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A Theoretical Reformulation of the Classical Double Slit Interference Experiment 

 

Abstract 

In 1801, Thomas Young devised what is now known as the Classical Double Slit Experiment. In this 

experiment, light waves emanating from two separate sources, interfere to form a pattern of alternating 

bright and dark fringes on a distant screen. By measuring the position of individual fringe centers, the fringe 

widths and the variation of average light intensity on the screen, it is possible to compute the wavelength of 

light itself. The original theoretical analysis of the experiment employs a set of geometric assumptions which 

are collectively referred to here as the Parallel Ray Approximation. Accordingly, any two rays of light arising 

from either source and convergent on an arbitrary point on the screen, are considered very nearly parallel 

to each other in the vicinity of the sources. This approximation holds true only when the screen to source 

distance is very large and the inter-source distance is much larger than the wavelength of light. The 

predictions that naturally follow are valid only for fringes located near the center of the screen (e.g. the equal 

spacing of fringes). But for those fringes located further away from the screen center, the precision of these 

predictions rapidly wanes. Also when the screen to source distance is comparable to the inter-source 

separation or when the inter-source distance is comparable to the wavelength of light, the original analysis 

is no longer applicable.  

In this paper, the theoretical foundations of Young’s experiment are re-formulated using a newly derived 

analytical equation of a hyperbola, which forms the locus of the points of intersections of two expanding 

circular wavefronts (with sources located at the respective centers of expansion). The ensuing predictions of 

the new analysis are compared with those of the old. And finally, it is shown that the latter approach is just 

a special instance of the former, when the Parallel Ray Approximation can be said to hold true.    
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1. Introduction [1]  

1.1. Interference  

Interference is a Wave phenomenon. Its basis is the Principle of Superposition. When two separate wave-

fronts originating from their respective sources, superimpose (i.e. add together) at a particular point in space 

and in time, the resultant wave has an amplitude that is either greater or lesser than either of the individual 

waves. When the resultant wave has an amplitude greater than either of the individual waves, interference 

is said to be constructive. When the resultant wave has an amplitude lesser than either of the individual 

waves, interference is said to be destructive. 

 

1.2. Principle of Superposition 

   When two or more waves of amplitudes (𝑦1, 𝑦2, … , 𝑦𝑛) traverse the same space, the net amplitude of the 

resultant wave (𝑦𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡), is the algebraic sum of the amplitudes of the individual waves. Mathematically,   

𝑦𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛          …(1) 

 

1.3. Conditions to be fulfilled in order to observe Interference between Light Waves 

(i) The Light Sources must be Coherent, i.e., they must maintain a constant phase relationship with 

respect to each other. This is necessary in order to produce a stable interference pattern.  

(ii) The Light Sources must be Monochromatic, i.e., they must be of a single wavelength. This is 

achieved by using a single Monochromatic Source to illuminate a barrier with two small openings 

which are in the shape of slits. The light emerging from both slits will be coherent, because any 

changes that occur in the light of the primary source gets transferred simultaneously to both the 

secondary sources. In this manner, two coherent sources can be set up from a single light source.   

 

 

 

Figure 1.1: Illustration of Constructive Interference 
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Figure 1.2: Illustration of Destructive Interference 

 

 

 

 

2. Young’s Double-Slit Experiment [1] 

2.1. Qualitative Aspects 

The first experiment done to demonstrate the phenomenon of light interference was devised by the 

Physician cum Physicist, Thomas Young in 1801. The apparatus he used, consists of two barriers. The first 

barrier has a single slit S and the second barrier placed just infront of the first, has two slits S1 and S2. Light in 

the form of a plane wave-front when incident on the first barrier, emerges out of S in the form of circular 

wave-fronts. Upon arrival at the second barrier, the single circular wave-front is split into two circular wave-

fronts by slits S1 and S2. S1 and S2 behave as a pair of coherent light sources because the light waves emerging 

from them are derived from the same wave-front and therefore bear a constant phase relationship with 

time.     

A viewing screen is situated some distance infront of the second barrier. Light from both slits S1 and S2 

combine either constructively or destructively at various points on this screen, giving a visible pattern of 

alternating dark and bright parallel bands, called fringes. Constructive interference gives rise to a bright 

fringe and destructive interference to a dark fringe.  
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Figure 2.1: Young’s Double Slit Apparatus 

 

2.2. Quantitative Analysis 

Let the viewing screen be situated at a distance D from the double slit barrier and the distance between the 

two slits S1 and S2 be d. Also let the wavelength of monochromatic light used be λ. In order to reach any 

arbitrary point P on the viewing screen, a wave from one of the slits must travel a distance equal to d.Sinθ 

farther than the wave from the other slit. This disparity in the distance traversed by the waves from either 

slit, when convergent on a single point on the screen, is called the path difference δ. If the distances of S1 

and S2 from the point P on the screen, (denoted by r1 and r2 respectively), are taken to be approximately 

parallel (justification: D>> d), then δ can be given by: 

𝛿 =  𝑟2  − 𝑟1   =  𝑑. 𝑠𝑖𝑛𝜃                                           …(2.1) 

 
Figure 2.2: Geometric Construction of Young’s Experiment 
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Figure 2.3: Parallel Ray Approximation: Rays headed towards the same arbitrary point P on the screen P are 

approximately parallel to each other in the vicinity of 𝑆1and  𝑆2 

 

 

 

The value of δ determines whether two waves from either slit arrive at point P on the screen, in phase or out 

of phase.  If δ is an integer multiple of λ, then the two waves from S1 and S2 are in phase and constructive 

interference results. However, if δ is an odd integer multiple of λ/2, the two waves from S1 and S2 are 180° 

out of phase and destructive interference results.  

 

Condition for Constructive Interference (Bright Fringe Formation) 

𝛿 =  𝑑. 𝑠𝑖𝑛𝜃 =  𝑛. 𝜆         ;     𝑛 =  0, 1, 2, 3, …            …(2.2) 

Condition for Destructive Interference (Dark Fringe Formation) 

𝛿 =  𝑑. 𝑠𝑖𝑛𝜃 =  (2𝑛 + 1).
𝜆

2
      ;       𝑛 =  0, 1, 2, 3, …      …(2.3) 

Where n is referred to as the Order of the Fringe. The angle θ is very small when the following assumptions 

are made: 

(i) 𝐷 >> 𝑑 
(ii) 𝑑 >> 𝜆 

The relative magnitudes of D, d and λ are of the orders of fraction of a meter, millimeter and micrometer, 

respectively. Under these conditions, we can take ≈ 𝑡𝑎𝑛𝜃 . From figure 2.2, it is clear that 𝑡𝑎𝑛𝜃 = ±
𝑥𝑃

𝐷
.      

The introduction of the ± sign on the RHS of the 𝑡𝑎𝑛𝜃 expression is justified on the grounds that the angle θ 

is positive when measured in the anti-clockwise direction and negative when measured in the clockwise 

direction. The advantage of this departure from textbook convention, is that the Order of the Fringe 𝑛 can 

be taken as a set of non-negative integers. Consequently, the order of any fringe, be it bright or dark, can be 

denoted by the same symbol 𝑛. This helps avoid any confusion while making graphical simulations of fringe 

position, fringe width and variation of light intensity. Because for both types of fringes, the reference point 

is fixed to the Center Q of the screen.  

The position of the bright fringe (𝑥𝑏𝑟𝑖𝑔ℎ𝑡) measured from the center of the screen Q, can be found by 

substituting the 𝑡𝑎𝑛𝜃 expression into the condition for constructive interference. 

That is,      𝑑. (±
𝑥𝑃

𝐷
) =  𝑛. 𝜆 ⇒  𝑥𝑏𝑟𝑖𝑔ℎ𝑡  =  ±𝑛.

𝐷𝜆

𝑑
 

Similarly, the position of the dark fringes (𝑥𝑑𝑎𝑟𝑘) can be found, 

𝑑. (±
𝑥𝑃

𝐷
) =  (2𝑛 + 1).

𝜆

2
   ⇒ 𝑥𝑑𝑎𝑟𝑘  =  ±

(2𝑛+1)

2
.

𝐷𝜆

𝑑
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2.2.1. Position of Fringe Centers in the Interference Pattern 

(i) Position of the Centers of Bright Fringes 

          𝑥𝑏𝑟𝑖𝑔ℎ𝑡  =  ±𝑛.
𝐷𝜆

𝑑
  ;     𝑛 =  0, 1, 2, 3, …  …(2.4) 

(a) Position of Central Maxima (𝑛 =  0)    : 𝑥0  =  0 

(b) Position of First Order Bright Fringe (𝑛 = 1)     : 𝑥1  =  ±
𝐷𝜆

𝑑
  

(c) Position of Second Order Bright Fringe (𝑛 = 2)    : 𝑥2  =  ±
2𝐷𝜆

𝑑
 

… … … … … …                                                         

(d) Position of (𝑛 − 1)𝑡ℎ Order Bright Fringe (𝑛 = (𝑛 − 1))   : 𝑥(𝑛−1)  =  ±
(𝑛−1)𝐷𝜆

𝑑
 

(e) Position of 𝑛𝑡ℎ Order Bright Fringe (𝑛 = 𝑛)     : 𝑥𝑛  =  ±
𝑛𝐷𝜆

𝑑
 

 

(ii) Position of the Centers of Dark Fringes 

                                                          𝑥𝑑𝑎𝑟𝑘  =  ±
(2𝑛+1)

2
.

