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Arcueil, F 94114, France

Email form: http://email.fredericdambreville.com

Abstract – This paper defines a new concept and
framework for constructing fusion rules for evidences.
This framework is based on a referee function, which
does a decisional arbitrament conditionally to basic de-
cisions provided by the several sources of information.
A simple sampling method is derived from this frame-
work. The purpose of this sampling approach is to avoid
the combinatorics which are inherent to the definition of
fusion rules of evidences. This definition of the fusion
rule by the means of a sampling process makes possi-
ble the construction of several rules on the basis of an
algorithmic implementation of the referee function, in-
stead of a mathematical formulation. Incidentally, it
is a versatile and intuitive way for defining rules. The
framework is implemented for various well known evi-
dence rules. On the basis of this framework, new rules
for combining evidences are proposed, which takes into
account a consensual evaluation of the sources of infor-
mation.

Keywords: Evidence, Referee Function, Sampling,
Dempster-Shafer rule, PCR6.

Notations
• I[b], function of boolean b, is defined by I[true] =

1 and I[false] = 0 . Typically, I[x = y] has value
1 when x = y, and 0 when x 6= y,

• Let be given a frame of discernment Θ. Then,
the structure GΘ denotes any distributive lattice
or Boolean algebra generated by Θ and containing
∅ . In particular, GΘ may be 2Θ the power set on
Θ, or DΘ the hyperpower set on Θ , or the free
Boolean algebra generated by Θ, or SΘ the super-
power set on Θ,

• x1:n is an abbreviation for the sequence x1, · · · , xn ,

• max{x1, · · · , xn}, or max{x1:n} , is the maximal
value of the sequence x1:n . Similar notations are
used for min ,

• maxx∈X{f(x)}, or max{f(x) / x ∈ X}, is the
maximal value of f(x) when x ∈ X . Similar nota-
tions are used for min .

1 Introduction
Evidence theory [1, 2] has often been promoted as an
alternative approach for fusing informations, when the
hypotheses for a Bayesian approach cannot be precisely
stated. While many academic studies have been accom-
plished, most industrial applications of data fusion still
remain based on a probabilistic modeling and fusion
of the information. This great success of the Bayesian
approach is explained by at least three reasons:

• The underlying logic of the Bayesian inference [3]
seems intuitive and obvious at a first glance. It
is known however [4] that the logic behinds the
Bayesian inference is much more complex,

• The Bayesian rule is entirely compatible with the
preeminent theory of Probability and takes advan-
tage of all the probabilistic background,

• Probabilistic computations are tractable, even for
reasonably complex problems.

Then, even if evidences allow a more general and sub-
tle manipulation of the information for some case of
use, the Bayesian approach still remains the method of
choice for most applications. This paper intends to ad-
dress the three afore mentioned points, by providing a
random set interpretation of the fusion rules. This in-
terpretation is based on a referee function, which does a
decisional arbitrament conditionally to basic decisions
provided by the several sources of information. This
referee functions will imply a sampling approach for
the definition of the rules. Sampling approach is in-
strumental for the combinatorics avoidance [5].

In the recent literature, there has been a large amount
of work devoted to the definition of new fusion rules [6]
to [14] . The choice for a rule is often dependent of the
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applications and there is not a systematic approach for
this task. The definition of the fusion rule by the means
of a sampling process makes possible the construction
of several rules on the basis of an algorithmic implemen-
tation of the referee function, instead of a mathematical
formulation. Incidentally, it is a versatile and intuitive
way for defining rules. Subsequently, our approach is
illustrated by implementing two well known evidence
rules. On the basis of this framework, new rules for
combining evidences are also proposed. Typically, these
new rules takes into account a consensual evaluation of
the sources, by invalidating irrelevant sources of infor-
mations on the basis of a majority decision.

Section 2 introduces the notion of referee function and
its application to the definition of fusion rules. A sam-
pling method is obtained as a corollary. Section 3 es-
tablishes the referee functions for two known rules. Sec-
tion 4 defines new fusion rules. Section 5 makes some
numerical comparisons. Section 6 concludes.

2 Referee functions
Let Θ be a set of propositions, on which the informa-

tion is represented. Let GΘ be a distributive lattice or
a Boolean algebra generated by Θ and containing ∅ .

