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We are interested in understanding the relationship between

Bayesian inference and evidence theory. The concept of a set of

probability distributions is central both in robust Bayesian analy-

sis and in some versions of Dempster-Shafer’s evidence theory. We

interpret imprecise probabilities as imprecise posteriors obtainable

from imprecise likelihoods and priors, both of which are convex

sets that can be considered as evidence and represented with, e.g.,

DS-structures. Likelihoods and prior are in Bayesian analysis com-

bined with Laplace’s parallel composition. The natural and simple

robust combination operator makes all pairwise combinations of

elements from the two sets representing prior and likelihood. Our

proposed combination operator is unique, and it has interesting

normative and factual properties. We compare its behavior with

other proposed fusion rules, and earlier efforts to reconcile Bayesian

analysis and evidence theory. The behavior of the robust rule is con-

sistent with the behavior of Fixsen/Mahler’s modified Dempster’s

(MDS) rule, but not with Dempster’s rule. The Bayesian frame-

work is liberal in allowing all significant uncertainty concepts to be

modeled and taken care of and is therefore a viable, but probably

not the only, unifying structure that can be economically taught

and in which alternative solutions can be modeled, compared and

explained.
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1. INTRODUCTION

Several, apparently incomparable, approaches exist

for uncertainty management. Uncertainty management

is a broad area applied in many different fields, where

information about some underlying, not directly observ-

able, truth–the state of the world–is sought from a

set of observations that are more or less reliable. These

observations can be, for example, measurements with

random and/or systematic errors, sensor readings, or re-

ports submitted by observers. In order that conclusions

about the conditions of interest be possible, there must

be some assumptions made on how the observations re-

late to the underlying state about which information is

sought. Most such assumptions are numerical in nature,

giving a measure that indicates how plausible different

underlying states are. Such measures can usually be nor-

malized so that the end result looks very much like a

probability distribution over the possible states of the

world, or over sets of possible world states. However,

uncertainty management and information fusion is often

concerned with complex technical, social or biological

systems that are incompletely understood, and it would

be naive to think that the relationship between observa-

tion and state can be completely captured. At the same

time, such systems must have at least some approximate

ways to relate observation with state in order to make

uncertainty management at all possible.

It has been a goal in research to encompass all

aspects of uncertainty management in a single frame-

work. Attaining this goal should make the topic teach-

able in undergraduate and graduate engineering cur-

ricula and facilitate engineering applications develop-

ment. We propose here that robust Bayesian analysis is

such a framework. The Dempster-Shafer or evidence

theory originated within Bayesian statistical analysis

[19], but when developed by Shafer [51] took the con-

cept of belief assignment rather than probability dis-

tribution as primitive. The assumption being that bod-

ies of evidence–beliefs about the possible worlds of

interest–can be taken as primitives rather than sam-

pling functions and priors. Although this idea has had

considerable popularity, it is inherently dangerous since

it seems to move application away from foundational

justification. When the connection to Bayes’ method

and Dempster’s application model is broken, it is no

longer necessary to use the Dempster combination rule,

and evidence theory abounds with proposals on how

bodies of evidence should be interpreted and combined,

as a rule with convincing but disparate argumentation.

But there seems not to exist other bases for obtain-

ing bodies of evidence than likelihoods and priors, and

therefore an analysis of a hypothetical Bayesian obtain-

ment of bodies of evidence can bring light to problems

in evidence theory. Particularly, a body of evidence rep-

resented by a DS-structure has an interpretation as a set

of possible probability distributions, and combining or

aggregating two such structures can be done in robust
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Bayesian analysis. The resulting combination operator

is trivial, but compared to other similar operators it has

interesting, even surprising, behavior and normative ad-

vantages. Some concrete progress in working with con-

vex sets of probability vectors has been described in

[41, 57, 29]. It appears that the robust combination op-

erator we discuss has not been analyzed in detail and

compared to its alternatives, and is missing in recent

overviews of evidence and imprecise probability the-

ory. Our ideas are closely related to problems discussed

in [32] and in the recent and voluminous report [21],

which also contains a quite comprehensive bibliogra-

phy. The Workshop hosted by the SANDIA lab has

resulted in an overview of current probabilistic uncer-

tainty management methods [34]. A current overview of

alternative fusion and estimation operators for tracking

and classification is given in [45].

The main objective of this paper is to propose that

precise and robust Bayesian analysis are unifying, sim-

ple and viable methods for information fusion, and that

the large number of methods possible can and should

be evaluated by taking into account the appropriateness

of statistical models chosen in the particular applica-

tion where it is used. We are aware, however, that the

construction of Bayesian analysis as a unifying concept

has no objective truth. It is meant as a post-modernistic

project facilitating teaching and returning artistic free-

dom to objective science. The Bayesian method is so lib-

eral that it almost never provides unique exact solutions

to inference and fusion problems, but is completely

dependent on insightful modeling. The main obstacle

to achieving acceptance of the main objective seems

to be the somewhat antagonistic relationship between

the different schools where sometimes sweeping argu-

ments have been made that seem rather unfair whoever

launched them, typical examples being [42, 51] and the

discussions following them.

Another objective is to investigate the appropriate-

ness of particular fusion and estimation operations, and

their relationships to the robust as well as the precise

Bayesian concept. Specifically, we show that the choice

between different fusion and estimation operations can

be guided by a Bayesian investigation of the application.

We also want to connect the analysis to practical

concerns in information fusion and keep the mathemat-

ical/theoretical level of the presentation as simple as

possible, while also examining the problem to its full

depth. A quite related paper promoting similar ideas is

Mahler [43], which however is terser and uses some-

what heavier mathematical machinery.

Quite many comparisons have been made of Bayes-

ian and evidential reasoning with the objective of guid-

ing practice, among others [47, 10, 11, 50]. It is gen-

erally found that the methods are different and there-

fore one should choose a method that matches the ap-

plication in terms of quantities available (evidence or

likelihoods and priors), or the prevailing culture and

construction of the application. Although the easiest

way forward, this advice seems somewhat short-sighted

given the quite large lifespan of typical advanced ap-

plications and the significant changes in understanding

and availability of all kinds of data during this life-span.

In Section 2 we review Bayesian analysis and in

Section 3 dynamic Bayesian (Chapman Kolmogorov/

Kalman) analysis. In Section 4 we describe robust

Bayesian analysis analysis and some of its relations to

DS theory; in Section 5 we discuss decisions under un-

certainty and imprecision and in Section 6 Zadeh’s well-

known example. In Section 7 we derive some evidence

fusion operations and the robust combination operator.

We illustrate their performance on a paradoxical exam-

ple related to Zadeh’s in Section 8, and wrap up with

conclusions in Section 9.

2. BAYESIAN ANALYSIS

Bayesian analysis is usually explained [7, 38, 52,

24] using the formula

f(¸ j x)/ f(x j ¸)f(¸) (1)

where ¸ 2 ¤ is the world of interest among n= j¤j pos-
sible worlds (sometimes called parameter space), and

x 2 X is an observation among possible observations.