𝐷𝜆

𝑑
  ;     𝑛 =  0, 1, 2, 3, …  …(2.5) 

(a) Position of Zeroth Order Dark Fringe (𝑛 =  0)  : 𝑥0  =  ±
𝐷𝜆

2𝑑
 

(b) Position of First Order Dark Fringe (𝑛 = 1)     : 𝑥1  =  ±
3𝐷𝜆

2𝑑
  

(c) Position of Second Order Dark Fringe (𝑛 = 2)    : 𝑥2  =  ±
5𝐷𝜆

2𝑑
 

… … … … … … 

(d) Position of (𝑛 − 1)𝑡ℎ Order Bright Fringe (𝑛 = (𝑛 − 1)) :       𝑥(𝑛−1)  = ±
(2𝑛−1)

2
.

𝐷𝜆

𝑑
  

(e) Position of 𝑛𝑡ℎ Order Bright Fringe (𝑛 = 𝑛)     : 𝑥𝑛  =  ±
(2𝑛+1)

2
.

𝐷𝜆

𝑑
 

2.2.2. Width of Fringes in the Interference Pattern 

(i) Width of the Bright Fringes 

(a) The positon of the center of the Central Maxima coincides with the center Q of the screen (𝑥0  =

 0). It lies sandwiched between the two Zeroth Order Dark Fringes 𝑥0+  =  
𝐷𝜆

2𝑑
 and 𝑥0− = −

𝐷𝜆

2𝑑
.  

So its width is equal to 𝑥0+ − 𝑥0− =
𝐷𝜆

𝑑
. 

 

(b) There are two First Order Bright Fringes on either sides of Center Q of the screen. One lies 

sandwiched between the First Order Dark Fringe  𝑥1+ =
3𝐷𝜆

2𝑑
 and the Zeroth Order Dark Fringe 

𝑥0+  =  
𝐷𝜆

2𝑑
.  So its width is equal to 𝑥1+ − 𝑥0+ =

𝐷𝜆

𝑑
 . The other lies sandwiched between the 

Zeroth Order Dark Fringe  𝑥0− = −
𝐷𝜆

2𝑑
 and the First Order Dark Fringe 𝑥1−  =  −

3𝐷𝜆

2𝑑
.  So its width 

is equal to 𝑥0− − 𝑥1− =
𝐷𝜆

𝑑
.  

 

(c) It can be similarly shown that the width of any nth order bright fringe, in general on either side 

of the Center Q of the screen, is equal to the quantity  
𝐷𝜆

𝑑
. 
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(ii) Width of the Dark Fringes 

A similar analysis can be carried out in the case of the Dark Fringes, by defining the width of a Dark 

Fringe as equal to the spacing between the centers of two successive Bright Fringes. This can be 

shown to be equal to the quantity   
𝐷𝜆

𝑑
. Therefore, successive Dark Fringes are equally spaced, just as 

in the case of the Bright Fringes. 

 

2.2.3. Distribution of Light Intensity in the Interference Pattern 

Let the waves (sinusoidal) emanated from the two coherent sources S1 and S2 have the same amplitude E0 

(Electric Field Component), frequency ω and constant phase difference φ. Their instantaneous electric field 

displacements E1 and E2 at an arbitrary point P on the screen can be written as: 

𝐸1  =  𝐸0. 𝑠𝑖𝑛𝜔𝑡                                                    …(2.6) 

𝐸2  =  𝐸0. 𝑠𝑖𝑛(𝜔𝑡 +  𝜙)                                                         …(2.7) 

Note that at the slits S1 and S2 the waves are in phase, however at the point P on the screen, the phase 

difference φ depends on the path difference δ. The relationship between φ and δ is given by: 

𝜙 =  (
2𝜋

𝜆
) 𝛿                                                                                 …(2.8) 

The magnitude of the resultant field at point P is found using the Principle of Superposition: 

𝐸𝑃  =  𝐸1 + 𝐸2  =  𝐸0(𝑠𝑖𝑛𝜔𝑡 + sin(𝜔𝑡 +  𝜙)) = 2𝐸0 cos (
𝜙

2
) sin (𝜔𝑡 +

𝜙

2
)           …(2.9) 

The intensity of light at point P is directly proportional to the square of the resultant electric field amplitude 

at that point: 

𝐼 ∝  𝐸𝑃
2  =  4𝐸0

2. 𝑐𝑜𝑠2 (
𝜙

2
) . 𝑠𝑖𝑛2 (𝜔𝑡 +

𝜙

2
)                                                …(2.10) 

Over one cycle, the time averaged value of 𝑠𝑖𝑛2 (𝜔𝑡 +
𝜙

2
) is ½. And since most light detecting instruments, 

measure only the time averaged light intensity, we can write the average light intensity at point P as: 

𝐼 =  𝐼𝑚𝑎𝑥𝑐𝑜𝑠2 (
𝜙

2
)                                                                   …(2.11) 

Where 𝐼𝑚𝑎𝑥  is the maximum intensity on the screen. 

 

Substituting (2.8) and (2.1) in (2.11), 

𝐼 =  𝐼𝑚𝑎𝑥𝑐𝑜𝑠2 (
𝜋𝑑𝑠𝑖𝑛𝜃

𝜆
)                                                           …(2.12) 

 

Since θ is small, we can write 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 =
𝑥

𝐷
. Therefore, 

             𝐼 =  𝐼𝑚𝑎𝑥𝑐𝑜𝑠2 (
𝜋𝑑𝑥

𝐷𝜆
)                                                                 …(2.13) 

From the above, it is clear that 𝐼 =  𝐼𝑚𝑎𝑥 when the argument 
𝜋𝑑𝑥

𝐷𝜆
`is an integral multiple of ±𝜋. That is, when 

𝑥 = ±
𝑛𝐷𝜆

𝑑
 where 𝑛 =  0, 1, 2, 3, … This is consistent with the condition for constructive interference. Also, 

𝐼 =  0 when the argument  
𝜋𝑑𝑥

𝐷𝜆
 is an odd integral multiple of ±𝜋/2. That is, when 𝑥 = ±

(2𝑛+1)𝐷𝜆

2𝑑
 where 

𝑛 =  0, 1, 2, 3, … This is consistent with the condition for destructive interference.     
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The graphical plots of Light Intensity (𝐼) versus Path Difference (𝑑𝑠𝑖𝑛𝜃) and Light Intensity (𝐼) versus Fringe 

Position (𝑥) on the screen, shows that the interference pattern consists of equally spaced fringes of equal 

intensity. However, this result suffers from the limitation that it is valid only under certain prescribed 

conditions listed below. From here on they shall be collectively referred to as the Parallel Ray Approximation: 

(i) 𝐷 ≫ 𝑑  
(ii) 𝑉𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝜃 

 

 

 

Figure 2.4: Classical Double Slit Interference Fringe Pattern 
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Figure 2.5: Fringe Intensity (I) versus Path Difference (δ) 

 

 

 

 

 

 

Figure 2.6: Fringe Intensity (I) versus Fringe Position on the screen (𝑥𝑃) 
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3. Derivation of the Analytical Equation of the Hyperbola formed as the locus of the Intersection 

Points of two expanding Circular Wavefronts [2,3] 

 

Consider two point Sources A and B located at positions (−𝑎, 0) and (𝑎, 0), respectively in a two dimensional 

XY-plane, with the Origin 𝑂(0,0) lying mid-way between them. Say that the Source A emits a circular 

wavefront at an instant of time 𝑡𝐴 and Source B emits a similar circular wavefront, at a later instant 𝑡𝐵. Also 

assume that the speed of propagation 𝑢 of both wavefronts is equal and uniform in all directions. Then the 

equation of the circular wavefront emanating from source 𝐴(−𝑎, 0), at a given time 𝑡 > 𝑡𝐴, can be written 

as: 

(𝑥 +  𝑎)2  +  𝑦2  =  𝑅2   …(3.1) 

Similarly, the equation of the circular wavefront emanating from source 𝐵(𝑎, 0), at the instant 𝑡 > 𝑡𝐵, can 

be written as: 

(𝑥 −  𝑎)2  +  𝑦2  =  𝑟2   …(3.2) 

Where R and r are the instantaneous radii of the wavefronts emanating from sources A and B, respectively. 

Note that, 𝑅 >  𝑟 for 𝑡𝐴  <  𝑡𝐵. Recall that the speed of propagation of both wavefronts 𝑢 is equal and 

uniform in all directions, given by: 

                  𝑢 =
𝑑𝑅

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
   …(3.3) 

 

 

Figure 3.1: Sources A and B emitting circular wavefronts in temporal succession 

 

Subtracting (3.2) from (3.1), 

(𝑥 +  𝑎)2 − (𝑥 −  𝑎)2  = 𝑅2 − 𝑟2 

On simplifying, 

                                                                                   𝑥 =  
(𝑅2−𝑟2)

4𝑎
                    …(3.4) 

Squaring (3.4), 

                                                                                 𝑥2 =
(𝑅2−𝑟2)2

16𝑎2                    ….(3.5)  

Differentiating (3.5) with respect to time, 

                                                                          2𝑥
𝑑𝑥

𝑑𝑡
=  

2(𝑅2−𝑟2)(2𝑅.
𝑑𝑅

𝑑𝑡
−2𝑟.