2.1 Referee function

Definition. A referee function over GΘ for s sources
of information and with context γ is a mapping
X, Y1:s 7→ F (X |Y1:s; γ) defined on propositions
X, Y1:s ∈ GΘ , which satisfies:

• F (X |Y1:s; γ) ≥ 0 ,

•
∑

X∈GΘ

F (X |Y1:s; γ) = 1 ,

for any X, Y1:s ∈ GΘ .

A referee function for s sources of information is
also called a s-ary referee function. The quantity
F (X |Y1:s; γ) is called a conditional arbitrament be-
tween Y1:s in favor of X . Notice that X is not nec-
essary one of the propositions Y1:s ; typically, it could
be a combination of them. The case X = ∅ is called
the rejection case.

Fusion rule. Let be given s basic belief assignments
(bba) m1:s and a s-ary referee function F with context
m1:s . Then, the fused bba m1 ⊕ · · · ⊕ ms[F ] based on
the referee F is constructed as follows:

m1 ⊕ · · · ⊕ ms[F ](X) =

I[X 6= ∅]

1 − z

∑

Y1:s∈GΘ

F (X |Y1:s; m1:s)

s
∏

i=1

mi(Yi) ,

where z =
∑

Y1:s∈GΘ

F (∅|Y1:s; m1:s)

s
∏

i=1

mi(Yi) .

(1)

From now on, the notation ⊕[m1:s|F ] = m1 ⊕ · · · ⊕
ms[F ] is used.

The value z is called the rejection rate.

Examples. Refer to section 3 and 4.

2.2 Properties

Bba status. The function ⊕[m1:s|F ] defined on GΘ

is actually a basic belief assignment.

Proof. It is obvious that ⊕[m1:s|F ] ≥ 0 .
Since I[∅ 6= ∅] = 0 , it is derived ⊕[m1:s|F ](∅) = 0 .
From

∑

X∈GΘ F (X |Y1:s; m1:s) = 1 , it is derived:

∑

X∈GΘ

∑

Y1:s∈GΘ

F (X |Y1:s; m1:s)

s
∏

i=1

mi(Yi)

=
∑

Y1:s∈GΘ

(

s
∏

i=1

mi(Yi)

)

∑

X∈GΘ

F (X |Y1:s; m1:s)

=
∑

Y1:s∈GΘ

s
∏

i=1

mi(Yi)

=
s
∏

i=1

∑

Yi∈GΘ

mi(Yi) = 1 .

As a consequence:

∑

X∈GΘ

I[X 6= ∅]
∑

Y1:s∈GΘ

F (X |Y1:s; m1:s)

s
∏

i=1

mi(Yi)

+
∑

Y1:s∈GΘ

F (∅|Y1:s; m1:s)

s
∏

i=1

mi(Yi) = 1 .

���

2.3 Sampling process

The definition (1) makes apparent a fusion process
which is similar to a probabilistic conditional decision
on the set of propositions. Notice that the basic be-
lief assignments are not related, in practice, to physical
probabilities. But the implied mathematics are simi-
lar, as well as some concepts. In particular, the fusion
could be interpreted as a two stages process. In a first
stage, the sources of information generates independent
entries according to the respective beliefs. Then, a final
decision is done by the referee function conditionally to
the entries. As a result, an output is produced or not.

This interpretation has two profitable consequences.
First at all, it provides an intuitive background for con-
structing new rules: in our framework, a new rule is just
the design of a new referee. Secondly, our interpretation
makes possible sampling methods in order to approxi-
mate and accelerate complex fusion processes. Notice
that the sampling method is used here as a mathemati-
cal tool for approximating the belief, not for simulating
an individual choice. Indeed, evidence approaches deal
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with belief on propositions, not with individual propo-
sitions.

Sampling algorithm. Samples for the fused basic
belief assignment ⊕[m1:s|F ] are generated by iterating
the following processes:

Entries generation: For each i ∈ [[1, s]] , generates
Yi ∈ GΘ according to the basic belief assignment
mi, considered as a probabilistic distribution over
the set GΘ ,

Conditional arbitrament:

1. Generate X ∈ GΘ according to the ref-
eree function F (X |Y1:s; m1:s), considered as
a probabilistic distribution over the set GΘ ,

2. In the case X = ∅, reject the sample. Other-
wise, keep the sample.

The performance of the sampling algorithm is at least
dependent of two factors. First at all, a fast implemen-
tation of the arbitrament is necessary. Secondly, low
rejection rate is better. Notice however that the rejec-
tion rate is not a true handicap. Indeed, high rejection
rate means that the incident bbas are not compatible
in regard to the fusion rule: these bba should not be
fused. By the way, the ratio of rejected samples will
provide an empirical estimate of the rejection rate of
the law.