The distinction between observation and world space is

not necessary but is convenient–it indicates what our

inputs are (observations) and what our outputs are (be-

lief about possible worlds). The functions in the formula

are probability distributions, discrete or continuous. We

use a generic function notation common in statistics,

so the different occurrences of f denote different func-
tions suggested by their arguments. The sign / indicates
that the left side is proportional to the right side (as a

function of ¸), with the normalization constant left out.
In (1), f(x j ¸) is a sampling distribution, or likelihood
when regarded as a function of ¸ for a given x, which
connects observation space and possible world space

by giving a probability distribution of observed value

for each possible world, and f(¸) is a prior describing
our expectation on what the world might be. The rule

(1) gives the posterior distribution f(¸ j x) over possi-
ble worlds ¸ conditional on observations x. A paradox

arises if the supports of f(¸) and f(x j ¸) are disjoint
(since each possible world is ruled out either by the

prior or by the likelihood), a possibility we will ignore

throughout this paper. Equation (1) is free of technical

complication and easily explainable. It generalizes how-

ever to surprisingly complex settings, as required of any

device helpful in design of complex technical systems.

In such systems, it is possible that x represents a quantity
which is not immediately observable, but instead our in-

formation about x is given by a probability distribution
f(x), typically obtained as a posterior from (1). Such

observations are sometimes called fuzzy observations.

In this case, instead of using (1) we apply:

f(¸ j f(x))/
Z
f(x j ¸)f(x)f(¸)dx: (2)
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Ed Jaynes made (1) the basis for teaching science

and interpretation of measurements [38]. In general, for

infinite (compact metric) observation spaces or possi-

ble world sets, some measure-theoretic caution is called

for, but it is also possible to base the analysis on well-

behaved limit processes in each case as pointed out by,

among others, Jaynes [38]. We will here follow Jaynes’

approach and thus discuss only the finite case. That

generalization to infinite and/or complexly structured

unions of spaces of different dimensions and quotiented

over symmetry relations is possible is known although

maybe not obvious. Mahler claims that such applica-

tions are not Bayesian in [43], but they can apparently

be described by (1) and similar problems are investi-

gated within the Bayesian framework, for example by

Green [26]. Needless to say, since the observation and

world spaces can be high-dimensional and the prior and

likelihood can be arbitrarily complex, practical work

with (1) is full of pitfalls and one often encounters what

looks like counterintuitive behaviors. On closer inves-

tigation, such problems can lead to finding a modeling

error, but more often it shows that (1) is indeed better

than one’s first intuitive attitude.

It has been an important philosophical question to

characterize the scope of applicability of (1), which lead

to the distinction between objective and subjective prob-

ability, among other things. Several books and papers,

among others [17, 49, 42, 15], claim that, under rea-

sonable assumptions, (1) is the only consistent basis

for uncertainty management. However, the minimal as-

sumptions truly required to obtain this result turn out

on closer inspection to be rather complex, as discussed

in [7, 64, 33, 31, 46, 35, 2]. One simple assumption

usually made in those studies that conclude in favor of

(1) is that uncertainty is measured by a real number

or on an ordered scale. Many established uncertainty

management methods however measure uncertainty on

a partially ordered scale and do apparently not use (1)

and the accompanying philosophy. Among probability

based alternatives to Bayesian analysis with partially

ordered uncertainty concepts are imprecise probabili-

ties or lower/upper prevision theory [62], the Dempster-

Shafer (DS) [51], the Fixsen/Mahler (MDS) [22] and

Dezert-Smarandache (DSmT) [53] theories. In these

schools, it is considered important to develop the the-

ory without reference to classical Bayesian thinking.

In particular, the assumption of precise prior and sam-

pling distributions is considered indefensible. Those as-

sumptions are referred to as the dogma of precision in

Bayesian analysis [63].

Indeed, when the inference process is widened from

an individual to a social or multi-agent context, there

must be ways to accommodate different assessments of

priors and likelihoods. Thus, there is a possibility that

two experts make the same inference using different

likelihoods and priors. If expert 1 obtained observa-

tion set X1 μ X and expert 2 obtained observation set

X2 μ X, they would obtain a posterior belief of, e.g.,

a patient’s condition expressible as fi(¸i j Xi)/ fi(Xi j
¸i)fi(¸i), for i = 1,2. Here we have not assumed that
the two experts used the same sampling and prior distri-
butions. Even if training aims at giving the two experts
the same “knowledge” in the form of sampling function
and prior, this ideal cannot be achieved completely in
practice. The Bayesian method prescribes that expert i
states the probability distribution fi(¸i j Xi) as his belief
about the patient. If they use the same sampling func-
tion and prior, the Bayesian method also allows them to
combine their findings to obtain:

f(¸ j fX1,X2g)/ f(fX1,X2g j ¸)f(¸)
= f(X1 j ¸)f(X2 j ¸)f(¸) (3)

under the assumption:

f(fX1,X2g j ¸) = f(X1 j ¸)f(X2 j ¸):
The assumption appears reasonable in many cases.

In cases where it is not, the discrepancy should be
entered in the statistical model. This is particularly
important in information fusion for those cases where
the first set of observations was used to define the
second investigation, as in sensor management. This
is an instance of selection bias. Ways of handling data
selection biases are discussed thoroughly in [24]. Data
selection bias is naturally and closely related to the
missing data problem that has profound importance in
statistics [48] and has also been examined in depth in
the context of imprecise probability fusion [16].
It is important to observe that it is the two experts

likelihood functions, not their posterior beliefs, that can
be combined, otherwise we would replace the prior by
its normalized square and the real uncertainty would be
underestimated. This is at least the case if the experts
obtained their training from a common body of med-
ical experience coded in textbooks. If the posterior is
reported and we happen to know the prior, the likeli-
hood can be obtained by f(X j ¸)/ f(¸ j X)=f(¸) and
the fusion rule becomes

f(¸ j X1,X2)/ f(¸ j X1)f(¸ j X2)=f(¸): (4)

The existence of different agents with different pri-
ors and likelihoods is maybe the most compelling argu-
ment to open the possibility for robust Bayesian analy-
sis, where the likelihood and prior sets would in the first
approximation be the convex closure of the likelihoods
and prior of different experts.

3. WHAT IS REQUIRED FOR SUCCESSFUL
APPLICATION OF BAYES METHOD?

The formula (1) is deceptively simple, and hides
the complexity of a real world application where many
engineering compromises are inevitable. Nevertheless,
any method claimed to be Bayesian must relate to (1)
and include all substantive application knowledge in the
parameter and observation spaces, the likelihood and the
prior. It is in general quite easy to show the Bayesian

ARNBORG: ROBUST BAYESIANISM: RELATION TO EVIDENCE THEORY 77



method to be better or worse than an alternative by not

including relevant and necessary application knowledge

in (1) or in the alternative method. Let us illustrate

this by an analysis of the comparison made in [56].

The problem is to track and classify a single target.

