
MATH-June-2015-101 v3

A nonstandard cubic equation
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A nonstandard cubic equation is shown to have an unusually economical solution, where this
solution incorporates an angle that serves as the equation’s discriminant.

A nonstandard cubic equation is shown to have an un-
usually economical solution, where this solution incorpo-
rates an angle that serves as the equation’s discriminant.

This equation is treated as four special cases:

• In Sec. I the equation has just two independent
constants m and Z.

• In Sec. II the equation has three independent con-
stants m, Z, and k, and represents the general case.

• In Sec. III the equation has just a single inde-
pendent constant m, but is especially interesting
as it possesses the simple approximate solution
x ≈ 1− 1

3(m+1)4 .

• In Sec. IV the equation again has one independent
constant m, but 3m must be a perfect cube.

The solution to the standard cubic equation is given in
Appendix A.

I. THE CUBIC EQUATION WITH TWO
CONSTANTS

We begin with a theorem providing the solution to the
nonstandard cubic equation having just two constants.

Theorem 1. Define the cubic equation

(m+ x)
3

3m
+ (m+ x)2 = Z , (1.1)

having positive constants m and Z, and the variable x.
Zero out x from the above equation to define

W =
m3

3m
+m2 (1.2)

and let

sin θ =

√
1− W

Z
(1.3)

and

v =
1 + sin θ

1− sin θ
. (1.4)
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Then

x = m

(
3
√
v +

3

√
1

v

)
− 2m (1.5)

solves Eq. (1.1).

Proof. We will expand Eq. (1.1) into the standard cubic
equation, identify its coefficients, and then solve it by
using its classical solution. This solution will then be
simplified by a series of substitutions until Eqs. (1.4) and
(1.5) are recovered.

The standard cubic equation

ax3 + bx2 + cx+ d = 0 (a = 1) (1.6)

has this solution

x =
3

√
q

2
+

√
q2

4
+
p3

27
+

3

√
q

2
−
√
q2

4
+
p3

27
− r ,

(1.7)

where

p = c− b2

3

q =
−2b3

27
+
bc

3
− d

r =
b

3


(1.8)

(see Appendix A for proof). When Eq. (1.1) is expanded
we get

x3 + 3mx2 + 3m2x+m3

3m
+ x2 + 2mx+m2 = Z

or

x3 + 6mx2 + 9m2x+ 4m3

3m
= Z ,

so that

x3 + 6mx2 + 9m2x+ 4m3 − 3mZ = 0 .

This produces coefficients of

a = 1

b = 6m

c = 9m2

d = 4m3 − 3mZ

= 3m(W − Z)


(1.9)

for Eq. (1.6).
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Substituting these values into Eq. (1.8) gives

p = 9m2 − (6m)
2

3

q =
−2× (6m)

3

27
+

6m× 9m2

3
− 4m3 + 3mZ

r =
6m

3


(1.10)

which simplifies to

p = −3m2

q = 3mZ − 2m3

r = 2m

 . (1.11)

Substituting these coefficients into Eq. (1.7) gives

x =
3

√
3mZ − 2m3

2
+

√
(3mZ − 2m3)2

4
+

(−3m2)3

27

+
3

√
3mZ − 2m3

2
−
√

(3mZ − 2m3)2

4
+

(−3m2)3

27

− 2m

or

x =
3

√(3mZ

2
−m3

)
+

√(3mZ

2
−m3

)2
−m6

+
3

√(3mZ

2
−m3

)
−
√(3mZ

2
−m3

)2
−m6

− 2m .

Factoring out m gives

x = m
3

√( 3Z

2m2
− 1
)

+

√( 3Z

2m2
− 1
)2
− 1

+m
3

√( 3Z

2m2
− 1
)
−
√( 3Z

2m2
− 1
)2
− 1

− 2m . (1.12)

Because the values in the above two outer radicals are
reciprocals of each other, it follows that letting

u =
( 3Z

2m2
− 1
)

+

√(
3Z

2m2
− 1

)2

− 1 (1.13)

allows Eq. (1.12) to be rewritten

x = m

(
3
√
u+

3

√
1

u

)
− 2m . (1.14)