2.4 Algorithmic definition of rules

As seen previously, fusion rules based on referee func-
tions are easily approximated by means of sampling
process. This sampling process is double-staged. The
first stage computes the samples related to the entry
bbas m1:s . The second stage computes the fused sam-
ples by a conditional arbitrament between the different
hypotheses. This arbitrament is formalized by a referee
function.

In practice, it is noteworthy that there is no need for
a mathematical definition of the referee function. The
only important point is to be able to compute the ar-
bitrament. We have here a new approach for defining
fusion rules of evidences. Fusion rules may be defined
entirely by the means of an algorithm for computing
the conditional arbitrament.

Assertion. There are three equivalent approaches for
defining fusion rules in the paradigm of referee:

• By defining a formula which maps the entry bbas
m1:s to the fused bba m1 ⊕ · · · ⊕ ms (classical ap-
proach),

• By defining a referee function F , which makes the
conditional arbitrament F (X |Y1:s; m1:s) ,

• By constructing an algorithm which actually makes
the conditional arbitrament between Y1:s in favor of
X .

It is sometime much easier and more powerful to just
construct the algorithm for conditional arbitrament.

The following section illustrates the afore theoretical
discussion on well known examples.

3 Examples of referee functions

3.1 Dempster-shafer rule

Classical definition. Let be given s sources of infor-
mation characterized by their bbas m1:s. The fused bba
mDST obtained from m1:s by means of Dempster-Shafer
fusion rule [1, 2] is defined by:










mDST(∅) = 0 ,

mDST(X) =
m∧(X)

1 − m∧(∅)
for any X ∈ GΘ \ {∅} ,

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) ,
∑

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi) .

Definition by referee function. The definition of
a referee function for Dempster-Shafer is immediate:

mDST = ⊕[m1:s|FDST] ,

where FDST(X |Y1:s; m1:s) = I

[

X =

s
⋂

k=1

Yk

]

.

Algorithmic definition. The algorithmic imple-
mentation of FDST is described subsequently and
typically implies possible conditional rejections:

Conditional arbitrament:

1. Set X =
⋂s

k=1 Yk ,

2. If X = ∅ , then reject the sample. Otherwise, keep
the sample.

3.2 PCR6 rule

The proportional conflic redistribution rules (PCRn)
have been introduced By Dezert and Smarandache [12].
The rule PCR6 has been proposed by Martin and Oss-
wald in [10] .

Classical definition. Let be given s sources of in-
formation characterized by their bbas m1:s. The fused
bba mPCR6 obtained from m1:s by means of the PCR6
rule is defined by:

mPCR6(∅) = 0 ,
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and, for any X ∈ GΘ \ {∅} , by:

mPCR6(X) = m∧(X) +

s
∑

i=1

mi(X)2×

∑

Ts−1
k=1 Yσi(k)∩X=∅

Yσi(1)
,··· ,Yσi(s−1)∈GΘ















s−1
∏

j=1

mσi(j)(Yσi(j))

mi(X) +

s−1
∑

j=1

mσi(j)(Yσi(j))















,

(2)

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) ,
∑

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi) ,

and the function σi counts from 1 to s avoiding i :

σi(j) = j × I[j < i] + (j + 1) × I[j ≥ i] .

N.B. If the denominator in (2) is zero, then the fraction
is discarded.