The tracking problem is solved with a dynamic version

of Bayes method, known as the Bayesian Chapman-

Kolmogorov relationship:

f(¸t jDt)/ f(dt j ¸t)
Z
f(¸t j ¸t¡1)f(¸t¡1 jDt¡1)d¸t¡1

f(¸0 jD0) = f(¸0): (5)

Here Dt = (d1, : : : ,dt) is the sequence of observations
obtained at different times, and f(¸t j ¸t¡1) is the maneu-
vering (process innovation) noise assumed. The latter is

a probability distribution function (pdf) over state ¸t
dependent on the state at the previous time-step, ¸t¡1.
When tracking targets that display different levels of

maneuvering like transportation, attack and dog-fight

for a fighter airplane, it has been found appropriate to

apply (5) with different filters with levels of innovation

noise corresponding to the maneuvering states, and to

declare the maneuvering state that corresponds to the

best matching filter. In the paper [56] the same method

is proposed for a different purpose, namely the classi-

fication of aircraft (civilian, bomber, fighter) based on

their acceleration capabilities. This is done by ad hoc

modifications of (5) that do not seem to reflect substan-

tive application knowledge, namely that the true target

class is unlikely to change, and hence does not work

well. The Bayesian solution to this problem would in-

volve looking at (5) with a critical mind. Since we want

to jointly track and classify, the state space should be,

e.g., P£V£C, where P and V are position and velocity
spaces and C is the class set, fc,b,fg. The innovation
process should take account of the facts that the target

class in this case does not change, and that the civilian

and bomber aircraft have bounded acceleration capaci-

ties. This translates to two requirements on the process

innovation component f(¸t j ¸t¡1) that (assuming unit
time sampling):

f((pt,vt,ct) j (pt¡1,vt¡1,ct¡1)) = 0 if ct 6= ct¡1
f((pt,vt,k) j (pt¡1,vt¡1,k)) = 0 if jvt¡ vt¡1j> ak

where ak is the highest possible acceleration of target
class k. Such an innovation term can be (and often is)

described by a Gaussian with variance tuned to ak, or
by a bank of Gaussians. With this innovation term, the

observation of a high acceleration dampens permanently

the marginal probability of having a target class inca-

pable of such acceleration. This is the natural Bayesian

approach to the joint tracking and classification prob-

lems. Similar effects can be obtained in the robust Bayes

and TBM [56] frameworks. As a contrast, the experi-

ments reported by Oxenham et al. [44] use an appro-

priate innovation term and also give more reasonable

results, both for the TBM and the Bayesian Chapman

Kolmogorov approaches. The above is not meant as an

argument that one of the two approaches compared in

[56] is the preferred one. Our intention is rather to sug-

gest that appropriate modeling may be beneficial for

both approaches.

The range of applications where an uncertainty man-

agement problem is approached using (1) or (5) is ex-

tremely broad. In the above example, the parameter ¸
consists of one state vector (position and velocity vec-

tors of a target) and its target label, thus the parameter

space is (for 3D tracking) R6£C where C is a finite

set of targets labels. In our main example, ¸ is just an
indicator with three possible values. In many image pro-

cessing applications, the parameter ¸ is the scene to be
reconstructed from the data x, which is commonly called
the film even if it is nowadays not registered on pho-

tographic film and is not even necessarily represented

as a 2D image. This approach has been found excellent

both for ordinary camera reconstruction problems and

for special types of cameras as exemplified by Positron

Emission Tomography and functional Magnetic Reso-

nance Imaging, the type of camera and reconstruction

objective having a profound influence on the choice of

likelihood and priors, see [3, 27]. In genetic investi-

gations, complex Bayesian models are also used a lot,

and here the parameter ¸ could be a description of how
reproduction in a set of individuals in a family has been

produced by selection of chromosomes from parents,

the positions of crossovers and the position of one or

more hypothesized disease-causing gene(s), whereas the

data are the genotypes and disease status of individuals,

plus individual covariates that may environmentally in-

fluence development of disease. For a unified treatment

of this problem family, see [14]. Another fascinating ex-

ample is Bayesian identification of state space dynamics

in time series, where the parameter is the time series of

invisible underlying states, a signaling distribution (out-

put distribution as a function of latent state) and the state

change probability distributions [59].

Characteristic of cases where (1) and (5) are not as

easily accepted is the presence of two different kinds

of uncertainty, often called aleatory and epistemic un-

certainty, where the former can be called “pure ran-

domness” as one perceives dice (Latin: alea) throw-

ing, while the latter is caused by “lack of knowledge”

(from the Greek word for knowledge, episteme). Al-

though one can argue about the relevance of this distinc-

tion, application owners have typically a strong sense

of the distinction, particularly in risk assessment. The

consequence is that the concepts of well-defined pri-

ors and likelihoods can be, and have been, questioned.

The Bayesian answer to this critique is robust Bayesian

analysis.

4. ROBUST BAYES AND EVIDENCE THEORY

In (global) robust Bayesian analysis [5, 36], one ac-

knowledges that there can be ambiguity about the prior
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and sampling distributions, and it is accepted that a con-

vex set of such distributions is used in inference. The

idea of robust Bayesian analysis goes back to the pio-

neers of Bayesian analysis [17, 39], but the computa-

tional and conceptual complexities involved meant that

it could not be fully developed in those days. Instead,

a lot of effort went into the idea of finding a canonical

and unique prior, an idea that seems to have failed ex-

cept for finite problems with some kind of symmetry,

where a natural generalization of Bernoulli’s indiffer-

ence principle has become accepted. The problem is that

no proposed priors are invariant under arbitrary rescal-

ing of numerical quantities or non-uniform coarsening

or refinement of the current frame of discernment. The

difficulty of finding precise and unique priors has been

taken as an argument to use some other methods, like

evidence theory. However, as we shall see, this is an illu-

sion, and avoiding use of an explicit prior usually means

implicit reliance on Bernoulli’s principle of indifference

anyway. Likewise, should there be an acceptable prior,

it can and should be used both in evidence theory and

in Bayesian theory. This was pointed out, e.g., in [6,

ch. 3.4].

Convex sets of probability distributions can be arbi-

trarily complex. Such a set can be generated by mixing

of a set of “corners” (called simplices in linear program-

ming theory) and the set of corners can be arbitrarily

large already for sets of probability distributions over

three elements.

In evidence theory, the DS-structure is a representa-

tion of a belief over a frame of discernment (set of pos-

sible worlds) ¤ (commonly called the frame of discern-
ment £ in evidence theory) by a probability distribution
m over its power-set (excluding the empty set), a ba-

sic probability assignment bpa, basic belief assignment

bba, bma, or DS-structure (terminology is not stable,

we will use DS-structure). The sets assigned non-zero

probability in a DS-structure are called its focal ele-

ments, and those that are singletons are called atoms. A

DS-structure with no mass assigned to non-atoms is a

precise (sometimes called Bayesian) DS-structure. Even

if it is considered important in many versions of DS the-

ory not to equate a DS-structure with a set of possible

distributions, such a perspective is prevalent in tutorials

(e.g., [30, ch. 7] and [8, ch. 8]), explicit in Dempster’s

work [18], and almost unavoidable in a teaching situa-

tion. It is also compellingly suggested by the common

phrase that the belief assigned to a non-singleton can

flow freely to its singleton members, and the equiva-

lence between a DS-structure with no mass assigned to

non-singletons and the corresponding probability dis-

tribution [55]. Among publications elaborating on the

possible difference between probability and other nu-

merical uncertainty measures are [32, 55, 20].