𝑑𝑟

𝑑𝑡
)

16𝑎2      
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                                                                          2𝑥
𝑑𝑥

𝑑𝑡
=  

4𝑢(𝑅2−𝑟2)(𝑅−𝑟)

16𝑎2                   (By (3.3)) 

                                                                          2𝑥
𝑑𝑥

𝑑𝑡
=  

4𝑢(𝑅+𝑟)(𝑅−𝑟)2

16𝑎2           ….(3.6) 

Substituting (3.4) in (3.1), 

                                                                               𝑦2  =  𝑅2 − (𝑥 +  𝑎)2  

                                                                                      = 𝑅2 −  (
(𝑅2− 𝑟2)

4𝑎
 +  𝑎)

2

      

                                                                                      = (𝑅 + (
(𝑅2− 𝑟2)

4𝑎
 +  𝑎))(𝑅 − (

(𝑅2− 𝑟2)

4𝑎
 +  𝑎))   

                                                                                      =
(𝑅2− 𝑟2+ 4𝑎2+ 4𝑎𝑅).(−𝑅2+ 𝑟2− 4𝑎2+ 4𝑎𝑅)

16𝑎2    

                                                                                      =  −
(𝑅4+ 𝑟4+16𝑎4− 2𝑅2𝑟2− 8𝑎2𝑅2− 8𝑎2𝑟2) 

16𝑎2   

                                                                                      =  −
[(𝑅2+ 𝑟2− 4𝑎2)

2
− 4𝑅2𝑟2]

16𝑎2   

                                                                                      =  −
[((𝑅−𝑟)2+2𝑅𝑟 – 4𝑎2)

2
− 4𝑅2𝑟2]

16𝑎2   

                                                                                      =  −
[((𝑅−𝑟)2+2𝑅𝑟 – 4𝑎2) + 2𝑅𝑟][((𝑅−𝑟)2+2𝑅𝑟 – 4𝑎2) − 2𝑅𝑟]

16𝑎2   

                                                                                      =  −
((𝑅−𝑟)2+4𝑅𝑟 – 4𝑎2)((𝑅−𝑟)2– 4𝑎2)

16𝑎2   

                                                                              𝑦2   =  − 
((𝑅+𝑟)2 – 4𝑎2)((𝑅−𝑟)2– 4𝑎2)

16𝑎2    …(3.7) 

From (3.7), it is clear that in order for 𝑦 ϵ ℝ, either one of the following two conditions must hold true: 

(i) 𝑅 +  𝑟 >  2𝑎 and 𝑅 –  𝑟 <  2𝑎, or 

(ii) 𝑅 +  𝑟 <  2𝑎 and 𝑅 –  𝑟 >  2𝑎 

 

In order that the two circular wavefronts intersect each other to trace out the locus of some curve, (it will 

be later shown that the curve is a branch of a hyperbola with vertex V lying somewhere on the line AB joining 

the point sources A and B), it is necessary that condition (i) holds true. Condition (ii) would geometrically 

imply that the circles intersect nowhere in the XY-plane and is therefore rejected. So provided condition (i) 

holds true, we can write: 

                                                                 𝑦  =  ±√− 
((𝑅+𝑟)2 – 4𝑎2)((𝑅−𝑟)2– 4𝑎2)

16𝑎2           ϵ ℝ           …(3.8)     

Differentiating (3.7) with respect to time, 

                                                           2𝑦.
𝑑𝑦

𝑑𝑡
=  −

[((𝑅+𝑟)2 – 4𝑎2).2(𝑅−𝑟)(
𝑑𝑅

𝑑𝑡
−

𝑑𝑟

𝑑𝑡
) + ((𝑅−𝑟)2 – 4𝑎2).2(𝑅+𝑟)(

𝑑𝑅

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
)]

16𝑎2   

                              ⇒                         2𝑦.
𝑑𝑦

𝑑𝑡
= − 

4𝑢(𝑅+𝑟)((𝑅−𝑟)2 – 4𝑎2)

16𝑎2         …(3.9)          (By (3.3)) 

To re-iterate, 𝑡𝐴 and 𝑡𝐵 are the instants at which the sources A and B emit circular wavefronts, respectively 

(𝑡𝐴  <  𝑡𝐵). Additionally, let us assume τ to be the instant at which both these expanding wavefronts come 

to meet at a common point V lying on the line AB. We can therefore reason that the wavefront arising from 
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source A, would have grown from an initial radius 𝑅 =  0 to 𝑅 =  𝑅(𝜏) in the time interval spanning  𝑡𝐴 to 

τ. Similarly, the wavefront arising from source B, would have grown from an initial radius 𝑟 =  0 to 𝑟 =  𝑟(𝜏) 

in the time interval spanning 𝑡𝐵 to τ. So it should be possible to integrate equation (3.3), keeping in mind 

that the speed of propagation of both wavefronts is equal and uniform in all directions and that  𝑡𝐴  <  𝑡𝐵 <

 𝜏 : 

 

                      ∫ 𝑑𝑅
𝑅(𝜏)

0
=  ∫ 𝑢. 𝑑𝑡

𝜏

𝑡𝐴
 ⇒  𝑅(𝜏) =  𝑢(𝜏 − 𝑡𝐴)                                    …(3.10) 

  

                        ∫ 𝑑𝑟
𝑟(𝜏)

0
=  ∫ 𝑢. 𝑑𝑡 ⇒  𝑟(𝜏) =  𝑢(𝜏 − 𝑡𝐵) 

𝜏

𝑡𝐵
                                  …(3.11) 

 

At the instant, 𝑡 =  𝜏, both wavefronts meet at the point V on the line 𝐴𝐵 =  2𝑎. So we can write, 

                                                   𝑅(𝜏)  +  𝑟(𝜏)  =  2𝑎                                              …(3.12)  

 

 

Figure 3.2: Circular wavefronts expand to meet at a single point V lying on the line joining A and B 

 

 

Subtracting (3.11) from (3.10), 

                             𝑅(𝜏) − 𝑟(𝜏) = 𝑢(𝑡𝐵 − 𝑡𝐴) = 𝑢. 𝛥𝑡𝐴𝐵                                        …(3.13) 

 

The two expanding circular wavefronts will intersect each other at two points, call them P and P’, after time 

𝑡 > 𝜏. The (𝑥, 𝑦) co-ordinates of these point-pair intersections are given by equations (3.4) and (3.8): 

                  (
(𝑅(𝑡)2−𝑟(𝑡)2)

4𝑎
, ±√− 

((𝑅(𝑡)+𝑟(𝑡))2 – 4𝑎2)((𝑅(𝑡)−𝑟(𝑡))2– 4𝑎2)

16𝑎2 )                    …(3.14) 
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Figure 3.3: Circular wavefronts expand to intersect each other at two points P and P’ 

The co-ordinate of the point V lying on AB can be found by substituting (3.12) & (3.13) in (3.14): 

                                                           (
𝑢𝛥𝑡𝐴𝐵

2
, 0)                                                          …(3.15)       

Since the two circular wavefronts propagate outwards at the same expansion rate 𝑢, we can expect that the 

instantaneous difference in their radii, 𝑅(𝑡) − 𝑟(𝑡) to be constant with time. A formal justification of this 

statement can be made as follows: 

𝑑(𝑅(𝑡)−𝑟(𝑡))

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
–

𝑑𝑟

𝑑𝑡
=  𝑢 –  𝑢 =  0      (By (3.3))  

                     ⇒  𝑅(𝑡) − 𝑟(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       

 

This would imply that Equation (3.13) should hold true for all times, 𝑡 ≥ 𝜏. That is, 

 

𝑅(𝑡) − 𝑟(𝑡) = 𝑢(𝑡𝐵 − 𝑡𝐴) = 𝑢. 𝛥𝑡𝐴𝐵                           …(3.16) 

This satisfies the defining property of a hyperbola, as the locus of the point whose difference in the distances 

from two fixed points (foci), is a constant. That implies, the locus of the point of intersections of two circular 

wavefronts emanating from sources A and B, takes the shape of a hyperbola, since the differences in their 

instantaneous radii have been shown to be constant. Therefore, 𝑉 (
𝑢𝛥𝑡𝐴𝐵

2
, 0) will be the co-ordinate of the 

Vertex of one branch of a hyperbola, generated when source A emits a circular wavefront before source B. 

The Vertex of the complementary branch of the hyperbola is generated when source B emits a circular 

wavefront before source A and has its vertex at the co-ordinate 𝑉′ (−
𝑢𝛥𝑡𝐵𝐴

2
, 0), since    𝛥𝑡𝐴𝐵   =  𝑡𝐵 − 𝑡𝐴  =

−(𝑡𝐴 − 𝑡𝐵) =  −𝛥𝑡𝐵𝐴 .  