Definition by referee function. Definition 2 could
be reformulated into:

mPCR6(X) = m∧(X)

+

s
∑

i=1

∑

Ts
k=1 Yk=∅

Y1,··· ,Ys∈GΘ













I[X = Yi] mi(Yi)
s
∏

j=1

mj(Yj)

s
∑

j=1

mj(Yj)













,

and then:

mPCR6(X) = m∧(X)

+
∑

Ts
k=1 Yk=∅

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi)

s
∑

j=1

I[X = Yj ] mj(Yj)

s
∑

j=1

mj(Yj)

.
(3)

At last, it is derived a formulation of PCR6 by means
of a referee function:

mPCR6 = ⊕[m1:s|FPCR6] ,

where the referee function FPCR6 is defined by:

FPCR6(X |Y1:s; m1:s) = I

[

X =
s
⋂

k=1

Yk 6= ∅

]

+ I

[

s
⋂

k=1

Yk = ∅

]

s
∑

j=1

I[X = Yj ] mj(Yj)

s
∑

j=1

mj(Yj)

.

(4)

Algorithmic definition. Again, the algorithmic
implementation is immediate:

Conditional arbitrament:

1. If
⋂s

k=1 Yk 6= ∅ , then set X =
⋂s

k=1 Yk

2. Otherwise:

(a) Define the probability P over [[1, s]] by:

Pi =
mi(Yi)

∑s

j=1 mj(Yj)
for any i ∈ [[1, s]] ,

(b) Generate a random integer k ∈ [[1, s]] accord-
ingly to P ,

(c) set X = Yk .

It is noticed that this process does not produce any re-
jection case X = ∅. As a consequence, the last rejection
step has been removed.

Essentially, this algorithm distinguishes two cases:

• there is a consensus; then, answer the consensus,

• there is not a consensus; then choose an entry
among all entries proportionally to its belief. It is
noteworthy that there is no attempt to transform
the entries in this case.

This algorithm is efficient and is not time-consuming.
The whole sampling approach should be a good alter-
native for approximating PCR6, particularly on large
frames of discernment.

3.3 Any rule?

Is it possible to construct a referee function for any
existing fusion rule?

Actually, the answer to this question is ambiguous. If it
is authorized that F depends on m1:s without restric-
tion, then the theoretical answer is trivially yes.

Property. Let be given the fusion rule m1⊕· · ·⊕ms ,
applying on the bbas m1:s. Define the referee function
F by:

F (X |Y1:s; m1:s) = m1 ⊕ · · · ⊕ ms(X) ,

for any X, Y1:s ∈ GΘ . Then F is actually a referee
function and ⊕[m1:s|F ] = m1 ⊕ · · · ⊕ ms .

Proof is immediate.

Of course, this result is useless in practice, since such
referee function is inefficient. It is inefficient because
it does not provide an intuitive interpretation of the
rule, and is as difficult to compute as the fusion rule.
Then, it is useless to have a sampling approach with
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such definition.

As a conclusion, referee functions have to be considered
together with their efficiency. The efficiency of referee
function is not a topic which is studied in this paper.

4 A new rule: PCR♯
Definition. For any k ∈ [[1, s]], it is defined:

C[k|s] = {γ ⊂ [[1, s]] /card(γ) = k } ,

the set of k-combinations of [[1, s]] . Of course, the car-

dinal of C[k|s] is

(

s
k

)

.

For convenience, the undefined object C[s + 1|s] is ac-
tually defined by:

C[s + 1|s] =
{

{∅}
}

,

so as to ensure:

min
γ∈C[s+1|s]







I





⋂

i∈γ

Yi = ∅











= 1

4.1 Limitations of PCR6

The algorithmic interpretation of PCR6 has shown
that PCR6 distinguishes two cases:

• The entry informations are compatible; then, the
conjunctive consensus is decided,

• The entry informations are not compatible; then, a
mean decision is decided, weighted by the relative
beliefs of the entries.

In other words, PCR6 only considers consensus or no-
consensus cases. But for more than 2 sources, there are
many cases of intermediate consensus. By construction,
PCR6 is not capable to manage intermediate consensus.
This is a notable limitation of PCR6.

The new rule PCR♯, which is defined now, extends
PCR6 by considering partial consensus in addition to
full consensus and absence of consensus. This rule is
constructed by specifying the arbitrament algorithm.
Then, a referee function is deduced.

4.2 Algorithm

The following algorithm try to reach a maximal
consensus. It first tries the full consensus, then
consensus of s − 1 sources, s − 2 sources, and so
on, until a consensus is finally found. When several
consensus with k sources is possible, the final answer
is chosen randomly, proportionally to the beliefs of the
consensus. In the following algorithm, comments are
included preceded by // (c++ convention).

