and proofs

In order to prove the main result, we need some auxiliary results. Lemma 3.1 follows from
Huang et al. (2014).

Lemma 3.1. Let Fk(x) and fk(x) respectively represent the cumulative distribution function (cdf)
and probability density function (pdf) of GMD(k). For all x > 0, we have

σ2

k
x1−2k <

1− Fk(x)
fk(x)

<
σ2

k
x1−2k

(
1 +

(
σ2

k
x2k − 1

)−1
)

,

where scale parameter k > 1
2 , σ is positive.

Lemma 3.2 follows from Huang and Liu (2014).

Lemma 3.2. Let Fk(x) represent the cdf of GMD(k). For norming constants an and bn given by
(2.1), we have

b2k
n

[
b2k
n

(
Fn

k (anx + bn)− Λ(x)
)
− lk(x)Λ(x)

]
→

(
wk(x) +

l2k(x)
2

)
Λ(x)

as n →∞, where lk(x) and wk(x) are respectively given by

lk(x) =
1
2
k−1σ2

[
(2k − 1)x2 − 2x

]
e−x

and

wk(x) = − 1
24

k−2σ4

[
3(2k − 1)2x4 − 4(2k + 1)(2k − 1)x3 + 24x2 − 48kx

]
e−x.

Lemma 3.3. For any constant 0 < d < 1 and arbitrary nonnegative real numbers i and j, we have

lim
n→∞

∫ ∞

db
2
3 k
n

bi
nxj dΛ(x) = 0 and lim

n→∞

∫ ∞

db
2
3 k
n

bi
nxj(1− Λ(x)) dx = 0.

Proof. By the fact that 1− x < e−x < 1 as x > 0, we have
∫ ∞

db
2
3 k
n

bi
nxj dΛ(x) ≤

∫ ∞

db
2
3 k
n

bi
nxje−x dx

≤ bi
n exp

(
− 2

3
db

2
3
k

n

) ∫ ∞

db
2
3 k
n

xj exp
(
− x

3

)
dx
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→ 0

as n →∞. Similarly,
∫ ∞

db
2
3 k
n

bi
nxj(1− Λ(x)) dx ≤

∫ ∞

db
2
3 k
n

bi
nxje−x dx → 0

as n →∞. The proof is complete.

Lemma 3.4. For any constant 0 < c < 1 and arbitrary nonnegative real numbers i and j, we have

lim
n→∞

∫ −c log bn

−∞
bi
n|x|jΛ(x) dx = 0, lim

n→∞

∫ −c log bn

−∞
bi
n|x|j dΛ(x) = 0

and

lim
n→∞

∫ −c log bn

−∞
bi
n|x|jFn

k (anx + bn) dx = 0.

Proof. Observe that bn → ∞ as n → ∞ because of 1 − Fk(bn) = n−1. For 0 < c < 1, since∫ −1
−∞ |x|je−x exp

(
− e−x

3

)
dx is finite, we have

∫ −c log bn

−∞
bi
n|x|jΛ(x) dx ≤ bi

n exp
(
−2

3
bc
n

) ∫ −1

−∞
|x|j exp

(
−e−x

3

)
dx

→ 0

as n →∞ and
∫ −c log bn

−∞
bi
n|x|j dΛ(x) ≤ bi

n exp
(
−2

3
bc
n

) ∫ −1

−∞
|x|je−x exp

(
−e−x

3

)
dx

→ 0

as n →∞.

Observe that an = k−1σ2b1−2k
n , so we have bn − can log bn = bn − ck−1σ2b1−2k

n log bn → ∞ as
n →∞.

