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A substitution map applied to the simplest algebraic identities

J. S. Markovitch
P.O. Box 2411

West Brattleboro, VT 05303∗

(Dated: December 27, 2014)

A substitution map applied to the simplest algebraic identities is shown to yield second- and
third-order equations that share an interesting property at the minimum 137.036.

I. TWO SYMMETRIC IDENTITIES

The symmetry of this second -order identity

M2 = M2

and this third -order identity

M3

N3
+ M2 =

M3

N3
+ M2 (N 6= 0)

will be “broken” by making the substitution

M →M − y

on their left-hand-sides, and the substitution

Mn →Mn − xp

on their right-hand-sides, where p equals the order of each
identity. Above, y and x are variables such that

0 < y ≤ 0.1

0 < x ≤ 0.1 ,

whereas M and N are positive integer constants fulfilling

M =
N3

3
+ 1

so that necessarily

M ≥ 10 .

The reason for altering these identities using the above
substitution map or rewriting system (an admittedly un-
usual thing to do) is to change them from two related
identities that are true for all values of M and N , into
two slightly asymmetric conditional equations that are
true only for particular values of x and y. The goal is to
prove two theorems showing that the conditional equa-
tions that derive from these substitutions share an inter-
esting property involving dy/dx at the minimum 137.036.
(See [1] for an earlier version of this article.)
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II. TWO CONDITIONAL EQUATIONS

Begin with the second-order identity

M2 = M2

and break its symmetry by making the substitution

M →M − y

on its left-hand-side, and the substitution

Mn →Mn − xp

on its right-hand-side, where p = 2, the identity’s order.
This produces

(M − y)
2

= M2 − x2 . (2.1)

Similarly, for the third-order identity

M3

N3
+ M2 =

M3

N3
+ M2

apply the same substitutions, where p = 3, to get

(M − y)3

N3
+(M − y)

2
=

M3 − x3

N3
+M2−x3 . (2.2)

III. SHARED PROPERTY OF THE TWO
CONDITIONAL EQUATIONS

Theorem 1 will show that for Eq. (2.1)

dy

dx
≈ x

M
,

whereas Theorem 2 will show that for Eq. (2.2)

dy

dx
≈ x2

M
.

Accordingly, both equations share the property

dy

dx
≈ 1

Mp
at x =

1

M
, (3.1)

where p equals the order of each equation.
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IV. SECOND-ORDER THEOREM

Theorem 1. Let

(M − y)
2

= M2 − x2 , (4.1)

where y and x are variables such that

0 < y ≤ 0.1 (4.2)

0 < x ≤ 0.1 , (4.3)

and M is an integer constant such that

M ≥ 10 . (4.4)

Then

dy

dx
≈ x

M
. (4.5)

Proof. Equation (4.1) expands and simplifies to

2My − y2 = x2 .

It follows that

2Mdy − 2ydy = 2xdx .

But from Eqs. (4.2) and (4.4) we know that 2ydy is small
compared to 2Mdy, so that

2Mdy ≈ 2xdx .

Hence, the approximation

dy

dx
≈ x

M

holds.

V. THIRD-ORDER THEOREM

Theorem 2. Let

(M − y)3

N3
+ (M − y)

2
=

M3 − x3

N3
+ M2 − x3 .

(5.1)

where y and x are variables such that

0 < y ≤ 0.1 (5.2)

0 < x ≤ 0.1 , (5.3)

and M and N are positive integer constants fulfilling

M =
N3

3
+ 1 , (5.4)

so that necessarily

M ≥ 10 . (5.5)

Then

dy

dx
≈ x2

M
. (5.6)

Proof. Equation (5.1) expands and simplifies to

− 3M2y

N3
+

3My2

N3
− y3

N3
− 2My + y2

= − x3

N3
− x3 ,

or

3M2y − 3My2 + y3 + 2MN3y −N3y2

= (N3 + 1)x3 .

It follows that

(3M2 − 6My + 3y2 + 2MN3 − 2N3y)dy

= 3(N3 + 1)x2dx ,

so that

dy

dx
=

3(N3 + 1)x2

3M2 − 6My + 3y2 + 2MN3 − 2N3y
.

We now want to remove the smallest terms from the
above denominator. We know from Eq. (5.4) that

N3 = 3M − 3 .

Substituting for N3 gives

dy

dx
=

3(3M − 3 + 1)x2

3M2 − 6My + 3y2 + 2M(3M − 3)− 2(3M − 3)y

=
3(3M − 2)x2

3M2 − 6My + 3y2 + 6M2 − 6M − 6My + 6y

=
3(3M − 2)x2

9M2 − 12My + 3y2 − 6M + 6y

=
(3M − 2)x2

3M2 − 4My + y2 − 2M + 2y

=
3M − 2

3M − 2− y
× x2

M − y
. (5.7)

From Eqs. (5.2) and (5.5) we know that y is small com-
pared to M , so that

dy

dx
≈ 3M − 2

3M − 2
× x2

M
.

Hence, the approximation

dy

dx
≈ x2

M

holds.

Remark 1. If M = 10 and x = 1/M then Eq. (5.1) gives

y ≈ 0.000 033 333 408 73 .

Equation 5.6 then gives

dy

dx
≈ x2

M
=

1

M3
= 0.001 .

Substituting the above M , x, and y into Eq. (5.7) gives

dy

dx
=

28

28− y
× x2

10− y

≈ 0.001 000 004 524 ,

which shows the approximation’s excellent accuracy.
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VI. MINIMAL CASE AND 137.036

Comparing Eq. (4.5) against (5.6) we see that for both

dy

dx
≈ xp−1

M
, (6.1)

with only the values for each equation’s order p differing
(2 and 3, respectively). Importantly, at x = 1/M we see
that Eq. (6.1) produces Eq. (3.1), the “shared property”
introduced at the outset.

Moreover, Eq. (5.4) requires that Eq. (5.1) fulfill M =
N3/3 + 1, where the smallest positive integers (M,N)
fulfilling this condition are:

(10, 3)

(73, 6)

(244, 9)

(577, 12)

(1126, 15)

(1945, 18)

(3088, 21)

...

For the minimal case (M,N) = (10, 3) where x = 1/M

the right-hand-side of Eq. (5.1) gives

M3 − x3

N3
+ M2 − x3 =

103 − 10−3

33
+ 102 − 10−3

=
999.999

33
+ 99.999

= 137.036 .

This makes 137.036 the smallest value at which third-
order Eq. (5.6) behaves like second-order Eq. (4.5) in ful-
filling Eq. (3.1). This, in turn, identifies 137.036 as a
fundamental constant associated with breaking the sym-
metry of the simplest algebraic identities.

For the minimal case (M,N) = (10, 3) where x = 1/M
the left-hand-side of Eq. (5.1) gives

(10− y)
3

33
+ (10− y)

2

= 137.036 ,

so that

y =
1

29 999.932 142 743 338 . . .
,

which is the largest y can get when x = 1/M .

[1] J. S. Markovitch, “A rewriting system applied to the sim-
plest algebraic identities” (2012) http://www.vixra.org/

abs/1211.0029 .
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