Conditional arbitrament:

1. Set stop = false and k = s ,
// k is the size of the consensus, which are
searched. At beginning, it is maximal.

2. For each γ ∈ C[k|s] , do:
// All possible consensus of size k is tested.

(a) If
⋂

i∈γ Yi 6= ∅ , then set ωγ =
∏

i∈γ mi(Yi)
and stop = true ,
// If a consensus of size k is found to be func-
tional, then it is no more necessary to dimin-
ish the size of the consensus. This is done by
changing the value of boolean stop.
// Moreover, the functional consensus are
weighted by their beliefs.

(b) Otherwise set ωγ = 0 ,
// Non-functional consensus are weighted
zero.

3. If stop = false , then set k = k − 1 and go back
to 2 ,
// If no functional consensus of size k has been
found, then it is necessary to test smaller sized con-
sensus. The process is thus repeated for size k − 1.

4. Choose γ ∈ C[k|s] randomly, according to the
probability:

Pγ =
ωγ

∑

γ∈C[k|s] ωγ

,

// Otherwise, choose a functional consensus.
Here, the decision is random and proportional to
the consensus belief.

5. At last, set X =
⋂

i∈γ Yi .
// Publish the sample related to the consensus.

4.3 Referee function

Historically, PCR♯ has been defined by means of an
algorithm, not by means of a formal definition of the
referee function. It is however possible to give a formal
definition of the referee function which is equivalent to
the algorithm:

FPCR♯(X|Y1:s; m1:s) =
s

X

k=1

min
γ∈C[k+1|s]

(

I

"

\

i∈γ

Yi = ∅

#)

× min

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max
γ∈C[k|s]

(

I

"

\

i∈γ

Yi 6= ∅

#)

,

X

γ∈C[k|s]

I

"

X =
\

i∈γ

Yi 6= ∅

#

Y

i∈γ

mi(Yi)

X

γ∈C[k|s]

I

"

\

i∈γ

Yi 6= ∅

#

Y

i∈γ

mi(Yi)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

(5)
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Sketch of the proof. The following correspondences are
established between the arbitrament algorithm and the
referee function:

• The summation
∑s

k=1 is a formalization of the loop
from k = s down to k = 1 ,

• At step k, the component:

min
γ∈C[k+1|s]







I





⋂

i∈γ

Yi = ∅











ensures that there is not a functional consensus of
larger size j > k . Typically, the component is 0
if a larger sized functional consensus exists, and
1 otherwise. This component is complementary to
the summation, as it formalizes the end of the loop,
when a functional consensus is actually found,

• At step k, the component:

Ω =

∑

γ∈C[k|s]

I



X =
⋂

i∈γ

Yi 6= ∅





∏

i∈γ

mi(Yi)

∑

γ∈C[k|s]

I





⋂

i∈γ

Yi 6= ∅





∏

i∈γ

mi(Yi)

encodes the choice of a functional consensus of size
k, proportionally to its belief. The chosen consen-
sus results in the production of the sample X ,

• At step k, the component:

max
γ∈C[k|s]







I





⋂

i∈γ

Yi 6= ∅











tests if there is a functional consensus of size k.
The component answers 1 if such consensus exists,
and 0 otherwise. It is combined with a minimiza-
tion of the form:

min







max
γ∈C[k|s]







I





⋂

i∈γ

Yi 6= ∅











, Ω







,

where Ω ≤ 1 . This is some kind of “if ...

then” : if a functional consensus of size k exists,
then the value Ω is computed. Otherwise, it is the
value 0 . Since the value Ω encodes a sampling
decision, we have here sampling decision, which is
conditioned by the fact that a functional consensus
exists.

The equivalence is a consequence of these correspon-
dences.
�

4.4 Variants of PCR♯

Actually, card(C[k|s]) =

(

s
k

)

increases quickly when

s is great and k is not near 1 or s . As a consequence,
PCR♯ implies hard combinatorics, when used in its gen-
eral form. On the other hand, it may be interesting to
reject samples, when a consensus is not possible with a
minimal quorum. In order to address such problems, a
slight extension of PCR♯ is proposed now.

Algorithm.

Let r ∈ [[1, s]] and let k1:r ∈ [[1, s]] be a decreasing se-
quence such that:

s ≥ k1 > · · · > kr ≥ 1 .