For k > 1
2 , we obtain

bk
nFn

k (bn − can log bn)

<bk
n exp

(
− n(1− Fk(bn − can log bn))

)

<bk
n exp

(
− 1− ck−1σ2b−2k

n log bn

1 + b−2k
n (k−1σ2 − b−2k

n )−1
exp

(
− b2k

2σ2
(1− ck−1σ2b−2k

n log bn)2k +
b2k

2σ2

))

<bk
n exp

(
− 1− ck−1σ2b−2k

n log bn

1 + b−2k
n (k−1σ2 − b−2k

n )−1
bn exp

(
− c2(2− k−1)σ2b−2k

n (log bn)2
))

→0

as n →∞ by using the inequality (1−x)α < 1−αx+α(α−1)x2 for 0 < x < 1
4 , α > 1 and Lemma

3.1. Thus, we have

bi
n

∫ −c log bn

−∞
|x|jFn

k (anx + bn) dx
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≤bi
na−j−1

n Fn−1
k (bn − can log bn)

∫ bn−can log bn

−∞
|y − bn|jFk(y) dy

≤bi
na−j−1

n Fn−1
k (bn − can log bn)

∫ 0

−∞
|y − bn|jFk(y) dy

+ bi+j+1
n a−j−1

n Fn
k (bn − can log bn)

∫ 1−canb−1
n log bn

0
|y − 1|j dy

=
j∑

s=0

Cj
sa
−j−1
n bi+s

n Fn−1
k (bn − can log bn)

∫ ∞

0
yj−sFk(−y) dy

+ a−j−1
n bi+j+1

n Fn
k (bn − can log bn)

∫ 1

0
(1− y)j dy

→0

as n →∞ since
∫∞
0 yrFk(−y) dy < ∞ for all r > 0. The proof is finished.

Lemma 3.5. For any constant 0 < d < 1 and arbitrary nonnegative real numbers i and j, we have

lim
n→∞ bi

n

∫ ∞

db
2
3 k
n

xj(1− Fn
k (anx + bn)) dx = 0

and

lim
x→∞xi(1− Fn

k (anx + bn)) = 0. (3.1)

Proof. By Corollary 3.1 in Huang et al. (2014), we have

1− Fk(x) = c(x) exp
(
−

∫ x

1

g(t)
f(t)

dt
)

for x > 0, where c(x) → c > 0, g(x) → 1 as x →∞, and the auxiliary function f(x) = k−1σ2x1−2k

on (1,∞) is absolutely continuous with limx→∞ f ′(x) = 0. Recall that 1 − Fk(bn) = n−1 and
an = f(bn). By arguments similar to Lemma 2.2(a) in Resnick (1987), we have the following
inequality

1− Fn
k (anx + bn) ≤ (1 + ε)2(1 + εx)−ε−1+1. (3.2)

for x > 0, arbitrary ε > 0 and large n. Thus, for 0 < ε < 2k/(3i + 2kj + 4k), by (3.2) we have

0 ≤ bi
n

∫ ∞

db
2
3 k
n

xj(1− Fn
k (anx + bn)) dx

≤ (1 + ε)2(b
− 2

3
k

n + dε)−
3i
2k

∫ ∞

db
2
3 k
n

xj(1 + εx)−j−1 dx

→ 0

since
∫∞
1 xj(1 + εx)−j−1 dx < ∞ for all nonnegative real number j.

Again by using (3.2), for 0 < ε < 1/(i + 2), we have

0 ≤ lim sup
x→∞

xi(1− Fn
k (anx + bn)) ≤ lim

x→∞xi(1 + ε)2(1 + εx)−i−1 = 0.

The desired result follows.
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Lemma 3.6. Let h(n, x) = n log Fk(anx+ bn)+ e−x, where norming constants an and bn are given
by (2.1). For sufficiently large n, we have

|h(n, x)| < 3

uniformly for −c log bn < x < db
2
3
k

n .