 

Figure 3.4: Locus of the Intersection Points when Source A emits before Source B 
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Figure 3.5: Locus of the Intersection Points when Source B emits before Source A 

 

 

Figure 3.6: Locus of the Intersection Points when Sources A and B emit simultaneously 

 

 

The general equation of a hyperbola with center at origin and transverse axis along the X-axis is: 

                                  
𝑥2

𝐶2 −
𝑦2

𝐷2 = 1                …(3.17) 

Where 𝐶 and 𝐷 are the semi-lengths of the transverse and conjugate axes respectively. The value of the 

constant 𝐶 is already known to us from (3.15) since it represents the distance of the vertex of the hyperbola 

from the origin. That is,  

                                            𝐶 =  
𝑢𝛥𝑡𝐴𝐵

2
         …(3.18) 

 

However, the value of the constant 𝐷 is yet to be determined. Once 𝐷 is found and put into (3.17), we would 

have arrived at the required equation of the hyperbola. (Note that the sources 𝐴(−𝑎, 0) and 𝐵(𝑎, 0) lie at 

the foci of the hyperbola). 

 

Differentiating Equation (3.17) with respect to time, 

                                                                   
1

𝐶2 2𝑥
𝑑𝑥

𝑑𝑡
 − 

1

𝐷2 2𝑦
𝑑𝑦

𝑑𝑡
= 0 

 

The above equation should hold true for all times 𝑡 ≥ 𝜏 > 𝑡𝐵 > 𝑡𝐴. This would mean that for  𝑡 = 𝜏, 

1

𝐶2 . 2𝑥
𝑑𝑥

𝑑𝑡 𝑡=𝜏
 −   

1

𝐷2 . 2𝑦
𝑑𝑦

𝑑𝑡 𝑡=𝜏
 = 0                          …(3.19) 
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From Equations (3.6), (3.12) and (3.13), 

2𝑥
𝑑𝑥

𝑑𝑡𝑡=𝜏
=  

4𝑢(𝑅(𝜏)+𝑟(𝜏))(𝑅(𝜏)−𝑟(𝜏))2

16𝑎2 = 4𝑢. 2𝑎.
(𝑢𝛥𝑡𝐴𝐵)2

16𝑎2 =
𝑢3(𝛥𝑡𝐴𝐵)2

2𝑎
              …(3.20) 

 

From Equations (3.9), (3.12) and (3.13), 

2𝑦.
𝑑𝑦

𝑑𝑡 𝑡=𝜏
= − 

4𝑢(𝑅(𝜏)+𝑟(𝜏))((𝑅(𝜏)−𝑟(𝜏))2 – 4𝑎2)

16𝑎2 = − 4𝑢.
2𝑎((𝑢.𝛥𝑡𝐴𝐵)2− 4𝑎2)

16𝑎2 = − 
𝑢((𝑢.𝛥𝑡𝐴𝐵)2− 4𝑎2)

2𝑎
  …(3.21) 

 

Substituting (3.20), (3.21) and (3.18) in Equation (3.19), 

1

(
𝑢𝛥𝑡𝐴𝐵

2
)

2

𝑢3(𝛥𝑡𝐴𝐵)2

2𝑎
 −  

1

𝐷2 (− 
𝑢((𝑢.𝛥𝑡𝐴𝐵)2− 4𝑎2)

2𝑎
)  = 0 

 

On algebraic simplification of the above, we get: 

𝐷2 =  𝑎2 −
𝑢2(𝛥𝑡𝐴𝐵)2

4
= 𝑎2 − (

𝑢𝛥𝑡𝐴𝐵

2
)

2
=  𝑎2 − 𝐶2              …(3.22)    (By (3.18)) 

 

Substituting (3.22) and (3.18) in (3.17), we finally arrive at,  

                                                                                      

 

 

 

This is the analytical equation of the hyperbola representing the locus of all the points of intersection 

between two circular wavefronts emanating from sources A and B, emitted at times 𝑡𝐴 and 𝑡𝐵, respectively 

(𝑡𝐴 < 𝑡𝐵) . It is expressed in terms of the Inter-Source Interval 𝛥𝑡𝐴𝐵, the speed of propagation of the circular 

wavefront 𝑢 and the position of the sources (±𝑎, 0) with respect to the origin O, which lies midway between 

them.  

 

3.1. Dual Interpretations of the Quantity 𝜟𝒕𝑨𝑩 

 

(i) 𝛥𝑡𝐴𝐵 represents the time interval between the emanation of circular wavefronts from sources A 

and B. It is mathematically expressed as 𝛥𝑡𝐴𝐵   =  𝑡𝐵 − 𝑡𝐴, when A generates a wavefront before 

B and as 𝛥𝑡𝐵𝐴   =  𝑡𝐴 − 𝑡𝐵, when B generates a wavefront before A. For this reason, 𝛥𝑡 may be 

called the Inter-Source Interval (ISI) or Inter-Pulse Interval (IPI).  

(ii) Re-iterating equation (3p), 

 𝑅(𝑡) − 𝑟(𝑡) = 𝑢(𝑡𝐵 − 𝑡𝐴) = 𝑢. 𝛥𝑡𝐴𝐵     

                                                                          ⇒  
𝑅(𝑡)−𝑟(𝑡)

𝑢
= 𝑡𝐵 − 𝑡𝐴  

                                                                          ⇒  
𝑅(𝑡)

𝑢
−

𝑟(𝑡)

𝑢
= 𝑡𝐵 − 𝑡𝐴  

                                                                          ⇒  𝑡𝐴𝑃 − 𝑡𝐵𝑃 = 𝑡𝐵 − 𝑡𝐴  

𝑥2

(
𝑢𝛥𝑡𝐴𝐵

2 )
2 −

𝑦2

𝑎2 − (
𝑢𝛥𝑡𝐴𝐵

2 )
2 = 1 
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          Where, 

                               𝑡𝐴𝑃 = 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑓𝑟𝑜𝑚 𝐴 → 𝑃 

                               𝑡𝐵𝑃 = 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑓𝑟𝑜𝑚 𝐵 → 𝑃 

                                 𝑡𝐴 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑒𝑚𝑖𝑡𝑠 𝑎 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡  

                                 𝑡𝐵 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝐵 𝑒𝑚𝑖𝑡𝑠 𝑎 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡  

               

Therefore, we may conclude that the difference in the times of arrival (TDOA) of the circular 

wavefronts from the sources A and B at an arbitrary point P, is equal to the Inter-Source Interval. 

                                                              𝑖. 𝑒.         𝑇𝐷𝑂𝐴 =  𝐼𝑆𝐼 = 𝛥𝑡  

 

 

4. Re-analyzing Young’s Double Slit Interference Experiment using the Equation of the Hyperbola that 

forms the locus of the Intersection Points of two expanding Circular Wavefronts 

 

Re-iterating the newly derived equation of the hyperbola below, 

𝑥2

(
𝑢.𝛥𝑡𝐴𝐵

2
)

2 −
𝑦2

𝑎2−(
𝑢.𝛥𝑡𝐴𝐵

2
)

2 = 1                             …(4.1) 

Where 𝑎 is the source position, 𝑢 is the speed of propagation of the circular wavefront and 𝛥𝑡𝐴𝐵 may be 

interpreted either as the Inter-Source Interval (ISI) or the Time Difference of Arrival (TDOA) of wavefronts 

from A and B at an arbitrary point P in the XY plane.  

It is possible to adapt the above parameters (𝑥, 𝑦, 𝑢, 𝛥𝑡𝐴𝐵 , 𝑎), to the arrangement of the apparatus used in 

Young’s Double Slit Experiment by taking the X-axis to lie along the second barrier, with origin O lying midway 

between the slits S1 and S2. Here, the slits play the role of sources A and B. Also, recall that the screen is 

placed at a distance D from the second barrier and the distance between the slits is d.  Finally, the speed of 

propagation of the circular wavefronts is equal to the speed of light c.  

We are therefore justified in replacing the parameters (𝑥, 𝑦, 𝑢, 𝛥𝑡𝐴𝐵, 𝑎)  in (4.1) as follows, in order to specify 

the location of an arbitrary point P on the screen,    

𝑥 = 𝑥𝑃;   𝑦 = 𝐷 ; 𝑢 = 𝑐 ;  𝛥𝑡𝐴𝐵 = 𝛥𝑡𝑆1𝑆2
= 𝜏 ; 𝑎 =

𝑑

2
 

 

                                                                          
𝑥𝑃

2

(
𝑐.𝜏

2
)

2 −
𝐷2

𝑑

4

2
−(

𝑐.𝜏

2
)

2 = 1                 …(4.2) 

                                                              ⇒ 𝑥𝑃
2 = (

𝑐.𝜏

2
)

2
(1 +

𝐷2

𝑑

4

2
−(

𝑐.𝜏

2
)

2)          …(4.3) 

Let S1P and S2P be two rays emerging from the slits S1 & S2 that are convergent on an arbitrary point P on the 

screen. Then their Path Difference δ is given by, 

                                                                              𝛿 =  𝑆1𝑃 − 𝑆2𝑃                     …(4.4) 



Dr. Joseph Ivin Thomas  MBBS, ANLP, B.Sc (Theoretical Physics),  M.Sc (Theoretical Neuroscience)  

Page 17 of 40 
Manuscript completed on 22 Nov 2014 

 

By the previously stated definition, 

𝜏 = 𝑇𝐷𝑂𝐴 𝑎𝑡 𝑃 =  𝑡𝑆1𝑃 − 𝑡𝑆2𝑃 =
𝑆1𝑃

𝑐
−

𝑆2𝑃

𝑐
=

𝑆1𝑃 − 𝑆2𝑃

𝑐
=

𝛿

𝑐
 

Therefore, the Path Difference can be expressed as, 

                                                                                𝛿 = 𝑐. 𝜏                                   …(4.5) 

Substituting (4.5) in (4.3), 

                                                                            𝑥𝑃
2 = (

𝛿

2
)

2
(1 +

𝐷2

𝑑

4

2
−(

𝛿

2
)

2)       …(4.6) 

                                                                       ⇒ 𝑥𝑃
2 =

𝛿2

4
+

𝐷2.𝛿2

𝑑2−𝛿2 

                                                                       ⇒    𝑥𝑃 = ±√
𝛿2

4
+

𝐷2.𝛿2

𝑑2−𝛿2                  …(4.7) 

Equation (4.7) expresses the exact position (along the abscissa) of an arbitrary point 𝑃(𝑥𝑃 , 𝐷) on the screen, 

in terms of the path difference δ, screen distance D and inter-slit separation d. Unlike in the original analysis 

of §2, the Parallel Ray Approximation was not invoked. And for this reason, the ensuing results can claim 

precision in their predictions.    