For convenience, the undefined object k0 is actually de-
fined by:

k0 = s + 1 ,

so as to ensure:

min
γ∈C[k0|s]







I





⋂

i∈γ

Yi = ∅











= 1

Then, the rule PCR♯[k1:r] is defined by the following
algorithm.

Conditional arbitrament:

1. Set stop = false and h = 1 ,

2. For each γ ∈ C[kh|s] , do:

(a) If
⋂

i∈γ Yi 6= ∅ , then set ωγ =
∏

i∈γ mi(Yi)
and stop = true ,

(b) Otherwise set ωγ = 0 ,

3. If stop = false , then:

(a) set h = h + 1 ,

(b) If h ≤ r, go back to 2 ,

4. If h > r, then reject the entries and end,

5. Otherwise, choose γ ∈ C[kh|s] randomly, according
to the probability:

Pγ =
ωγ

∑

γ∈C[kh|s]
ωγ

,

6. Set X =
⋂

i∈γ Yi . and end.
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Referee function

FPCR♯[k1:r ](X|Y1:s; m1:s) = min
γ∈C[kr |s]

(

I

"

X =
\

i∈γ

Yi = ∅

#)

+

r
X

h=1

min
γ∈C[kh−1|s]

(

I

"

\

i∈γ

Yi = ∅

#)

× min

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max
γ∈C[kh|s]

(

I

"

\

i∈γ

Yi 6= ∅

#)

,

X

γ∈C[kh|s]

I

"

X =
\

i∈γ

Yi 6= ∅

#

Y

i∈γ

mi(Yi)

X

γ∈C[kh|s]

I

"

\

i∈γ

Yi 6= ∅

#

Y

i∈γ

mi(Yi)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

proof is left to the reader.

PCR6 and PCR♯. Assume that PCR6 is applied to
s entries m1:s . Then: PCR6=PCR♯[s, 1]

DST and PCR♯. Assume that DST is applied to s
entries m1:s . Then: DST=PCR♯[s]

5 Numerical examples
It is assumed:

GΘ = {∅, {a}, {b}, {c}, {b, c}, {c, a}, {a, b}, {a, b, c}} .

5.1 Monte-Carlo convergence

The bbas m1 and m2 are defined by:

• m1({a, b, c}) = 0.1, m1({a, b}) = 0.2, m1({b, c}) = 0.3,
m1({a, c}) = 0.4

• m2({a, b, c}) = 0.1, m2({a, b}) = 0.4, m2({b, c}) = 0.3,
m2({a, c}) = 0.2

These bbas are fused by means of DST, resulting in
m = mDST:

m({a, b, c}) = 0.01, m({a, b}) = 0.14, m({b, c}) = 0.15,
m({a, c}) = 0.14, m({a}) = 0.2, m({b}) = 0.18, m({c}) = 0.18.

The following table compares the rounded deviations of
the empirical m = mDST , computed by means of sample
clouds of different cloud sizes N .

log10 N 1 2 3 4 5
m({a, b, c}) 3E − 2 1E − 2 3E − 3 1E − 3 3E − 4
m({a, b}) 1E − 1 3E − 2 1E − 2 3E − 3 1E − 3
m({b, c}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({a, c}) 1E − 1 3E − 2 1E − 2 3E − 3 1E − 3
m({a}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({b}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({c}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3

Actually, this table is compliant with the theoretical

result: σ(m(X)) =
√

m(X)·(1−m(x))
N

.

5.2 Comparative tests

Example 1. It is assumed 3 bbas m1:3 on GΘ by:

m1({a, b}) = m2({a, c}) = m3({c}) = 1 .

The bbas m1 and m3 are incompatible. However, m2 is
compatible with both m1 and m3 , which implies that
a partial consensus is possible between m1 and m2 or
between m2 and m3 . As a consequence, PCR♯ should
provide better answers by allowing partial combinations
of the bbas. The fusion of the 3 bbas are computed
respectively by means of DST, PCR6 and PCR♯ , and
the results confirm the intuition:

• zDST = 1 and mDST is undefined,

• mPCR6({a, b}) = mPCR6({a, c}) = mPCR6({c}) = 1
3

,

• mPCR♯({a}) = mPCR♯({c}) = 1
2

derived from the con-
sensus {a, b} ∩ {a, c} , {a, c} ∩ {c} and their beliefs
m1({a, b})m2({a, c}) , m2({a, c})m3({c}).