Proof. By using partial integrations, we have

1− Fk(x) = k−1σ2fk(x)x1−2k + r(x)

= k−1σ2fk(x)x1−2k(1 + k−1σ2x−2k)− s(x), (3.3)

for large x > 0 and k > 1
2 , where

0 < r(x) < k−2σ4fk(x)x1−4k and s(x) > 0. (3.4)

Let φn(x) = 1− Fk(anx + bn) and

n log Fk(anx + bn) = −nφn(x)−Rn(x),

where

0 < Rn(x) <
nφ2

n(x)
2(1− φn(x))

by the inequality −x− x2

2(1−x) < log(1− x) < −x for 0 < x < 1. Therefore,

|h(n, x)| = | − nφn(x) + e−x −Rn(x)| ≤ | − nφn(x) + e−x|+ Rn(x). (3.5)

For large n and −c log bn < x < db
2
3
k

n , it is easy to check that

φn(x) < φn(−c log n) = 1− Fk(bn − can log bn) < c0 < 1

and by combining Lemma 3.1 with the inequality 1 + αx ≤ (1 + x)α as −1 < x < 1 for α > 1, we
have

0 < Rn(x) <
1

2(1− c0)
(1− Fk(anx + bn))2

1− Fk(bn)

<
bn(1 + k−1σ2b−2k

n x)2

21+ k
2 (1− c0)σ

1
k Γ(1 + k

2 )
exp

(
− b2k

n

2σ2
− 2x

)

<
b1+2c
n (1 + dk−1σ2b

− 4
3
k

n )2

21+ k
2 (1− c0)σ

1
k Γ(1 + k

2 )
exp

(
− b2k

n

2σ2

)

< 1. (3.6)

For x ≥ 0, we have

| − nφn(x) + e−x| ≤ nφn(x) + e−x ≤ n(1− Fk(bn)) + 1 = 2. (3.7)

Hence, |h(n, x)| < 3 as 0 ≤ x < db
2
3
k

n by combining (3.6) and (3.7).
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Next, we consider the case of −c log bn < x < 0. By (3.3) and (3.4), we have

−nφn(x) + e−x = −1− Fk(anx + bn)
1− Fk(bn)

+ e−x

= e−x(1 + k−1σ2b−2k
n x)

(
(1 + k−1σ2b−2k

n x)−1 − 1− δ(anx + bn)
1− δ(bn)

× exp
(
− b2k

n

2σ2

∞∑

i=2

Ci
2k(k

−1σ2b−2k
n x)i

))

= e−x(1 + k−1σ2b−2k
n x)dn(x),

where δ(x) = 2
k
2 σ

1
k Γ(1 + k

2 )x−1r(x) exp( x2k

2σ2 ) satisfying 0 < δ(x) < k−1σ2x−2k for large x > 0 and

dn(x) = (1 + k−1σ2b−2k
n x)−1 − 1− δ(anx + bn)

1− δ(bn)
exp

(
− b2k

n

2σ2

∞∑

i=2

Ci
2k(k

−1σ2b−2k
n x)i

)
.

For −c log bn < x < 0, set

un(x) =
∞∑

i=2

Ci
2k(k

−1σ2b−2k
n x)i,

noting that 1+αx ≤ (1+x)α < 1 as−1 < x < 0 and α > 1, we have un(x) > 0. Since 1−x < e−x < 1
for x > 0, we have

dn(x) < (1 + k−1σ2b−2k
n x)−1 − (1− δ(anx + bn))

(
1− b2k

n

2σ2
un(x)

)

< −k−1σ2b−2k
n x(1 + k−1σ2b−2k

n x)−1 +
b2k
n

2σ2
un(x) + k−1σ2(anx + bn)−2k

and

dn(x) > (1 + k−1σ2b−2k
n x)−1 − 1− δ(anx + bn)

1− δ(bn)

> (1 + k−1σ2b−2k
n x)−1 − 1

1− δ(bn)

> −k−1σ2b−2k
n x(1 + k−1σ2b−2k

n x)−1 − 2k−1σ2b−2k
n .