A DS-structure seen as a set of distributions is a

type of Choquet capacity, and these capacities form

a particularly concise and flexible family of sets of

distributions (the full theory of Choquet capacities is

rich and of no immediate importance for us–we use

the term capacity interpretation only to indicate a set

of distributions obtained from a DS-structure in a way

we will define precisely). Interpreting DS-structures as

sets of probability distributions entails saying that the

probability of a union of outcomes e½ ¤ lies between
the belief of e (

P
w½em(w)) and the plausibility of e

(
P
w\e6=Øm(w)). The parametric representation of the

family of distributions it can represent, with parameters

®ew, e 2 2¤, w 2 ¤, is P(w) =
P
e ®ewm(e), all w 2 ¤,

where ®ew = 0 if w =2 e,
P
w2e ®ew = 1, and all ®ew are

non-negative. This representation is used in Blackman

and Popoli [8, ch. 8.5.3]. The pignistic transformation

used in evidence theory to estimate a precise probability

distribution from a DS-structure is obtained by making

the ®ew equal for each e, ®ew = 1=jej if w 2 e. The
relative plausibility transformation proposed by, among

others, Voorbraak [60], Cobb and Shenoy [12, 13],

on the other hand, is the result of normalizing the

plausibilities of the atoms in ¤. It is also possible to
translate a pdf over ¤ to a DS-structure. Indeed, a pdf
is already a (precise) DS-structure, but Sudano [58]

studied inverse pignistic transformations that result in

non-precise DS-structures by coarsening. They have

considerable appeal but are not in the main line of

argumentation in this paper [58].

It is illuminating to see how the pignistic and rel-

ative plausibility transformations emerge from a pre-

cise Bayesian inference: The observation space can in

this case be considered to be 2¤, since this represents

the only distinction among observation sets surviving

from the likelihoods. The likelihood will be a func-

tion l : 2¤£¤! R, the probability of seeing evidence
e given world state ¸. Given a precise e 2 2¤ as obser-
vation and a uniform prior, the inference over ¤ would
be f(¸ j e)/ l(e,¸), but since we in this case have a
probability distribution over the observation space, we

should use (2), weighting the likelihoods by the masses

of the DS-structures. Applying the indifference princi-

ple, l(e,¸) should be constant for ¸ varying over the
members of e, for each e. The other likelihood values
(¸ =2 e) will be zero. Two natural choices of likelihood
are l1(e,¸)/ 1 and l2(e,¸)/ 1=jej, for ¸ 2 e. Amazingly,
these two choices lead to the relative plausibility trans-

formation and to the pignistic transformation, respec-

tively:

fi(¸ jm)/
X
fe:¸2eg

m(e)li(e,¸)

=

8>>><>>>:
X
fe:¸2eg

m(e)

ÁX
e

jejm(e), i= 1

X
fe:¸2eg

m(e)=jej, i= 2:

(6)

Despite a lot of discussion, there seems thus to exist

no fundamental reason to prefer one to the other, since
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they result from two different and completely plausi-

ble statistical models and a common application of an

indifference principle. The choice between the models

(i.e., the two proposed likelihoods) can in principle be

determined by (statistical) testing on the application’s

historic data.

The capacity corresponding to a DS-structure can be

represented by 2n¡ 2 real numbers–the corresponding
DS-structure is a normalized distribution over 2n¡ 1
elements (whereas an arbitrary convex set can need any

number of distributions to span it and needs an arbitrary

number of reals to represent it–thus capacities form

a proper and really small subset of all convex sets of

distributions).

It is definitely possible–although we will not elab-

orate it here–to introduce more complex but still con-

sistent uncertainty management by going beyond robust

Bayesianism, grading the families of distributions and

introducing rules on how the grade of combined dis-

tributions are obtained from the grades of their con-

stituents. The grade would in some sense indicate how

plausible a distribution in the set is. It seems however

important to caution against unnecessarily diving into

the more sophisticated robust and graded set approaches

to Bayesian uncertainty management.

Finally, in multi-agent systems we must consider

the possibility of a gaming component, where an agent

must be aware of the possible reasoning processes of

other agents, and use information about their actions

and goals to decide its own actions. In this case there

appears to be no simple way to separate–as there is

in a single agent setting–the uncertainty domain (what

is happening?) from the decision domain (what shall I

do?) because these get entangled by the uncertainties

of what other agents will believe, desire and do. This

problem is not addressed here, but can be approached

by game-theoretic analyses, see, e.g., [9].

A Bayesian data fusion system or subsystem can

thus use any level in a ladder with increasing complex-

ity:

² Logic–no quantified uncertainty
² Precise Bayesian fusion
² Robust Bayesianism with DS-structures interpreted as
capacities

² General robust Bayesianism (or lower/upper previ-

sions)

² Robust Bayesianism with graded sets of distributions

Whether or not this simplistic view (ladder of Bayes-

ianisms) on uncertainty management is tenable in the

long run in an educational or philosophical sense is

currently not settled. We will not further consider the

first and the last rungs of the ladder.

4.1. Rounding

A set of distributions which is not a capacity can

be approximated by rounding it to a minimal capacity

that contains it (see Fig. 1), and this rounded set can

be represented by a DS-structure. This rounding “up-
wards” is accomplished by means of lower probabili-

ties (beliefs) of subsets of ¤. Specifically, in this ex-
ample we list the minimum probabilities of all subsets
of ¤= fA,B,Cg over the four corners of the polytope,
to get lower bounds for the beliefs. These can be con-

verted to masses using the Möbius inversion, or, in this
simple example, manually from small to large events.

For example, m(A) = bel(A), m(fA,Bg) = bel(fA,Bg)
¡m(A)¡m(B), and m(fA,B,Cg) = bel(fA,B,Cg)¡
m(fA,Bg)¡m(fA,Cg)¡m(fB,Cg)¡m(A)¡m(B)¡m(C).
Since we have not necessarily started with a capacity,

this may give negative masses to some elements. In that
case, some mass must be moved up in the lattice to make

all masses non-negative, and this can in the general case

be done in several ways, but each way gives a minimal
enclosing polytope. In the example, we have four cor-

ners, and the computation is shown in Table I. In this

example we immediately obtain non-negative masses,
and the rounded polytope is thus unique.

In the resulting up-rounded bba, when transforming

it to a capacity, we must consider 2 ¤ 2 ¤3 = 12 possible
corner points. However, only five of these are actually

corners of the convex hull in this case, and those are the

corners visible in the enclosing capacity of Fig. 1. The
other possible corner points turn out to lie inside, or

inside the facets of, the convex hull. As an example,

consider the lowest horizontal blue-dashed line; this
is a facet of the polytope characterized by no mass

flowing to B from the focal elements fA,Cg, fB,Cg
and fA,B,Cg. The masses of fA,Cg and fA,B,Cg can
thus be assigned either to A or to C. Assigning both to
C gives the left end-point of the facet, both to A gives
the right end-point, and assigning one to A and the other
to C gives two interior points on the line.
It is also possible, using linear programming, to

round downwards to a maximal capacity contained in a

set. Neither type of rounding is unique, i.e., in general
there may be several incomparable (by set inclusion) up-

or down-rounded capacities for a set of distributions.