 

4.1. Position of Fringe Centers in the Interference Pattern 

4.1.1. Condition for Constructive Interference (Bright Fringe Formation) 

𝛿 = 𝑛𝜆          ;       𝑛 =  0, 1, 2, 3, …  

Substituting δ in (4.7), 

𝑥𝑏𝑟𝑖𝑔ℎ𝑡 = ±√
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2              …(4.8) 

 

(a) Position of Central Maximum (𝑛 = 0), 

𝑥0 = 0 

(b) Position of 1st Order Maximum (𝑛 = 1), 

𝑥1 = ±√
𝜆2

4
+

𝐷2. 𝜆2

𝑑2 − 𝜆2
 

(c) Position of 2nd Order Maximum (𝑛 = 2), 

𝑥2 = ±√𝜆2 +
4𝐷2. 𝜆2

𝑑2 − 4𝜆2
 

…  … … … … … 
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(d) Position of (𝑛 − 1)th Order Maximum (𝑛 = 𝑛 − 1), 

                                                                                     𝑥(𝑛−1) = ±√
(𝑛−1)2𝜆2

4
+

𝐷2.(𝑛−1)2𝜆2

𝑑2−(𝑛−1)2𝜆2 

(e) Position of 𝑛th Order Maximum (𝑛 =  𝑛), 

                           𝑥𝑛 = ±√
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2 

4.1.2. Condition for Destructive Interference (Dark Fringe Formation) 

𝛿 = (𝑛 +
1

2
) 𝜆    ;            𝑛 =  0, 1, 2, 3, … 

Substituting δ in (4.7), 

𝑥𝑑𝑎𝑟𝑘 = ±√
(2𝑛+1)2𝜆2

16
+

𝐷2.(2𝑛+1)2𝜆2

4(𝑑2−
(2𝑛+1)2

4
𝜆2)

       …(4.9) 

(a) Position of 0th Order Minimum (𝑛 = 0), 

𝑥0 = ±
√

𝜆2

16
+

𝐷2. 𝜆2

4 (𝑑2 −
𝜆
4

2

)

 

(b) Position of 1st Order Minimum (𝑛 = 1), 

𝑥1 = ±√
9𝜆2

16
+

9𝐷2. 𝜆2

4 (𝑑2 −
9
4 𝜆2)

 

(c) Position of 2nd Order Minimum (𝑛 = 2), 

𝑥2 = ±√
25

16
𝜆2 +

25𝐷2. 𝜆2

4 (𝑑2 −
25
4 𝜆2)

 

… … … … … … 

 

(d) Position of (𝑛 − 1)th Order Minimum (𝑛 = 𝑛 − 1), 

𝑥(𝑛−1) = ±√

(2𝑛 − 1)2𝜆2

16
+

𝐷2. (2𝑛 − 1)2𝜆2

4 (𝑑2 −
(2𝑛 − 1)2

4 𝜆2)
 

(e) Position of 𝑛th Order Minimum (𝑛 =  𝑛), 

𝑥𝑛 = ±√

(2𝑛 + 1)2𝜆2

16
+

𝐷2. (2𝑛 + 1)2𝜆2

4 (𝑑2 −
(2𝑛 + 1)2

4 𝜆2)
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4.2. Fringe Widths 

The distance between the Centers of any two successive Dark Fringes is equal to the width of a Bright Fringe. 

Similarly, the distance between the Centers of any two successive Bright Fringes is equal to the width of a 

Dark Fringe. The Central Maximum lies sandwiched between the 0th Order Minima on either sides of the 

Center Q of the screen. 

4.2.1. Width of Bright Fringes 

 

(a)  𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = |𝑥0+ − 𝑥0−| =  2. √
𝜆2

16
+

𝐷2.𝜆2

4(𝑑2−
𝜆

4

2
)
  

 

(b)   𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 1𝑠𝑡 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥1+ − 𝑥0+|   

 = |√
9𝜆2

16
+

9𝐷2.𝜆2

4(𝑑2−
9

4
𝜆2)

 − √
𝜆2

16
+

𝐷2.𝜆2

4(𝑑2−
𝜆

4

2
)
|                         

(c)   𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 1𝑠𝑡 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥0− − 𝑥1−|   

                                                                                         = |−√
𝜆2

16
+

𝐷2.𝜆2

4(𝑑2−
𝜆

4

2
)

 + √
9𝜆2

16
+

9𝐷2.𝜆2

4(𝑑2−
9

4
𝜆2)

 | 

(d)  𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 2𝑛𝑑 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥2+ − 𝑥1+|  

                                                                          = |√
25

16
𝜆2 +

25𝐷2.𝜆2

4(𝑑2−
25

4
𝜆2)

 − √
9𝜆2

16
+

9𝐷2.𝜆2

4(𝑑2−
9

4
𝜆2)

|  

(e)      𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 2𝑛𝑑 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥1− − 𝑥2−|  

                                                                          = |−√
9𝜆2

16
+

9𝐷2.𝜆2

4(𝑑2−
9

4
𝜆2)

 + √
25

16
𝜆2 +

25𝐷2.𝜆2

4(𝑑2−
25

4
𝜆2)

 | 

 

… … … … … … 

 

(f)    𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥𝑛+ − 𝑥(𝑛−1)+|  

                                                          = |√
(2𝑛+1)2𝜆2

16
+

𝐷2.(2𝑛+1)2𝜆2

4(𝑑2−
(2𝑛+1)2

4
𝜆2)

 − √
(2𝑛−1)2𝜆2

16
+

𝐷2.(2𝑛−1)2𝜆2

4(𝑑2−
(2𝑛−1)2

4
𝜆2)

| 

 

(g)        𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝐵𝑟𝑖𝑔ℎ𝑡 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) = |𝑥(𝑛−1)− − 𝑥𝑛−|  

                                                     = |−√
(2𝑛−1)2𝜆2

16
+

𝐷2.(2𝑛−1)2𝜆2

4(𝑑2−
(2𝑛−1)2

4
𝜆2)

 + √
(2𝑛+1)2𝜆2

16
+

𝐷2.(2𝑛+1)2𝜆2

4(𝑑2−
(2𝑛+1)2

4
𝜆2)

 | 
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4.2.2. Width of Dark Fringes 

 

(a) 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 1𝑠𝑡 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥1+ − 𝑥0+|  

              = |√
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2  −  0| 

              = √
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2  

(b) 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 1𝑠𝑡 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥0− − 𝑥1−|  

              = |0 + √
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2 | 

              = √
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2  

(c) 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 2𝑛𝑑 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥2+ − 𝑥1+|  

              = |√𝜆2 +
4𝐷2.𝜆2

𝑑2−4𝜆2  − √
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2| 

        

       (d) 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 2𝑛𝑑 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥1− − 𝑥2−|  

              = |−√
𝜆2

4
+

𝐷2.𝜆2

𝑑2−𝜆2   + √𝜆2 +
4𝐷2.𝜆2

𝑑2−4𝜆2 | 

 

… … … … … … 

 

        (e)  𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥𝑛+ − 𝑥(𝑛−1)+|  

              = |√
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2  − √
(𝑛−1)2𝜆2

4
+

𝐷2.(𝑛−1)2𝜆2

𝑑2−(𝑛−1)2𝜆2| 

 

(f) 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝐷𝑎𝑟𝑘 𝐹𝑟𝑖𝑛𝑔𝑒 (𝑜𝑛 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑄) 

                             = |𝑥(𝑛−1)− − 𝑥𝑛−|  

              = |−√
(𝑛−1)2𝜆2

4
+

𝐷2.(𝑛−1)2𝜆2

𝑑2−(𝑛−1)2𝜆2  +  √
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2 | 
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4.3 Derivation of the Exact Formula for Variation of Fringe Intensity on the Screen 

The waves (sinusoidal) emanated from the two coherent sources S1 and S2, having the same amplitude E0 

(Electric Field Component), frequency ω and constant phase difference φ, will produce fringes of Intensity I 

on the screen. The Intensity Variation Formula is given by equation (2.11), 

  𝐼 =  𝐼𝑚𝑎𝑥𝑐𝑜𝑠2 (
𝜙

2
)                                                                 …(4.10) 

Where 𝐼𝑚𝑎𝑥  is the maximum intensity on the screen. 