Thus, as −c log bn < x < 0 we have

|dn(x)| < 2k−1σ2b−2k
n |x|(1 + k−1σ2b−2k

n x)−1 +
∣∣∣∣
b2k
n

2σ2
un(x)

∣∣∣∣ + 3k−1σ2(anx + bn)−2k

for large n. It is easy to check that for large n

(anx + bn)−2k ≤ b−2k
n (1− ck−1σ2b−2k

n log bn)−2k

and
∣∣∣∣
b2k
n

2σ2
un(x)

∣∣∣∣ ≤ c2(1− 2−1k−1)σ2b−2k
n (log bn)2
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hold uniformly for all −c log bn < x < 0, so

|dn(x)| < c1b
−2k
n (log bn)2

with c1 being a positive constant.

Thus, for large enough n,

| − nφn(x) + e−x| = e−x(1 + k−1σ2b−2k
n x)|dn(x)|

< c1(1 + ck−1σ2b−2k
n log bn)bc−2k

n (log bn)2

< 2 (3.8)

uniformly for −c log bn < x < 0. By (3.6) and (3.8), we have |h(n, x)| < 3 uniformly for −c log bn <
x < 0. The proof is complete.

Lemma 3.7. For large n and all −c log bn < x < db
2
3
k

n ,

xrb2k
n [b2k

n (Fn
k (anx + bn)− Λ(x))− lk(x)Λ(x)]

is bounded by integrable functions independent of n, with r > 0, 0 < c < 1 and 0 < d < 1.

Proof. Utilizing Lemma 3.6, for large n we have

b2k
n [b2k

n (Fn
k (anx + bn)− Λ(x))− lk(x)Λ(x)]

<b2k
n [b2k

n h(n, x)− lk(x)]Λ(x) + b4k
n h2(n, x)[2−1 + exp(|h(n, x)|)]Λ(x)

<b2k
n [b2k

n h(n, x)− lk(x)]Λ(x) + b4k
n h2(n, x)[2−1 + e3]Λ(x),

where h(n, x) = n log Fk(anx + bn) + e−x.

The work below we will give that |b2k
n (b2k

n h(n, x) − lk(x))| and |b2k
n h(n, x)| are bounded by

p(x)e−x, where p(x) is a polynomial on x. In this we only prove the former because the arguments
of the two cases are similar. Rewrite

b2k
n (b2k

n h(n, x)− lk(x)) = b4k
n (−nφn(x) + e−x − b−2k

n lk(x))− b4k
n Rn(x). (3.9)

By (3.6), for large n and −c log bn < x < db
2
3
k

n we have

b4k
n Rn(x) <

b1+4k
n (1 + k−1σ2b−2k

n x)2

21+ k
2 (1− c0)σ

1
k Γ(1 + k

2 )
e−x exp

(
− b2

n

2σ2
+ c log bn

)

<
b1+4k+c
n (1 + dk−1σ2b

− 4
3
k

n )2

21+ k
2 (1− c0)σ

1
k Γ(1 + k

2 )
e−x exp

(
− b2

n

2σ2

)

< e−x. (3.10)

For large n, easily check that anx + bn > 0 for −c log bn < x < db
2
3
k

n . By Lemma 3.1 and applying

the inequality 1 + αx ≤ (1 + x)α as −1 < x < 1 and α > 1, for −c log bn < x < db
2
3
k

n we have

1− Fk(anx + bn)
1− Fk(bn)

<
σ2

k (anx + bn)1−2k(1 + (σ2

k (anx + bn)2k − 1)−1)fk(anx + bn)
σ2

k b1−2k
n fk(bn)
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=(1 + k−1σ2b−2k
n x)(1 + (k−1σ2b2k

n (1 + k−1σ2b−2k
n x)2k − 1)−1)

× exp
(
− b2

n

2σ2
((1 + k−1σ2b−2k

n x)2k − 1)
)