5. DECISIONS UNDER UNCERTAINTY AND
IMPRECISION

The ultimate use of data fusion is usually decision

making. Precise Bayesianism results in quantities–

probabilities of possible worlds–that can be used im-

mediately for expected utility decision making [49, 4].

Suppose the profit in choosing a from a setA of possible
actions when the world state is ¸ is given by the utility
function u(a,¸) mapping action a and world state ¸ to a
real valued utility (e.g., dollars). Then the action max-

imizing expected profit is argmaxa
R
u(a,¸)f(¸ j x)d¸.

In robust Bayesian analysis one uses either minimax

criteria or estimates a precise probability distribution

to decide from. Examples of the latter are the pignistic

and relative plausibility transformations. An example of
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Fig. 1. Rounding a set of distributions over fA,B,Cg. The coordinates are the probabilities of A and B. A set spanned by four corner
distributions (black solid), its minimal enclosing (blue dashed), and one of its maximal enclosed (red dash-dotted), capacities.

TABLE I

Rounding a Convex Set of Distributions Given by its Corners¤

Focal Corners min m

A 0.200 0.222 0.333 0.286 0.200 0.200

B 0.050 0.694 0.417 0.179 0.050 0.050

C 0.750 0.083 0.250 0.536 0.083 0.083

fA,Bg 0.250 0.916 0.750 0.465 0.250 0

fA,Cg 0.950 0.305 0.583 0.822 0.305 0.022

fB,Cg 0.800 0.777 0.667 0.715 0.667 0.534

fA,B,Cg 1.000 1.000 1.000 1.000 1.000 0.111

¤Corners of the black polygon of Fig. 1 are listed clockwise, starting
at bottom left.

a decision-theoretically motivated estimate is the maxi-

mum entropy estimate, often used in robust probability

applications [38]. This choice can be given a decision-

theoretic motivation since it minimizes a game-theoretic

loss function, and can also be generalized to a range

of loss functions [28]. Specifically, a Decision maker

must select a distribution q while Nature selects a dis-
tribution p from a convex set ¡ . Nature selects an out-
come x according to its chosen distribution p, and the
decision makers loss is ¡ logq(x). This makes the De-
cision maker’s expected loss equal to Epf¡ logq(X)g.
The minimum (over q) of the maximum (over p) ex-
pected loss is then obtained when q is chosen to be the
maximum entropy distribution in ¡ . Thus, if this loss
function is accepted, it is optimal to use the maximum

entropy transformation for decision making.

The maximum entropy principle differs significantly

from the relative plausibility and pignistic transforma-

tions, since it tends to select a point on the boundary of

a set of distributions (if the set does not contain the uni-

form distribution), whereas the pignistic transformation

selects an interior point.

The pignistic and relative plausibility transforma-

tions are linear estimators, by which we mean that they

are obtained by normalization of a linear function of

the masses in the DS-structure. If we buy the concept

of a DS-structure as a set of possible probability distri-

butions, it would be natural to require that as estimate

we choose a possible distribution, and then the pignistic

transformation of Smets gets the edge–it is not difficult

to prove the following:

PROPOSITION 1 The pignistic transformation is the only
linear estimator of a probability distribution from a DS-
structure that is symmetric over ¤ and always returns
a distribution in the capacity represented by the DS-
structure.

Although we have no theorem to this effect, it seems

as if the pignistic transformation is also a reasonable

decision-oriented estimator approximately minimizing

the maximum Euclidean norm of difference between

the chosen distribution and the possible distributions,

and better than the relative plausibility transformation as

well as the maximum entropy estimate for this objective

function. The estimator minimizing this maximum norm

is the center of the smallest enclosing sphere. It will not

be linear in m, but can be computed with some effort
using methods presented, e.g., in [23]. The centroid is

sometimes proposed as an estimator, but it does not

correspond exactly to any known robust loss function–

rather it is based on the assumption that the probability

vector is uniformly distributed over the imprecision

polytope.
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The standard expected utility decision rule in pre-

cise probability translates in imprecise probability to

producing an expected utility interval for each deci-

sion alternative, the utility of an action a being given
by the interval Ia =

S
f2F

R
u(a,¸)f(¸ j x)d¸. In a refine-

ment proposed by Voorbraak [61], decision alternatives

are compared for each pdf in the set of possible pdfs:

Iaf =
R
u(a,¸)f(¸ j x)d¸, for f 2 F. Decision a is now

better than decision b if Iaf > Ibf for all f 2 F.
Some decision alternatives will fall out because they

are dominated in utility by others, but in general several

possible decisions with overlapping utility intervals will

remain. In principle, if no more information exists, any

of these decisions can be considered right. But they are

characterized by larger or smaller risk and opportunity.

6. ZADEH’S EXAMPLE

We will now discuss our problem in the context of

Zadeh’s example of two physicians who investigated

a patient independently–a case prototypical, e.g., for

the important fusion for target classification problem.

The two physicians agree that the problem (the diag-

nosis of the patient) is within the set fM,C,Tg, where
M is Meningitis, C is Concussion and T is brain Tu-
mor. However, they express their beliefs differently, as

a probability distribution which is (0:99,0,0:01) for the
first physician and (0,0:99,0:01) for the second. The
question is what a third party can say about the patients

condition with no more information than that given. If

the two expert opinions are taken as likelihoods, or as

posteriors with a common uniform prior, this problem

is solved by taking Laplace’s parallel composition (1)

of the two probability vectors, giving the result (0,0,1),

i.e., the case T is certain. This example has been dis-
cussed a lot in the literature, see e.g. [53]. It is a classical

example on how two independent sets of observations

can together eliminate cases to end up with a case not

really indicated by any of the two sets in separation.

Several such examples have been brought up as good

and prototypical in the Bayesian literature, e.g., in [38].

However, in the evidence theory literature the Bayesian

solution (which is also obtained from using Dempster’s

and the Modified Dempster’s rule) has been consid-

ered inadequate and this particular example has been the

starting point for several proposals of alternative fusion

rules.

The following are reactions I have met from profes-

sionals–physicians, psychiatrists, teachers and military

commanders–confronted with similar problems. They

are also prototypical for current discussions on evidence

theory.

² One of the experts probably made a serious mistake.
² These experts seem not to know what probability zero
means, and should be sent back to school.

² It is completely plausible that one eliminated M and

the other C in a sound way. So T is the main alter-

native, or rather T or something else, since there are
most likely more possibilities left.

² It seems as if estimates are combined at a too coarse
level: it is in this case necessary to distinguish in ¤
between different cases of the three conditions that

are most likely to effect the likelihoods from observa-

tions: type, size and position of tumor, bacterial, viral

or purely inflammatory meningitis, position of con-

cussion. The frame of discernment should thus not be

determined solely from the frame of interest, but also

on what one could call homogeneity of likelihoods or

evidence.

² The assessments for T are probably based mostly

on prior information (rareness) or invisibility in a

standard MR scan, so the combined judgment should

not make T less likely, rather the opposite.
² An investigation is always guided by the patient’s
subjective beliefs, and an investigation affects those

beliefs. So it is implausible that the two investigations

of the same patient are “really” independent. This

is a possible explanation for the Ulysses syndrome,

where persons are seen to embark on endless journeys

through the health care system. This view would

call for a game-theoretic approach (with parameters

difficult to assess).