Recall that the relationship between phase difference φ and path difference δ is given by equation (2.8),  

𝜙 =  (
2𝜋

𝜆
) 𝛿                                                                               …(4.11) 

Re-iterating equation (3.16) below, 

 𝑅(𝑡) − 𝑟(𝑡) = 𝑢(𝑡𝐵 − 𝑡𝐴) = 𝑢. 𝛥𝑡𝐴𝐵     

Replacing the speed of wavefront propagation 𝑢 with the speed of light 𝑐 and the Inter-Source Interval (or 

equivalently, Time Difference of Arrival TDOA)  𝛥𝑡𝐴𝐵 with the symbol τ, 

                                                                          𝑅(𝑡) − 𝑟(𝑡) = 𝑐. 𝜏       …(4.12) 

The quantity 𝑅(𝑡) − 𝑟(𝑡)  on the LHS of equation (4.12), denotes the path difference δ, of the waves that 

emanate from slits S1 and S2 to reach an arbitrary point P on the screen, at some instant of time t. We can 

therefore re-write this equation as, 

                                                                                       𝛿 = 𝑐. 𝜏      …(4.13) 

The relationship between speed of wave propagation c, wave frequency υ and wavelength λ is given by, 

                                                                                        𝑐 = 𝜐. 𝜆                    …(4.14) 

From (4.11), (4.13) and (4.14), 

                                                                               𝜙 =
2𝜋

𝜆
𝑐. 𝜏 = 2𝜋𝜐𝜏 = 𝜔𝜏    …(4.15) 

Substituting (4.15) in (4.10), 

                                                                                           𝐼 = 𝐼𝑚𝑎𝑥𝐶𝑜𝑠2 (
𝜔𝜏

2
)            …(4.16) 

The Maximum Intensity 𝐼 = 𝐼𝑚𝑎𝑥 is obtained when the argument 
𝜔𝜏

2
 of the cosine squared function is an 

integral multiple of π. That is, 

                                             
𝜔𝜏

2
= ±𝑛𝜋 ⇒ 𝜏 = ±

2𝑛𝜋

𝜔
= ±

𝑛

𝜐
  where  𝑛 =  0,1,2,3, …                        …(4.17)   

Therefore, the TDOA of light rays (𝜏) at a point P on the screen must be equal to the integral multiple of the 

reciprocal of the frequency of light 𝜐, for constructive interference (bright fringe formation) to occur. 

The Minimum Intensity 𝐼 = 0 is obtained when the argument 
𝜔𝜏

2
 of the cosine squared function is an odd 

integral multiple of π/2. That is, 

                            
𝜔𝜏

2
= ±

(2𝑛+1)

2
𝜋 ⇒ 𝜏 = ±

(2𝑛+1)𝜋

𝜔
=  ±

(2𝑛+1)

2𝜐
  where  𝑛 =  0,1,2,3, …               …(4.18) 

Therefore, the TDOA of light rays (𝜏) at a point P on the screen must be equal to the half-odd integral multiple 

of the reciprocal of the frequency of light 𝜐, for destructive interference (dark fringe formation) to occur. 
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The relationship between Time Difference of Arrival (τ) of light rays from the two slits at an arbitrary point P 

on the screen (xp) is given by equation (4.7), which is re-iterated below, 

                                                                               𝑥𝑃 = ±√
𝛿2

4
+

𝐷2.𝛿2

𝑑2−𝛿2                 …(4.19) 

On rearranging the terms of (4.19), we get the following biquadratic equation in δ, 

                                                             𝛿4 − ( 𝑑2 + 4𝑥𝑃
2 + 4𝐷2)𝛿2 + 4𝑥𝑃

2𝑑2 = 0                                …(4.20) 

On solving (4.20), we get, 

                                            𝛿 =  ±
√( 𝑑2+4𝑥𝑃

2+4𝐷2)±√( 𝑑2+4𝑥𝑃
2+4𝐷2)

2
−16𝑥𝑃

2𝑑2

2
                                 …(4.21) 

From (4.13) and (4.21), 

                                                   𝜏 = ±
1

𝑐

√( 𝑑2+4𝑥𝑃
2+4𝐷2)±√( 𝑑2+4𝑥𝑃

2+4𝐷2)
2

−16𝑥𝑃
2𝑑2

2
                              …(4.22)     

Multiplying both sides of (4.22) by ω/2, 

                    
𝜔

2
. 𝜏 = ±

𝜔

2
.

1

𝑐√2
√( 𝑑2 + 4𝑥𝑃

2 + 4𝐷2) ± √( 𝑑2 + 4𝑥𝑃
2 + 4𝐷2)

2
− 16𝑥𝑃

2𝑑2              …(4.23) 

From (4.14) and (4.23), 

                    
𝜔

2
. 𝜏 = ±

𝜋

√2𝜆
√( 𝑑2 + 4𝑥𝑃

2 + 4𝐷2) ± √( 𝑑2 + 4𝑥𝑃
2 + 4𝐷2)

2
− 16𝑥𝑃

2𝑑2                   …(4.24)   

From (4.16) and (4.24), 

    𝐼 = 𝐼𝑚𝑎𝑥𝐶𝑜𝑠2 (
𝜋

√2𝜆
√( 𝑑2 + 4𝑥𝑃

2 + 4𝐷2) ± √( 𝑑2 + 4𝑥𝑃
2 + 4𝐷2)

2
− 16𝑥𝑃

2𝑑2)                …(4.25) 

Equation (4.25), gives the exact variation of fringe intensity (𝐼) with fringe position on the screen (𝑥𝑃). For 

reasons that will become more clearer in §6 Results of a Simulation Study, the positive signed inner square 

root of the cosine squared function’s argument is rejected in favor of the negative one.  
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5. A Comparative Summary of the Old and New Analysis 

 

 

S.No. Parameter Old Analysis New Analysis 

1.  
 
 
 

 
 
 
 
 
 
 
 

Path 
Difference 

 
 
The path difference δ is obtained after making 
the Parallel Ray Approximation. By this 
assumption, the rays that emanate from either 
slit and are convergent onto a single point P on 
the screen, are taken to be approximately 
parallel to each other when near the second 
barrier. Further, δ is expressed in terms of the 
inter-slit distance d and the angle θ. 
 

𝛿 =  𝑟2  − 𝑟1   ≈  𝑑. 𝑠𝑖𝑛𝜃 
 

(Ref. eq. (2.1)) 
 

 
 
The path difference δ is obtained following an 
exact geometrical analysis of two expanding 
circular wavefronts of light, emanating from either 
slit source. No approximation is used in its 
calculation. Further, δ is expressed in terms of the 
speed of light c and the difference in the time of 
arrival of the rays (τ) at a common arbitrary point 
P on the screen.  
 
 

𝛿 = 𝑅(𝑡) − 𝑟(𝑡) = 𝑐. 𝜏 
 

(Ref. eq. (4.12) and (4.13))   

2.  

 
 

Phase 
Difference 

 

𝜙 =  
2𝜋𝑑𝑠𝑖𝑛𝜃

𝜆
=  

2𝜋𝑑𝑥

𝐷𝜆
 

 
     (Ref. eq. (2.11), (2.12), (2.13)) 

 

 
𝜙 = 𝜔𝜏 

 
 

(Ref. eq. (4.15)) 
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3. 
Conditions 
for Fringe 
Formation  

 
Condition for Constructive Interference (Bright 
Fringe Formation) 
When the path difference δ between the two 
waves emanating from S1 and S2 is an integer 
multiple of λ, then they are in phase at the point 
P on the screen and constructive interference 
results.  
 

𝛿 =  𝑑. 𝑠𝑖𝑛𝜃 =  𝑛. 𝜆   ;     𝑛 =  0, 1, 2, 3, … 
 

(Ref. eq. (2.2)) 
 
 
Condition for Destructive Interference (Dark 
Fringe Formation) 
When the path difference δ between the two 
waves emanating from S1 and S2 is an odd integer 
multiple of λ/2, then they are 180° out of phase 
at the point P on the screen and destructive 
interference results.  
 

𝛿 =  𝑑. 𝑠𝑖𝑛𝜃 =  (2𝑛 + 1).
𝜆

2
 ;  𝑛 =  0, 1, 2, 3, … 

 
(Ref. eq. (2.3)) 

 

 
Condition for Constructive Interference (Bright Fringe 
Formation) 
The TDOA of light rays (τ) at a point P on the screen must 
be equal to the integral multiple of the reciprocal of the 
frequency of light υ, for constructive interference to 
occur. 
 

𝜏 = ±
𝑛

𝜐
            ;       𝑛 =  0, 1, 2, 3, … 

 
(Ref. eq. (4.17)) 

 
 
Condition for Destructive Interference (Dark Fringe 
Formation) 
The TDOA of light rays (τ) at a point P on the screen must 
be equal to the half-odd integral multiple of the 
reciprocal of the frequency of light υ, for destructive 
interference to occur. 
 