<2e−x (3.11)

for large n. By Lemma 3.2 in Huang and Liu (2014), we have

1− Fk(bn)
1− Fk(anx + bn)

e−x = Bk(n, x) exp
( ∫ x

0

(
kan(ant + bn)2k−1

σ2
− an

ant + bn
− 1

)
dt

)
,

where

Bk(n, x) =
1 + k−1σ2b−2k

n + k−2(1− 2k)σ4b−4k
n + O(b−6k

n )
1 + k−1σ2(anx + bn)−2k + k−2(1− 2k)σ4(anx + bn)−4k + O(b−6k

n )

with limn→∞Bk(n, x) = 1 uniformly for all −c log bn < x < db
2
3
k

n . Rewrite

b4k
n [−nφn(x) + e−x − b−2k

n lk(x)]

=
1− Fk(anx + bn)

1− Fk(bn)
b4k
n

[
− 1 +

1− Fk(bn)
1− Fk(anx + bn)

e−x

(
1− 1

2
k−1σ2((2k − 1)x2 − 2x)b−2k

n

)]

=
1− Fk(anx + bn)

1− Fk(bn)
[Ak(n, x) + Dk(n, x)− Ek(n, x) + Gk(n, x)], (3.12)

where

Ak(n, x) = b4k
n (Bk(n, x)− 1),

Dk(n, x) = b4k
n Bk(n, x)

( ∫ x

0

(
kan(ant + bn)2k−1

σ2
− an

ant + bn
− 1

)
dt− 1

2
k−1σ2((2k − 1)x2 − 2x)b−2k

n

)
,

Ek(n, x) =
1
2
b2k
n Bk(n, x)k−1σ2((2k − 1)x2 − 2x)

∫ x

0

(
kan(ant + bn)2k−1

σ2
− an

ant + bn
− 1

)
dt

Gk(n, x) = b4k
n Bk(n, x)

(
1− 2−1k−1σ2((2k − 1)x2 − 2x)b−2k

n

)

×
∞∑

i=2

( ∫ x
0

(
kan(ant+bn)2k−1

σ2 − an
ant+bn

− 1
)

dt

)i

i!
.

First of all, we consider the bound of Ak(n, x). Noting that 1− αx < (1 + x)−α < 1 as x > 0 and

α > 0, for the case of 0 ≤ x < db
2
3
k

n we have

|Ak(n, x)|
<(1− k2(2k − 1)σ4(anx + bn)−4k)−1b4k

n

×|k−1σ2b−2k
n (1− (1 + k−1σ2b−2k

n x)−2k) + k−2(1− 2k)σ4b−4k
n (1− (1 + k−1σ2b−2k

n x)−4k) + O(b−6k
n )|

<(1− k2(2k − 1)σ4b−4k
n )−1[2k−1σ4x− 4k−2(1− 2k)σ6b−2k

n x]

<4k−2σ4(k + 2(2k − 1)σ2)x. (3.13)

Next consider the case of −c log bn < x < 0. For large n, we have

|Ak(n, x)|

9



<(1− k2(2k − 1)σ4(bn − can log bn)−4k)−1b4k
n

× |k−1σ2b−2k
n (1− ck−1σ2b−2k

n log bn)−2k((1 + k−1σ2b−2k
n x)2k − 1)

+k−2(1− 2k)σ4b−4k
n (1− ck−1σ2b−2k

n log bn)−4k((1 + k−2σ2b−2k
n x)4k − 1) + O(b−6k

n )|
<4k−2σ4(k + 2(2k − 1)σ2)|x| (3.14)

Since 1+αx < (1+x)α < 1 as −1 < x < 0 and α > 1. Similarly, for the bounds of Dk(n, x), Ek(n, x)
and Gk(n, x), we have

|Dk(n, x)| < 2
(

1
3
|1− k−1|(2− k−1)σ4|x|3 +

1
2
k−1σ2|kσ−2 − c|−1x2

)
, (3.15)

|Ek(n, x)| < k−1σ2
(
(2k − 1)x2 + 2|x|)

(
|k−1σ2 − c|−1|x|+ 1

2
(2− k−1)σ2x2

+
1
3
|1− k−1|(2− k−1)σ4|x|3

)
, (3.16)

and

|Gk(n, x)| <
(

1 +
1
2
k−1σ2

(
(2k − 1)x2 + 2|x|)

)(
|k−1σ2 − c|−1|x|+ 1

2
(2− k−1)σ2x2

+
1
3
|1− k−1|(2− k−1)σ4|x|3

)2

exp
(

c|k−1σ2 − c|−1 +
1
2
c2(2− k−1)σ2

)
(3.17)

for −c log bn < x < db
2
3
k

n and large n. Thus, we complete the proof of the lemma by combining
(3.9)-(3.17) together.