Example 2. It is assumed 3 bbas m1:3 on GΘ by:

• m1({a, b}) = 0.4 , m1({a}) = 0.6

• m2({a, c}) = 0.7 , m2({a}) = 0.3

• m3({a, b, c}) = 0.2 , m3({b}) = 0.8

The computation of PCR♯ is done step by step:

Full consensus. Full functional consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {a, b, c}{a, b, c}{a, b, c}{a, b, c}
⋂

i Yi {a} {a} {a} {a}
∏

i mi(Yi) 0.056 0.024 0.084 0.036

Partial consensus sized 2. The belief ratios for the
partial consensus are simplified as follows:

m1(Y1)m2(Y2)

m1(Y1)m2(Y2) + m3(Y3)m1(Y1)
=

m2(Y2)

m2(Y2) + m3(Y3)

and similar results are obtained for Y3, Y1 and Y2, Y3 .
Then the possible partial consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {b} {b} {b} {b}

Y1 ∩ Y2 {a} {a} {a} {a}
Y2 ∩ Y3 ∅ ∅ ∅ ∅
Y3 ∩ Y1 {b} {b} ∅ ∅
m2(Y2)

m2(Y2)+m3(Y3) 0.467 0.273 1 1
m3(Y3)

m2(Y2)+m3(Y3) 0.533 0.727 0 0
∏

i mi(Yi) 0.224 0.096 0.336 0.144

1-sized consensus. There is no remaining 1-sized con-
sensus.

Belief compilation. The different cases resulted in only
two propositions, i.e. {a} and {b}. By combining the
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entry beliefs
∏

i mi(Yi) and ratio beliefs, the fused bba
m = mPCR♯ is then deduced:
8

>

<

>

:

m({a}) = 0.056 + 0.024 + 0.084 + 0.036 + 0.467 × 0.224
+0.273 × 0.096 + 1 × 0.336 + 1 × 0.144 = 0.811

m({b}) = 0.533 × 0.224 + 0.727 × 0.096 = 0.189

As a conclusion:

mPCR♯({a}) = 0.811 and mPCR♯({b}) = 0.189 .

This result could be compared to DST and PCR6:

• zDST = 0.8 and mDST({a}) = 1,

• mPCR6({a}) = 0.391 , mPCR6({b}) = 0.341 ,
mPCR6({a, b}) = 0.073 , mPCR6({a, c}) = 0.195 ,

DST produces highly conflicting results, since source
3 conflicts with the other sources. However, there are
some partial consensus which allow the answer {b} .
DST is blind to these partial consensus. On the other
hand, PCR6 is able to handle hypothesis {b} , but is
too much optimistic and, still, is unable to fuse par-
tial consensus. Consequently, PCR6 is also unable to
diagnose the high inconstancy of belief m3({b}) = 0.8 .

6 Conclusion
This paper has investigated a new framework for the

definition and interpretation of fusion rule of evidences.
This framework is based on the new concept of referee
function. A referee function models an arbitrament pro-
cess conditionally to the contributions of several inde-
pendent sources of information. It has been shown that
fusion rules based on the concept of referee functions
have a straightforward sampling-based implementation.
As a consequence, a referee function has a natural al-
gorithmic interpretation. Owing to the algorithmic na-
ture of referee functions, the conception of new rules
of fusion is made easier and intuitive. Examples of ex-
isting fusion rules have been implemented by means of
referee functions. Moreover, an example of rule con-
struction has been provided on the basis of an arbitra-
ment algorithm. The new rule is a quite general ex-
tension of both PCR6 and Dempster-Shafer rule. This
paper also addresses the issue of fusion rule approxima-
tion. There are cases for which the fusion computation
is prohibitive. The sampling process implied by the
referee function provides a natural method for the ap-
proximation and the computation speed-up. There are
still many questions and improvements to be addressed.
For example, samples regularization techniques may re-
duce possible samples degeneracy thus allowing smaller
particles clouds. Some theoretical questions are also
pending; especially, the algebraic properties of the ref-
eree functions have almost not been studied. However,
this preliminary work is certainly promising for future
applications.
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