                                              

𝜏 =  ±
(2𝑛+1)

2𝜐
          ;       𝑛 =  0,1,2,3, … 

 
(Ref. eq. (4.18)) 

4. 
Fringe 
Position 

 
Position of the nth Order Bright Fringe 
                      

  𝑥𝑛  =  ±
𝑛𝐷𝜆

𝑑
              ;       𝑛 =  0, 1, 2, 3, …       

 
 

(Ref. eq. (2.4)) 
 
 
Position of the nth Order Dark Fringe 
                  

   𝑥𝑛  =  ±
(2𝑛+1)

2
.

𝐷𝜆

𝑑
    ;       𝑛 =  0, 1, 2, 3, …      

 
 
 

(Ref. eq. (2.5)) 

 
Position of the nth Order Bright Fringe 
                                                     

𝑥𝑛 = ±√
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2     ;       𝑛 =  0, 1, 2, 3, …     

 
 

(Ref. eq. (4.8)) 
 

 
Position of the nth Order Dark Fringe 
 

 𝑥𝑛 = ±√
(2𝑛+1)2𝜆2

16
+

𝐷2.(2𝑛+1)2𝜆2

4(𝑑2−
(2𝑛+1)2

4
𝜆2)

   ;  𝑛 =  0, 1, 2, 3, …       

 
(Ref. eq. (4.9)) 

 

 

 

 

 



Dr. Joseph Ivin Thomas  MBBS, ANLP, B.Sc (Theoretical Physics),  M.Sc (Theoretical Neuroscience)  

Page 25 of 40 
Manuscript completed on 22 Nov 2014 

 

 

5
. 

Fringe 
Width 

 

 
Width of Central Maxima (Refer § 2.2.2.(ia)) 
 

𝑊𝑛 =
𝐷𝜆

𝑑
              ;              𝑛 = 0 

 
 

 
 
Width of nth Bright Fringe (Refer § 2.2.2.(ic)) 
 
 

𝑊𝑛 =
𝐷𝜆

𝑑
 

 
𝑛 =  1, 2, 3, …     

 
 
 
Width of nth Dark Fringe (Refer § 2.2.2.(ii)) 
 

𝑊𝑛 =
𝐷𝜆

𝑑
 

 
𝑛 =  1, 2, 3, …     

 
Width of Central Maxima (Refer § 4.2.1.(a)) 
 

                                𝑊𝑛  =  2. √
𝜆

2

16
+ 𝐷2.𝜆

2

4(𝑑
2

−𝜆
4

2
)

      ;     𝑛 = 0  

 
 
Width of nth Bright Fringe (Refer § 4.2.1) 
 

𝑊𝑛 = |√
(2𝑛+1)2𝜆2

16
+

𝐷2.(2𝑛+1)2𝜆2

4(𝑑2−
(2𝑛+1)2

4
𝜆2)

 − √
(2𝑛−1)2𝜆2

16
+

𝐷2.(2𝑛−1)2𝜆2

4(𝑑2−
(2𝑛−1)2

4
𝜆2)

|  

 

𝑛 =  1, 2, 3, …     

 

With of nth Dark Fringe (Refer § 4.2.2) 
 

𝑊𝑛 = |√
𝑛2𝜆2

4
+

𝐷2.𝑛2𝜆2

𝑑2−𝑛2𝜆2  − √
(𝑛−1)2𝜆2

4
+

𝐷2.(𝑛−1)2𝜆2

𝑑2−(𝑛−1)2𝜆2|  

 
𝑛 =  1, 2, 3, … 

 

6
. 

Fringe 
Intensity 
Variation 

 

                    𝐼 =  𝐼𝑚𝑎𝑥𝑐𝑜𝑠2 (
𝜋𝑑𝑥

𝐷𝜆
)  

 
(Ref. eq. (2.13)) 

 

𝐼 = 𝐼𝑚𝑎𝑥𝐶𝑜𝑠2 (
𝜋

√2𝜆
√( 𝑑2 + 4𝑥𝑃

2 + 4𝐷2) − √( 𝑑2 + 4𝑥𝑃
2 + 4𝐷2)

2
− 16𝑥𝑃

2𝑑2)  

 

(Ref. eq. (4.25))   
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6. Results of a Simulation Study (Refer Appendix) 

The following numerical values are adopted for simulating the principal formulae of the Old and New 

Analysis, summarized in §5: D = 1.2 meters, d = 3x10-5 meters, λ = 560x10-9 meters, n = {0,1,2,…,50}.  

 
6.1. Fringe Positions 

6.1.1. According to the Old Analysis 

 
Figure 6.1.1 

 

6.1.2. According to the New Analysis 

 

 
Figure 6.1.2 
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6.2 Fringe Widths 

6.2.1. According to the Old Analysis 

 

 

Figure 6.2.1 

6.2.2. According to the New Analysis 

 

 

Figure 6.2.2 

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Fringe Order n

F
ri
n
g
e
 W

id
th

 W
n

 

 

nth Bright Fringe Width

nth Dark Fringe Width

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fringe Order n

F
ri
n
g
e
 W

Id
th

 W
n

 

 

nth Bright Fringe Width

Central Maximum n = 0

nth Dark Fringe Width



Dr. Joseph Ivin Thomas  MBBS, ANLP, B.Sc (Theoretical Physics),  M.Sc (Theoretical Neuroscience)  

Page 28 of 40 
Manuscript completed on 22 Nov 2014 

 

6.3 Variation of Light Intensity on the Screen 

6.3.1. According to the Old Analysis 

 

Figure 6.3.1a 

 

Figure 6.3.1b 
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Figure 6.3.1c 

 

 

6.3.2. According to the New Analysis 

 

 

Figure 6.3.2a 
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Figure 6.3.2b 

 

 

Figure 6.3.2c 
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7. Three Thought Experiments to illustrate the Predictions of the New Analysis 

In the thought experiments described below, different values of the parameters D, d and λ are chosen 

depending on the nature of the waves and the apparatus design employed. The relative intensity of the 

regions of interference are plotted against the position of an arbitrary point on the distant screen, with 

respect to the center Q. The equation used for the purpose of simulation is (4.25). It predicts that as the 

distance from the screen center Q increases, both the spacing and the widths of the regions of constructive 

interference increases. Here, spacing refers to the distance between the centers of two consecutive maxima 

and width refers to the distance between the centers of two consecutive minima.  

 

7.1 Using Light Waves 

The apparatus consists of two barriers. The first barrier has a single slit and the second barrier has two 

slits. Light emanating from a source placed behind the first barrier emerges as two circular wavefronts 

at the second barrier. A screen is located at a certain distance from the second barrier, which has a 

number of parallel electrical circuits looping its surfaces. Each of these circuits consists of two parts. The 

first part is a very thin strip of photoelectric material that faces the second barrier. The second part is a 

very low voltage light source (e.g. LED) lying on the opposite side of the screen, which is directly linked 

to the photoelectric material. The positions of these circuits can be adjusted by means of sliding 

movements over the screen. When the photoelectric material is positioned over the screen at a point 

where waves from both the slits interfere constructively, a current of sufficient strength begins to flow 

through the circuit so as to turn the LED on. The placement positions of the circuits can be found using 

equation (4.25). 

 

 
Figure 7.1a 
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For the purpose of a simulation the following values for D, d and λ are chosen: 

𝐷 =  0.1 𝑚𝑒𝑡𝑒𝑟𝑠,   𝑑 =  3 × 10−5 𝑚𝑒𝑡𝑒𝑟𝑠,    𝜆 =    560 × 10−9 𝑚𝑒𝑡𝑒𝑟𝑠 

The position of the circuits on the screen at which the LEDs turn on, correspond to unit relative intensity. 

Near the screen center, the circuits seem to be nearly uniformly spaced. However, towards the periphery 

their locations are more spread out from each other.   

 

Figure 7.1b 

 

 

7.2 Using Sound Waves 

The construction of the apparatus used is mostly identical to that described in §7.1, except for three 

main differences. Firstly, the sliding circuits are replaced by sliding taut strings. The frequency of 

vibrations of these strings can be changed using rotatable knobs that increase or decrease the tension 

in them. Secondly, the two slit sources are replaced by two acoustic speakers that emit sound waves of 

the same frequency. Thirdly, the screen is replaced by a rail or slider, over which the strings can be slid 

to the desired positions. If the strings are so positioned in the regions where constructive interference 

of sound waves occur, they will vibrate with maximal amplitude (since intensity is proportional to the 

square of the amplitude). The placement positions of the strings can be found using equation (4.25).  
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Figure 7.2a 

 

For the purpose of a simulation the following values for D, d and λ are chosen: 

 

𝐷 =  10 𝑚𝑒𝑡𝑒𝑟𝑠,   𝑑 =  5 𝑚𝑒𝑡𝑒𝑟𝑠,     𝜆 =    1 𝑚𝑒𝑡𝑒𝑟 

The position of the strings on the slider at which they vibrate with the maximum amplitude, correspond 

to unit relative intensity. Near the center of the slider, the strings seem to be nearly uniformly spaced. 

However, towards the periphery their locations are more spread out from each other.   

 

Figure 7.2b 
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7.3 Using Water Waves 

Consider a large basin or tank filled with a very low viscosity fluid like water which is colored, say red. 