But this equation is identical to Eq. (1.5) except that u
has replaced v. It follows that Eq. (1.5) (our goal) holds
provided that

u = v , (1.15)

which is to say if

u =
1 + sin θ

1− sin θ
. (1.16)

But this is easily shown: Observe that Eq. (1.2) gives

m2 =
3

4
W .

This allows removing m2 from Eq. (1.13) by substituting
3
4W to get

u =

(
3Z

2× 3
4W
− 1

)
+

√(
3Z

2× 3
4W
− 1

)2

− 1

= 2
Z

W
− 1 +

√(
2
Z

W
− 1

)2

− 1

= 2
Z

W
− 1 +

√(
2
Z

W

)2

− 4
Z

W
+ 1− 1

= 2
Z

W
− 1 + 2

√(
Z

W

)2

− Z

W

= 2
Z

W
− 1 + 2

Z

W

√
1− W

Z
.

We now need to eliminate Z and W by substituting sin θ.
A glance at Eq. (1.3) shows that this requires rewriting

the above equation using powers of
√

1− W
Z . So, we

divide the above numerator and denominator by W
Z to

get

u =
2− W

Z
+ 2

√
1− W

Z
W

Z

and rearrange terms so that

u =

1 + 2

√
1− W

Z
+

(
1− W

Z

)
1−

(
1− W

Z

) . (1.17)

Now we can eliminate powers of
√

1− W
Z by substituting

powers of sin θ as defined by Eq. (1.3). This gives

u =
1 + 2 sin θ + sin2 θ

1− sin2 θ
,

which factors into

u =
1 + sin θ

1− sin θ
× 1 + sin θ

1 + sin θ
,

so that

u =
1 + sin θ

1− sin θ
.

Finally, we substitute into Eq. (1.14) to recover Eq.
(1.5).
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Remark 1. If θ = 0 then Eq. (1.1) has two distinct real
roots.

Remark 2. If 0 < θ < π/2 then Eq. (1.1) has one real
and two complex roots.

Remark 3. If θ is purely imaginary then Eq. (1.1) has
three distinct real roots. Note: sin iθ = i sinh θ.

Remark 4. As a side issue, note the use of W − Z in the
simple alternate expression for d in Eq. (1.9).

II. THE CUBIC EQUATION WITH THREE
CONSTANTS

It is possible to modify Eq. (1.1) slightly by joining
x with a new real constant k, so as to create a general
version of Eq. (1.1). In

(m+ k + x)
3

3m
+ (m+ k + x)2 = Z (2.1)

m and Z are (again) positive constants, but the expres-
sion k+x now serves in the role earlier served by x alone.
Hence, Eq. (1.5) becomes

k + x = m

(
3
√
v +

3

√
1

v

)
− 2m , (2.2)

so that the solution to Eq. (2.1) is

x = m

(
3
√
v +

3

√
1

v

)
− 2m− k , (2.3)

where W , θ, and v are defined as in Eqs. (1.2)–(1.4).
(Note that this use of k does not affect the usefulness of
θ as the discriminant.)

Equation (2.1) produces coefficients of

a = 1

b = 6m+ 3k

c = 9m2 + 12mk + 3k2

d = 4m3 − 3mZ + 9m2k + 6mk2 + k3

= 3m(W − Z) + k[c− k(b− ka)]


(2.4)

for Eq. (1.6), where k = 0 recovers Eq. (1.9).

III. THE CUBIC EQUATION WITH ONE
CONSTANT

Now suppose that Z ceases to be an independent con-
stant, but instead derives from m and M as follows

Z =
M3 −M−3

3m
+M2 −M−3 , (3.1)

where

M = m+ 1 ,

but where now

m ≥ 9 .

Then, a surprisingly simple, but accurate, approximate
solution to Eq. (1.1) becomes possible: namely,

x ≈ 1− 1

3×M4
. (3.2)

In the theorem that follows the extremely small size
computed for ε is not proof of the accuracy of the above
approximate solution — but the proof does help explain
why the approximation is so accurate.