What the example reactions teach us is that sub-

jects confronted with paradoxical information typically

start building their own mental models about the case

and insist on bringing in more information, in the form

of information about the problem area, the observation

protocols underlying the assessments, a new investiga-

tion, or pure speculation. The professionals handling of

the information problem is usually rational enough, but

very different conclusions arise from small differences

in mental models. This is a possible interpretation of the

prospect theory of Kahneman and Tversky [40].

To sum things up, if we are sure that the experts

are reliable and have the same definitions of the three

neurological conditions, the result given by Bayes’ and

Dempster’s rules are appropriate. If not, the assump-

tions and hence the statistical model must be modified.

It seems obvious that the decision makers belief in the

experts reliability must be explicitly elicited in similar

situations.

7. FUSION IN EVIDENCE AND ROBUST BAYESIAN
THEORY

The Dempster-Shafer combination rule [51] is a

straightforward generalization of Laplace’s parallel

composition rule. By this statement we do not claim

that this is the way DS theory is usually motivated.

But the model in which Dempster’s rule is motivated

[18] is different from ours: there it is assumed that each

source has its own possible world set, but precise beliefs

about it. The impreciseness results only from a multi-

valued mapping, ambiguity in how the information of
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the sources should be translated to a common frame

of discernment. It is fairly plausible that the informa-

tion given by the source is well representable as a DS

structure interpreted as a capacity. What is much less

plausible is that the information combined from several

sources is well captured by Dempster’s rule rather than

by the Fixsen/Mahler combination rule or the robust

combination rule to be described shortly. The precise as-

sumptions behind Dempster’s rule are seldom explained

in tutorials and seem not well known, so we recapitulate

them tersely: It is assumed that evidence comes from a

set of sources, where source i has obtained a precise
probability estimate pi over its private frame Xi. This
information is to be translated into a common frame ¤,
but only a multi-valued mapping ¡i is available, map-
ping elements of Xi to subsets of ¤. For the tuple of ele-
ments x1, : : : ,xn, their joint probability could be guessed
to be p1(x1) ¢ ¢ ¢pn(xn), but we have made assumptions
such that we know that this tuple is only possible if

¡1(x1)\ ¢¢ ¢ \¡n(xn) is non-empty. So the probabilities
of tuples should be added to the corresponding subset of

¤ probabilities, and then conditioning on non-emptiness
should be performed and the remaining subset proba-

bilities normalized, a simple application of (1). From

these assumptions Dempster’s rule follows.

This is postulated by Dempster as the model re-

quired. One can note that it is not based on inference, but

derived from an explicit and exact probability model. It

was claimed incoherent (i.e. violating the consistent bet-

ting paradigm) by Lindley [42], but Goodman, Nguyen

and Rogers showed that it is not incoherent [25]. In-

deed, the assumption of multi-valued mappings seems

completely innocent, if somewhat arbitrary, and it would

be unlikely to lead to inconsistencies. The recently in-

troduced Fixsen/Mahler MDS combination rule [22] in-

volves a re-weighting of the terms involved in the set in-

tersection operation: whereas Dempster’s combination

rule can be expressed as

mDS(e)/
X

e=e
1
\e

2

m1(e1)m2(e2), e 6=Ø (7)

the MDS rule is

mMDS(e)/
X

e=e
1
\e

2

m1(e1)m2(e2)
jej

je1jje2j
, e 6=Ø:

(8)

The MDS rule was introduced to account for non-

uniform prior information about the world and evidence

that contains prior information common to all sources.

In this case jej, etc, in the formula are replaced by the
prior probabilities of the respective sets. The rule (8)

is completely analogous to (4): the denominator of the

correction term takes the priors out of the posteriors of

both operands, and the numerator jej reinserts it once
in the result. But as we now will see, the MDS rule

can also be considered a natural result of fusing likeli-

hood describing information with a different likelihood

function.

It is possible to analyze the source fusion prob-

lem in a (precise) Bayesian setting. If we model the

situation with the likelihoods on 2¤£¤ of (6), Sec-

tion 4, we find the task of combining the two likelihoodsP
em1(e)l(e,¸) and

P
em2(e)l(e,¸) using Laplace’s par-

allel composition as in (2) over ¤, giving

f(¸)/
X
e
1
,e
2

m1(e1)m2(e2)li(e1,¸)li(e2,¸):

For the choice i= 1, this gives the relative plausibil-
ity of the result of fusing the evidences with Dempster’s

rule; for the likelihood l2 associated with the pignistic
transformation, we get

P
e
1
,e
2
m1(e1)m2(e2)l(e1,¸)l(e2,¸)

=(je1jje2j). This is the pignistic transformation of the
result of combining m1 and m2 using the MDS rule.
In the discussions for and against different combina-

tion and estimation operators, it has sometimes been

claimed that the estimation operator should propagate

through the combination operator. This claim is only

valid if the above indicated precise Bayesian approach is

bought, which would render DS-structures and convex

sets of distributions unnecessary. In the robust Bayesian

framework, the maximum entropy estimate is com-

pletely kosher, but it does not propagate through any

well known combination operation. The combination of

Dempster’s rule and the pignistic transformation cannot

easily be defended in a precise Bayesian framework, but

Dempster’s rule can be defended under the assumption

of multi-valued mappings and reliable sources, whereas

the pignistic transformation can be defended in three

ways: (1) It can be seen as “natural” since it results, e.g.,

from an indifference principle applied to the paramet-

ric representation of Blackman and Popoli; (2) Smets

argument [54] is that the estimation operator (e.g., the

pignistic transformation) should propagate, not through

the combination operator, but through linear mixing; (3)

An even more convincing argument would relate to de-

cisions made, e.g., it seems as if the pignistic transfor-

mation is, not exactly but approximately, minimizing

the norm of the maximum (over Nature’s choice) er-

ror made measured as the Euclidean norm of the dif-

ference between the selected distribution and Nature’s

choice.

7.1 The Robust Combination Rule

The combination of evidence–likelihood functions

normalized so they can be seen as probability distribu-

tions–and a prior over a finite space is thus done simply

by component-wise multiplication followed by normal-

ization [41, 57]. The resulting combination operation

agrees with the DS and the MDS rules for precise be-

liefs. The robust Bayesian version of this would replace

the probability distributions by sets of probability distri-

butions, for example represented as DS-structures. The
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most obvious combination rule would yield the set of

probability functions that can be obtained by taking one

member from each set and combining them. Intuitively,

membership means that the distribution can possibly be

right, and we would get the final result, a set of distri-

butions that can be obtained by combining a number of

distributions each of which could possibly be right. The

combination rule (3) would thus take the form (where

F denotes convex families of functions):

F(¸ j fX1,X2g)/ F(fX1,X2g j ¸)£F(¸)
= F(X1 j ¸)£F(X2 j ¸)£F(¸): (9)

DEFINITION 1 The robust Bayesian combination op-

erator £ combines two sets of probability distribu-

tions over a common space ¤. The value of F1£F2 is
fcf1f2 : f1 2 F1,f2 2 F2,c= 1=

P
¸2¤ f1(¸)f2(¸)g.