The basin is partitioned into two compartments by a barrier that has two narrow slits. A white paper is 

stuck to one extreme wall of the basin and acts as a screen. This paper acts as the screen to capture the 

impression of the interference pattern. On the other side of the barrier, water drops are released from 

a height at a steady rate so that evenly spaced ripples are generated, which then pass through the two 

slits. Each of the two slits act as a source of circular wavefronts, that go on to strike the screen. The red 

wavy pattern impressed upon the screen, should follow the same trace dictated by equation (4.25).  

 
Figure 7.3a 

 

For the purpose of a simulation the following values for D, d and λ are chosen: 

 

𝐷 =  0.5 𝑚𝑒𝑡𝑒𝑟𝑠,   𝑑 =  0.1 𝑚𝑒𝑡𝑒𝑟𝑠,     𝜆 =    0.01 𝑚𝑒𝑡𝑒𝑟 

 

Figure 7.3b 
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8. Conclusions 

In §6.1, the Old Analysis predicts that the fringe position on the screen has a linear dependence on fringe 

order, for all 𝑛 > 0. But in the New Analysis, a non-linear relationship becomes evident by 𝑛 > 20.  

In §6.2, the Old Analysis predicts the fringe widths to be independent of fringe order. That is, all the fringes 

are of equal widths regardless of the magnitude of 𝑛. In the New Analysis, however, the fringe widths 

increase non-linearly with increasing fringe order. Also, the rate at which the fringe widths increase, is 

greater for the bright fringes than for the dark fringes.  

In §6.3, the Old Analysis predicts that the spacing pattern of intensity variation is uniform across the entire 

screen. In the New Analysis, only those bright fringes located in the immediate vicinity of the screen center 

show uniform spacing. For fringes located more towards the periphery, a non-uniform spacing pattern of 

intensity variation emerges.   

The above listed differences in the simulation results for the Old and New Analysis, become visibly more 

pronounced when the numerical values adopted are such that 𝐷 → 𝑑 and 𝑑 → 𝜆. It can therefore be 

concluded, that the New Analysis is simply a geometric generalization of the Old Analysis, since the former 

approach bypasses the need for the Parallel Ray Approximation.  

As a final note, any one of the three thought experiments described in §7 offers an empirical test bed for the 

proposed reformulation of the classical double slit analysis. 
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Appendix 

MATLAB Coding 

 

§ 6.1.1. 

% Old Analysis - for combined bright and dark fringe positions 
D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 
n = linspace(0,50,51) ; 
x_n_plus_bright = (n.*D.*lambda)./d  ;     % bright finges on one side of center 

Q of screen 
x_n_minus_bright = -(n.*D.*lambda)./d  ;   % bright fringes on other side of 

center Q of screen 
x_n_plus_dark = (((2.*n) + 1).*D.*lambda)./(2.*d)  ;     % dark fringes on one 

side of center Q of screen 
x_n_minus_dark = -(((2.*n) + 1).*D.*lambda)./(2.*d)  ;   % dark fringes on other 

side of center Q of screen 

 
scatter(n,x_n_plus_bright,'r*') 
xlabel('Order of Fringe n','FontSize',18) 
ylabel('Position of Fringe on the Screen','FontSize',18) 
hold on 
scatter(n,x_n_plus_dark,'b.') 
scatter(n,x_n_minus_bright,'r*') 
scatter(n,x_n_minus_dark,'b.') 
axis square 
axis([0 50 -1 1]) 
legend('Bright Fringe','Dark Fringe') 
hold off 
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§ 6.1.2. 

% New Analysis - for combined bright and dark fringe positions 

  
D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 
n = linspace(0,50,51) ; 
A = ((n.^2).*(lambda).^2)./4 ; 
B = ((D.^2).*(n.^2).*(lambda.^2))./((d.^2) - (n.^2).*(lambda.^2))   ; 
C = sqrt(A + B) ; 
F = ((((2.*n) + 1).^2).*(lambda).^2)./16 ; 
G = ((D.^2).*(((2.*n) + 1).^2).*(lambda.^2))./(4.*(d.^2) - (((2.*n) + 

1).^2).*(lambda.^2))   ; 
H = sqrt(F + G) ; 

  
x_n_plus_bright = C  ;     % bright finges on one side of center Q of screen 
x_n_minus_bright = -C  ;   % bright fringes on other side of center Q of screen 
x_n_plus_dark = H  ;       % dark finges on one side of center Q of screen 
x_n_minus_dark = -H  ;     % dark fringes on other side of center Q of screen 

  
scatter(n,x_n_plus_bright,'r*') 
xlabel('Order of Fringe n','FontSize',18) 
ylabel('Position of Fringe on the Screen','FontSize',18) 
hold on 
scatter(n,x_n_plus_dark,'b.') 
scatter(n,x_n_minus_bright,'r*') 
scatter(n,x_n_minus_dark,'b.') 
axis square 
axis([0 50 -1 1]) 
legend('Bright Fringe','Dark Fringe') 
hold off 
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§ 6.2.1. 

 

% Old Analysis - Bright and Dark Fringe Widths plotted together 

  
D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 

  
n = linspace(0,50,51) ; 

  
W_n_bright = ((n.^0).*(D.*lambda))./d ;  % Width of nth Bright Fringe 
W_n_dark = ((n.^0).*(D.*lambda))./d ;    % Width of nth Dark Fringe 

  
scatter(n,W_n_bright,'r*') 
xlabel('Fringe Order n','FontSize',18) 
ylabel('Fringe Width W_{n}','FontSize',18) 
hold on 
scatter(n,W_n_dark,'b.') 
axis([0 50 0 0.03]) 
legend('n^{th} Bright Fringe Width','n^{th} Dark Fringe Width') 
hold off 
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§ 6.2.2. 

% New Analysis – Bright and Dark Fringe Widths plotted together 

  
D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 

  
n = linspace(1,50,50) ; 

  
A = ((((2.*n) + 1).^2).*(lambda).^2)./16 ; 
B = ((D.^2).*(((2.*n) + 1).^2).*(lambda.^2))./(4.*(d.^2) - (((2.*n) + 

1).^2).*(lambda.^2))   ; 
C = sqrt(A + B) ; 

  
E = ((((2.*n) - 1).^2).*(lambda).^2)./16 ; 
F = ((D.^2).*(((2.*n) - 1).^2).*(lambda.^2))./(4.*(d.^2) - (((2.*n) - 

1).^2).*(lambda.^2))   ; 
G = sqrt(E + F) ; 

  
J = ((n.^2).*(lambda).^2)./4 ; 
K = ((D.^2).*(n.^2).*(lambda.^2))./((d.^2) - (n.^2).*(lambda.^2))   ; 
L = sqrt(J + K) ; 

  
T = (((n-1).^2).*(lambda).^2)./4 ; 
U = ((D.^2).*((n-1).^2).*(lambda.^2))./((d.^2) - ((n-1).^2).*(lambda.^2))   ; 
V = sqrt(T + U) ; 

  
P = (lambda.^2)./16 ; 
Q = ((D.^2).*(lambda.^2))./(4.*(d.^2) - lambda.^2) ; 

  
W_n_bright = C - G ;      % Width of nth Bright Fringe (where 'n' is not equal 

to zero) 
W_n_dark = L - V ;        % Width of nth Dark Fringe (where 'n' is not equal to 

zero) 
W_cent_max = 2.*sqrt(P + Q) ;   % Width of central maximum (n = 0) 

  
scatter(n,W_n_bright,'r*') 
xlabel('Fringe Order n','FontSize',18) 
ylabel('Fringe WIdth W_{n}','FontSize',18) 
axis([0 50 0 0.5]) 
hold on 
scatter(0,W_cent_max,'go') 
scatter(n,W_n_dark,'b.') 
hold off 
legend('n^{th} Bright Fringe Width','Central Maximum n = 0','n^{th} Dark Fringe 

Width') 
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§ 6.3.1. 

% Old Analysis – Intensity versus Position 

 

D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 

  
x_p = linspace(-1.5,1.5,100000) ; 

  
A = (pi.*d.*x_p)./(D.*lambda) ;  

  
I_relative = (cos(A)).^2    ; 

  
plot(x_p,I_relative) 
axis square 
axis([-0.25 0.25 0 1]) 
xlabel('Position x_{P} on the Screen','Fontsize',18) 
ylabel('Relative Intensity I(x_{P})','FontSize',18) 

 

 

 

 

§ 6.3.2. 

% New Analysis – Intensity versus Position 

 

D = 1.2 ;               % distance of screen in meters 
d = 3.*10.^-5   ;       % inter-slit distance in meters 
lambda = 560.*10.^-9 ;  % wavelength in meters 

  
x_p = linspace(-1.5,1.5,100000) ; 

  
A = d.^2 + 4.*(x_p).^2 + 4.*D.^2 ;  
B = A.^2 - 16.*((x_p).^2).*d.^2 ; 
C = pi./(sqrt(2).*lambda)   ; 

  
I_relative = (cos(C.*sqrt(A - sqrt(B)))).^2   ; 

  
plot(x_p,I_relative) 
axis square 
axis([-0.25 0.25 0 1]) 
xlabel('Position x_{P} on the Screen','Fontsize',18) 
ylabel('Relative Intensity I(x_{P})','FontSize',18) 

 