Theorem 2. Let

ε =

[
(M − y)

3

3m
+ (M − y)

2

]

−
[
M3 −M−3

3m
+M2 −M−3

]
, (3.3)

where

y =
1

3×M4
, (3.4)

and m and M are positive constants such that

M = m+ 1 , (3.5)

where

m ≥ 9 . (3.6)

Then

ε =
1

9M7m
+

1

9M8
− 1

81M12m
. (3.7)

Remark 5. Informally speaking, the absolute value for ε
equals the difference between the value for Z produced by
Eq. (1.1) when x = 1− 1

3M4 , versus that produced by Eq.
(3.1). Moreover, as Eq. (3.7) makes clear, for ever larger
M the (necessarily small) value for ε shrinks rapidly.

Proof. Substituting y, as defined by Eq. (3.4), into Eq.
(3.3) gives

ε =

(
M − 1

3M4

)3

3m
+

(
M − 1

3M4

)2

−
(
M3 −M−3

3m
+M2 −M−3

)
. (3.8)

This expands and simplifies to

ε =
−27M10 + 9M5 − 1

81M12m
+
−6M5 + 1

9M8

−
(
−M

−3

3m
−M−3

)
=
−27M10 + 9M5 − 1− 54M9m+ 9M4m

81M12m

+
27M9 + 81M9m

81M12m
.
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TABLE I: Values produced by Eq. (1.1) when Z is determined
by Eq. (3.1). Values are computed for the two smallest m for
which 3m is a perfect cube. The values in the first row derive
from Eq. (4.2).

m Z Cubed expression Squared expression

9a 137.036 10
3
− 1

3×29 999.932...
10
1
− 1

29 999.932...

72 7130.004 . . . 73
6
− 1

6×85 194 722.990...
73
1
− 1

85 194 722.990...

aMinimal case.

Combining large and small terms separately gives

ε =
(27M9m− 27M10 + 27M9) + (9M5 + 9M4m− 1)

81M12m
.

(3.9)

But the large terms of the above numerator sum to 0;
that is to say, given Eq. (3.5), it follows that

27M9m− 27M10 + 27M9

= M9m−M9 (M − 1)

= M9m−M9m

= 0 .

So, the effects of 1
3M4 and M−3 in Eq. (3.8) almost com-

pletely cancel. What does not cancel is this relatively
small amount

ε =
9M5 + 9M4m− 1

81M12m
. (3.10)

This fraction, which has only comparatively small powers
of M in its numerator, gives

ε =
1

9M7m
+

1

9M8
− 1

81M12m
. (3.11)

Remark 6. In the numerator of Eq. (3.9) all large (ninth
and tenth) powers of M , which might otherwise con-
tribute greatly to approximation error, completely can-
cel; this leaves only the much smaller (fourth and fifth)
powers of M as the major sources of error. It follows
from Eqs. (3.5), (3.6), and (3.11) that

ε ≤ 1 709 999

729 000 000 000 000
.

IV. THE CUBIC EQUATION WITH ONE
CONSTANT AND 3m A PERFECT CUBE

If m = 9, then Eq. (3.5) gives M = 10, so that Eq.
(3.1) gives

Z =
103 − 10−3

3× 9
+ 102 − 10−3

=
999.999

27
+ 99.999

= 137.036 .

TABLE II: Values produced by Eq. (1.1) when Z is deter-
mined by Eq. (3.1). Values are computed for the two smallest
m for which 3m is a perfect cube.

m 3
√

3m M W Z ∼1/(1− x) ∼sin2 θ

9a 3 10 108 137.036 29 999.932b 0.2119c

72 6 73 6912 7130.004 . . . 85 194 722.991d 0.0306

aMinimal case.
bApproximately 3× 104 = 30 000. See Eqs. (4.4) and (4.5).
cSo, cos2 θ = 108

137.036
where θ ≈ 27.407 157◦.

dApproximately 3× 734 = 85 194 723.

Because 3m = 3× 9 is a perfect cube this may be rewrit-
ten

Z =

(
10

3

)3

−
(

1

10× 3

)3

+ 102 − 10−3

= 137.036 . (4.1)

With 3m a perfect cube, Eq. (1.1) can likewise be rewrit-
ten. So, substituting the above values for m and Z into
Eq. (1.1) gives

Z =

(
10

3
− 1

3× 29 999.932 . . .