The operator can easily be applied to give too much

impreciseness, for reasons similar to the corresponding

problem in interval arithmetic: the impreciseness of like-

lihood functions has typically a number of sources, and

the proposed technique can give too large uncertainties

when these sources do not have their full range of varia-

tion within the evidences that will be combined. A most

extreme example is the sequence of plots returned by a

sensor: variability can have its source in the target, in the

sensor itself, and in the environment. But when a partic-

ular sensor follows a particular target, the variability of

these sources are not fully materialized. The variability

has its source only in the state (distance, inclination, etc)

of the target, so it would seem wasteful to assume that

each new plot comes from an arbitrarily selected sensor

and target. This, and similar problems, are inherent in

system design, and can be addressed by detailed analy-

ses of sources of variation, if such are feasible.

We must now explain how to compute the opera-

tor of Definition 1. The definition given of the robust

Bayesian combination operator involves infinite sets in

general and is not computable directly. For singleton

sets it is easily computed, though, with Laplace’s par-

allel composition rule. It is also the case that every cor-

ner in the resulting set can be generated by combining

two corners, one from each of the operands. This ob-

servation gives the method for implementation of the

robust operator. After the potential corners of the re-

sult have been obtained, a convex hull computation as

found, e.g., in MATLAB and OCTAVE, is used to tes-

sellate the boundary and remove those points falling in

the interior of the polytope. The figures of this paper

were produced by a Matlab implementation of robust

combination, Dempster’s and the MDS rule, maximum

entropy estimation, and rounding. The state of the art

in computational geometry software thus allows easy

and efficient solutions, but of course as the state space

and/or the number of facets of the imprecision poly-

topes become very large, some tailored approximation

methods will be called for. The DS and MDS rules have

exponential complexity in the worst case. The robust

rule will have a complexity quadratic in the number of

corners of the operands, and will thus depend on round-

ing for feasibility. For very high-dimensional problems

additional pruning of the corner set will be necessary

(as is also the case with the DS and MDS operators).

We can now make a few statements, most of which

are implicitly present in [19, Discussion by Aitchison]

and [32], about fusion in the robust Bayesian frame-

work:

² The combination operator is associative and commu-
tative, since it inherits these properties from the mul-

tiplication operator it uses.

² Precise beliefs combined gives the same result as
Dempster’s rule and yield new precise beliefs.

² A precise belief combined with an imprecise belief

will yield an imprecise belief in general–thus Demp-

ster’s rule underestimates imprecision compared to

the robust operator.

² Ignorance is represented by a uniform precise belief,

not by the vacuous assignment of DS-theory.

² The vacuous belief in the robust framework is a

belief that represents total skepticism, and will when

combined with anything yield a new vacuous belief (it

is thus an absorbing element). This belief has limited

use in the robust Bayesian context.

² Total skepticism cannot be expressed with Demp-

ster’s rule, since it never introduces a focal element

which is a superset of all focal elements in one

operand.

DEFINITION 2 A rounded robust Bayesian combination

operator combines two sets of probability distributions

over a common space ¤. The robust operation is applied
to the rounded operands, and the result is then rounded.

An important and distinguishing property of the

robust rule is:

OBSERVATION 1 The robust combination operator is,
and the rounded robust operator can be made (note: it
is not unique) monotone with respect to imprecision, i.e.,
if F 0i μ Fi, then F 01 £F 02 μ F1£F2.
PROPOSITION 2 For any combination operator £0 that
is monotone wrt imprecision and is equal to the Bayesian
(Dempster’s) rule for precise arguments, F1£F2 μ F1£0
F2, where £ is the robust rule.
PROOF By contradiction; thus assume there is an f 2
F1£F2 with f =2 F1£0 F2. By the definition of £, f =
ff1g£ff2g for some f1 2 F1 and f2 2 F2. But then f =
ff1g£0 ff2g, and since £0 is monotone wrt imprecision,
f 2 F1£0 F2, a contradiction.
We can also show that the MDS combination rule

has the “nice” property of giving a result that always

overlaps the robust rule result, under the capacity inter-

pretation of DS-structures:

PROPOSITION 3 Letm1 andm2 be two DS-structures and
let F1 and F2 be the corresponding capacities. If F is the
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capacity representing m=m1 ¤MDSm2 and F 0 is F1£F2,
then F and F 0 overlap.

PROOF Since the pignistic transformation propagates

through the MDS combination operator, and by Propo-

sition 1 the pignistic transformation is a member of the

capacity of the DS-structure, the parallel combination

of the pignistic transformations of m1 and m2 is a mem-
ber of F 0 and equal to the pignistic transformation of
m, which for the same reason is a member of F. This
concludes the proof.

The argument does not work for the original Demp-

ster’s rule, for reasons that will become apparent in the

next section. It was proved by Jaffray [37] that Demp-

ster’s rule applied with one operand being precise gives

a (precise) result inside the robust rule polytope. The

same holds of course, by Proposition 3, for the MDS

rule. We can also conjecture the following, based on ex-

tensive experimentation with our prototype implemen-

tation, but have failed in obtaining a short convincing

proof:

CONJECTURE 1 The MDS combination rule always gives
a result which is, in the capacity interpretation, a subset of
the robust rule result. The MDS combination rule is also
a coarsest symmetric bilinear operator on DS-structures
with this property.

8. A PARADOXICAL EXAMPLE

In [1] we analyzed several versions of Zadeh’s ex-

ample with “discounted” evidences to illustrate the dif-

ferences between robust fusion and the DS and MDS

rules, as well as some different methods to summarize

a convex set of pdfs as a precise pdf. Typically, the

DS and MDS rules give much smaller imprecision in

the result than the robust rule, which can be expected

from their behavior with one precise and one imprecise

operand. One would hope that the operators giving less

imprecision would fall inside the robust rule result, in

which case one would perhaps easily find some plausi-

ble motivation for giving less imprecision than indicated

in the result. In practice this would mean that a system

using robust fusion would sometimes find that there is

not a unique best action while a system based on the

DS or MDS rule would pick one of the remaining ac-

tions and claim it best, which is not obviously a bad

thing. However, the DS, MDS and robust rules do not

only give different imprecision in their results, they are

also pairwise incompatible (sometimes having an empty

intersection) except for the case mentioned in Conjec-

ture 1. Here we will concentrate on a simple, somewhat

paradoxical, case of combining two imprecise evidences

and decide from the result.

Varying the parameters of discounting a little in

Zadeh’s example, it is not difficult to find cases where

Dempster’s rule gives a capacity disjoint (regarded as

a geometric polytope) from the robust rule result. A

simple Monte Carlo search indicates that disjointness

does indeed happen in general, but infrequently. Typ-

ically, Dempster’s rule gives an uncertainty polytope

that is clearly narrower than that of the robust rule,

and enclosed in it. In Fig. 2 we show an example

where this is not the case. The two combined evi-

dences are imprecise probabilities over three elements

A, B and C, the first spanned by the probability distri-
butions (0:2,0:2,0:6) and (0:2,0:5,0:3), the second by
(0:4,0:1,0:5) and (0:4,0:5,0:1). These operands can be
represented as DS structures, as shown in Table II, and

they are shown as vertical green lines in Fig. 2. They

can be combined with either the DS rule, the MDS rule,

or the robust rule, as shown in Table III. The situation is

illustrated in Fig. 2, where all sets of pdfs are depicted

as lines or polygons projected on the first two proba-

bilities. The figure shows that the robust rule claims the

probability of the first event A (horizontal axis) to be
between 0.2 and 0.33, whereas Dempster’s rule would

give it an exact probability around 0.157. The MDS

rule gives a result that falls nicely inside the robust rule

result, but it claims an exact value for the probability

of A, namely 0.25. Asked to bet with odds six to one
on the first event (by which we mean that the total gain

is six on success and the loss is one on failure), the

DS rule says decline, the robust and MDS rules say

accept. For odds strictly between four and five to one,

the robust rule would hesitate and MDS would still say

yes. For odds strictly between three and four to one, DS

and MDS would decline whereas the robust rule would

not decide for or against. Including the refinement pro-

posed by Voorbraak (see Section 5) would not alter this

conclusion unless the imprecisions of the two operands

were coupled, e.g., by common dependence on a third

quantity.