4 Proof of main result

Note the fact that
∫ 0
−∞ |x|rfk(x) dx is finite for all integers r > 0 and by Proposition 2.1(iii)

in Resnick (1987), we have

lim
n→∞mr(n) = lim

n→∞E

(
Mn − bn

an

)r

= mr =
∫ +∞

−∞
xr dΛ(x) = (−1)rΓ(r)(1),

where Γ(r)(1) denotes the rth derivative of the Gamma function at x = 1. Thus, mr(n) < ∞ for
large n and

mr(n)−mr =
∫ +∞

−∞
xr (Fn

k (anx + bn)− Λ(x))′ dx

=
∫ +∞

−∞
xr d(Fn

k (anx + bn)− Λ(x)).

Observing that
∫ 0
−∞ |x|rfk(x) dx < ∞, we have limx→−∞ |x|rFk(x) = 0, and utilizing the Cr−inequality,

implies

0 ≤ lim sup
x→−∞

|x|rFn
k (anx + bn) ≤ lim

y→−∞
2r−1(|y|r + |bn|r)

ar
n

Fn
k (y) = 0,

10



which induces

lim
x→−∞xrFn

k (anx + bn) = 0. (4.1)

Therefore, by (3.1) and (4.1), we have

lim
x→+∞xr(Fn

k (anx + bn)− Λ(x)) = lim
x→+∞xr(1− Λ(x))− lim

x→+∞xr(1− Fn
k (anx + bn)) = 0

and
lim

x→−∞xr(Fn
k (anx + bn)− Λ(x)) = lim

x→−∞xrFn
k (anx + bn)− lim

x→−∞xrΛ(x) = 0.

Hence, by using partial integrations, we have

mr(n)−mr = −r

∫ +∞

−∞
xr−1(Fn

k (anx + bn)− Λ(x)) dx (4.2)

and
∫ +∞

−∞
xr+1e−2xΛ(x) dx = −(r + 1)mr + mr+1. (4.3)

By combining (4.2) and (4.3), with Lemma 3.2− 3.7 and the dominated convergence theorem, we
have

b2k
n

[
b2k
n (mr(n)−mr) + 2−1k−1σ2r

(
(2k − 1)mr+1 − 2mr

)]

=− r

∫ +∞

−∞
b2k
n

[
b2k
n xr−1(Fn

k (anx + bn)− Λ(x))− xr−1lk(x)Λ(x)
]

dx

=− r

∫ +∞

db
2
3 k
n

b2k
n

[
b2k
n xr−1(Fn

k (anx + bn)− Λ(x))− xr−1lk(x)Λ(x)
]

dx

− r

∫ db
2
3 k
n

−c log bn

b2k
n

[
b2k
n xr−1(Fn

k (anx + bn)− Λ(x))− xr−1lk(x)Λ(x)
]

dx

− r

∫ −c log bn

−∞
b2k
n

[
b2k
n xr−1(Fn

k (anx + bn)− Λ(x))− xr−1lk(x)Λ(x)
]

dx

→− r

∫ +∞

−∞

(
wk(x) +

1
2
l2k(x)

)
xr−1Λ(x) dx

=− rk−2σ4

{[
− 1

8
(2k − 1)2(r + 3) +

1
3
(k − 1)(2k − 1)

]
mr+2 +

1
2

[
(2k − 1)(r + 2)− 1

]
mr+1

+
[
2k − 1

2
(r + 1)

]
mr

}

as n →∞.

We obtain the desired result.
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