)3

+

(
10

1
− 1

29 999.932 . . .

)2

= 137.036 . (4.2)

It is these values which appear in the first rows of Tables
I and II. Because m = 9 is the smallest positive number
for which 3m is a perfect cube it follows that m = 9 and
Z = 137.036 represent a minimal case.

All of this shows that at the outset we might have
chosen as a different starting point this logical alternative
to Eq. (1.1) (

m+ x

n

)3

+ (m+ x)
2

= Z , (4.3)

where n3 = 3m.
And, finally, note that for the above m and Z, Eq.

(1.1) produces

x ≈ 1− 1

29 999.932 142 743 338
, (4.4)

a value very close to the approximate value for x given
by Eq. (3.2), namely

x ≈ 1− 1

3×M4

≈ 1− 1

30 000
. (4.5)
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APPENDIX A: THE SOLUTION TO THE
STANDARD CUBIC EQUATION

Theorem 3. The standard cubic equation

ax3 + bx2 + cx+ d = 0 (a = 1) (A1)

has the solution

x =
3

√
q

2
+

√
q2

4
+
p3

27
+

3

√
q

2
−
√
q2

4
+
p3

27
− r

(A2)

provided that

p = c− b2

3

q =
−2b3

27
+
bc

3
− d

r =
b

3


. (A3)

Proof. We introduce y as follows

x = y − r (A4)

and substitute r as defined by Eq. (A3) to get

x = y − b

3
.

Substituting into Eq. (A1) gives(
y − b

3

)3

+ b

(
y − b

3

)2

+ c

(
y − b

3

)
+ d = 0 .

This expands and simplifies to

y3 − q + py = 0 (A5)

with p and q from Eq. (A3) neatly replacing all instances
of b, c, and d. (Note the absence of a y2 term: the point
of this substitution.)

We introduce z as follows

y = z − p

3z
(A6)

and make Vieta’s substitution into Eq. (A5) to get(
z − p

3z

)3
− q + p

(
z − p

3z

)
= 0 .

This expands and neatly simplifies to

z3 − q − p3

27
z−3 = 0 . (A7)

We turn this into a quadratic equation in z3 by multi-
plying through by z3 to get(

z3
)2 − q (z3)− p3

27
= 0 (A8)

(the point of Vieta’s substitution). The standard
quadratic formula then gives

z3 =

−(−q)±

√
(−q)2 − (4)(1)

(
−p

3

27

)
(2)(1)

=
q

2
±
√
q2

4
+
p3

27
. (A9)

We are now close to recovering Eq. (A2), which we
have to reassemble from the trail of parts we left behind.
Essentially, we need to roll back the y − r and z − p

3z
substitutions made earlier. We proceed in reverse order
by eliminating z − p

3z first.
From Eq. (A9) we know that

z =
3

√
q

2
+

√
q2

4
+
p3

27
. (A10)

(The inner radical we arbitrarily give a plus sign, but
a minus sign would lead to identical results.) We now
introduce this identity

−p
3

=
3

√
q

2
+

√
q2

4
+
p3

27
×

3

√
q

2
−
√
q2

4
+
p3

27

into which we substitute z from Eq. (A10) to get

−p
3

= z ×
3

√
q

2
−
√
q2

4
+
p3

27
.

By moving z to the left, we then also know that

− p

3z
=

3

√
q

2
−
√
q2

4
+
p3

27
. (A11)

Substituting the above values for z and − p
3z into Eq.

(A6) gives

y =
3

√
q

2
+

√
q2

4
+
p3

27
+

3

√
q

2
−
√
q2

4
+
p3

27
, (A12)

undoing Vieta’s substitution.
Finally, we undo the first substitution by plugging this

y into Eq. (A4) to recover Eq. (A2).

Remark 7. The discriminant of Eq. (A1) can be shown
to be

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 (a = 1) .

Compare this against the economy of the discriminant θ,
discussed in Remarks 1, 2, and 3. By playing a central
role in the solutions to Eqs. (1.1) and (2.1), the sim-
ple discriminant θ shows these two equations to be — at
least in this limited respect — more fundamental than Eq.
(A1).
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