In an effort to reconcile Bayesian and belief meth-

ods, Blackman and Popoli [8, ch. 7] propose that the

result of fusion should be given the capacity interpre-

tation as a convex set, whereas the likelihoods should

not–an imprecise likelihood should instead be repre-

sented as the coarsest enclosing DS-structure having the

same pignistic transformation as the original one. When

combined with Dempster’s rule, the result is again a

prior for the next combination whose capacity interpre-

tation shows its imprecision. The theorem proved–at

some length–in [8, App. 8A] essentially says that this

approach is compatible with our robust rule for pre-

cise likelihoods. In our example, if the second operand

is coarsened to fm02(A) 7! 0:1,m02(fA,B,Cg) 7! 0:9g, the
fusion result will be a vertical line at 0.217, going from

0.2 to 0.49, just inside the robust rule result. However

no mass will be assigned to a non-singleton set con-

taining A, so the rule still gives a precise value to the
probability of A. The philosophical justification of this
approach appears weak.

The example shows that Dempster’s rule is not com-

patible with the capacity interpretation, whereas the

MDS rule is: there is no pair of possible pdfs for the

operands that combine to any possible value in the
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Fig. 2. A case where the robust rule and Dempster’s rule give paradoxical results. The coordinates are the probabilities of A and B. The

operands are shown in green dashed, the result of the robust combination rule is shown in black solid (same as in Fig. 1), Dempster’s rule

gives the result shown in red dotted, the Fixsen/Mahler MDS rule shown in blue dash-dotted lines.

Dempster’s rule result, wheras every possible pdf in the

MDS rule results from combining some pair of possible

pdfs for the operands. If Conjecture 1 can be proved, the

last is true for all pairs of operands, but there are also

many particular examples where even Dempster’s rule

gives a compatible result. It has been noted by Walley

that Dempster’s rule is not the same as the robust combi-

nation rule [62], but I have not seen a demonstration that

the two are incompatible in the above sense. There is, of

course, a rational explanation of the apparent paradox,

namely that the assumptions of private frames of dis-

cernment for sources and of a multi-valued mapping for

each source is very different from the assumption of im-

precise likelihoods, and this means that some informa-

TABLE III

Fusing the Operands of Table II with the DS, MDS and Robust Rules¤

Focal Fusion Result

DS MDS Robust Uprounded

c1 c2 m c1 c2 m c11 c22 c12 c21 m

A 0.157 0.157 0.157 0.250 0.250 0.250 0.200 0.222 0.333 0.286 0.200

B 0.255 0.490 0.255 0.422 0.234 0.234 0.050 0.694 0.417 0.179 0.050

C 0.588 0.353 0.353 0.328 0.516 0.328 0.750 0.083 0.250 0.536 0.083

fA,Bg 0 0 0

fA,Cg 0 0 0.022

fB,Cg 0.235 0.188 0.534

fA,B,Cg 0 0 0.111

¤The result for DS and MDS shown as two corners (c1 and c2), and as an equivalent DS-structure (m). For the robust rule result, its four
spanning corners are shown, where, e.g., c21 was obtained by combining the second corner c2 of op1 with c1 of op2, etc. These corners are

the corners of the black polygon in Fig. 2. The robust rule result is also shown as a DS-structure for the up-rounded result (blue dashed line

in Fig. 1). Values are rounded to three decimals.

TABLE II

Two Operands of the Paradoxical Example¤

Focal op1 op2

c1 c2 m c1 c2 m

A 0.2 0.2 0.2 0.4 0.4 0.4

B 0.2 0.5 0.2 0.1 0.5 0.1

C 0.6 0.3 0.3 0.5 0.1 0.1

fB,Cg 0.3 0.4

¤Columns marked m denote DS-structures and those marked c1, c2
denote corners spanning the corresponding capacity. Values are exact.
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tion in the private frames is still visible in the end result

when Dempster’s rule is used. Thus Dempster’s rule

effectively makes a combination in the frame 2¤ instead

of in ¤ as done by the robust rule. It is perhaps more
surprising that the paradoxical result is also obtainable

in the frame ¤ using precise Bayesian analysis and the
likelihood l1(e,¸) (see Section 4). The main lesson here,
as in other places, is that we should not use Dempster’s

rule unless we have reason to believe that imprecision

is produced by the multi-valued mapping of Dempster’s

model rather than Fixsen/Mahler’s model or incomplete

knowledge of sampling functions and prior. If the MDS

operator is used to combine likelihoods or a likelihood

and a prior, then posteriors should be combined using

the MDS rule (8), but with all set cardinalities squared.

Excluding Bayesian thinking from fusion may well

lead to inferior designs.

9. CONCLUSIONS

Despite the normative claims of evidence theory and

robust Bayesianism, the two have been considered dif-

ferent in their conclusions and general attitude towards

uncertainty. The Bayesian framework can however de-

scribe most central features of evidence theory, and is

thus a useful basis for teaching and comparison of dif-

ferent detailed approaches to information fusion. The

teaching aspect is not limited to persuading engineers

to think in certain ways. For higher level uncertainty

management, dealing with quantities recognizable to

users like medical researchers, military commanders,

and their teachers in their roles as evaluators, the need

for clarity and economy of concepts cannot be exag-

gerated. The arguments put forward above suggest that

an approach based on the precise Bayesian and the ro-

bust Bayesian fusion operator is called for, and that

choosing decision methods based on imprecise prob-

abilities or DS structures should preferably be based on

decision-theoretic arguments. Our example shows how

dangerous it can be to apply evidence theory without

investigating the validity in an application of its crucial

assumption of reliable private frames for all sources of

evidence and precise multi-valued mappings from this

frame to the frame of interest. The robust rule seems

to give a reasonable fit to most fusion rules based on

different statistical models, with the notable exception

of Dempster’s rule. Thus, as long as the capacity inter-

pretation is prevalent in evidence theory applications,

there are good reasons to consider if the application

would benefit from using the MDS rule (complemented

with priors if available) also for combining information

in the style of likelihoods. In this case, however, the

combination of the MDS rule with pignistic transfor-

mation is interpretable as a precise Bayesian analysis.

In most applications I expect that the precise Bayesian

framework is adequate, and it is mainly in applications

with the taste of risk analysis that the robust Bayesian

framework will be appropriate.
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