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Abstract—Multi-criteria decision making (MCDM) is to make
decisions in the presence of multiple criteria. To make a decision
in the framework of MCDM under uncertainty, a novel fuzzy -
Cautious OWA with evidential reasoning (FCOWA-ER) approach
is proposed in this paper. Payoff matrix and belief functions of
states of nature are used to generate the expected payoffs, based
on which, two Fuzzy Membership Functions (FMFs) representing
optimistic and pessimistic attitude, respectively can be obtained.
Two basic belief assignments (bba’s) are then generated from
the two FMFs. By evidence combination, a combined bba is
obtained, which can be used to make the decision. There is no
problem of weights selection in FCOWA-ER as in traditional
OWA. When compared with other evidential reasoning-based
OWA approaches such as COWA-ER, FCOWA-ER has lower
computational cost and clearer physical meaning. Some experi-
ments and related analyses are provided to justify our proposed
FCOWA-ER.

Index Terms—Evidence theory, OWA, belief function, uncer-
tainty, decision making, information fusion.

I. INTRODUCTION

In real-life situations, decision making always encounters
difficult multi-criteria problems [1]. In classical Multi-Criteria
Decision Making (MCDM) framework, the ordered weighted
averaging (OWA) approach proposed by Yager [2] has been
increasingly used in wide range of successful applications for
the aggregation of decision making problems such as image
processing, fuzzy control, market prediction and expert sys-
tems, etc [3]. OWA is a generalized mean operator providing
flexibility in the aggregation. Thus the aggregation can be
bounded between minimum and maximum operators. This
flexibility of the OWA operator is implemented by using the
concept of orness (optimism) [4], which is a surrogate for
decision maker’s attitude. One important issue in the OWA
aggregation is the determination of the associated weights.
Many approaches [5]–[10] have been proposed to determine
the weights in OWA. See the related references for details.

In multi-criteria decision making, decisions are often made
under uncertainty, which are provided by several more or less
reliable sources and depend on the states of the world: deci-
sions can be taken in certain, risky or uncertain environment.
To implement the decision making under uncertainty, many
approaches were proposed including DS-AHP [11], DSmT-
AHP [12] and ER-MCDA [13], etc. Especially for the OWA
under uncertainty, Yager proposed an OWA approach with

evidence reasoning [14]. In our previous work, a cautious
OWA with evidential reasoning (COWA-ER) was proposed to
take into account the imperfect evaluations of the alternatives
and the unknown beliefs about groups of the possible states
of the world. COWA-ER mixes MCDM principles, decision
under uncertainty principles and evidential reasoning. There
is no step of weights selection in COWA-ER, which is good
for the practical use. Recently, we find that there also exists
drawbacks in COWA-ER. More precisely, the computational
cost of the combination of different evidences by COWA- ER
highly depends on the number of alternatives we encounter
in decision making. When the number of alternatives is large,
the computational cost will increase significantly.

In this paper, we propose a modified COWA-ER ap-
proach, called Fuzzy-Cautious OWA with Evidential Rea-
soning (FCOWA-ER), by using a different way to manage
the uncertainty caused by weights selection. Payoff matrix
together with the belief structure (knowledge of the states
of the nature) are used to generate two Fuzzy Membership
Functions (FMFs) representing the optimistic and pessimistic
attitude, respectively. Then two bba’s can be obtained based
on the two FMF’s by using 𝛼-cut approach. Based on evidence
combination, the combined bba can be obtained and the final
decision can be made. The FCOWA-ER approach doesn’t
need a (ad-hoc) selection of weights as in the traditional
OWA. When compared with COWA-ER, FCOWA-ER has less
computational cost and clearer physical meaning because it
requires only one combination operation regardless of the
number of alternatives. The proposed FCOWA-ER can be
seen as a trade-off between the optimistic and the pessimistic
attitudes. The preference of the two attitudes can be adjusted
by the users using discounting factors in the combination
of evidences. Some experiments and related analyses are
provided to show the rationality and efficiency of this new
FCOWA-ER approach.

II. MULTI-CRITERIA DECISION MAKING UNDER
UNCERTAINTY

Multi-criteria decision making (MCDM) refers to making
decisions in the presence of multiple, usually conflicting or
discordant, criteria. Consider the following matrix 𝐶 provided
to a decision maker:
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𝑆1 ⋅ ⋅ ⋅ 𝑆𝑗 ⋅ ⋅ ⋅ 𝑆𝑛

𝐴1

...
𝐴𝑖

...
𝐴𝑞

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 ⋅ ⋅ ⋅ 𝐶1𝑗 ⋅ ⋅ ⋅ 𝐶1𝑛

...
... ...

𝐶𝑖1 𝐶𝑖𝑗 𝐶𝑖𝑛

...
𝐶𝑞1

⋅ ⋅ ⋅
...

𝐶𝑞𝑗

...
⋅ ⋅ ⋅ 𝐶𝑞𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐶

In the above each 𝐴𝑖 corresponds to a possible alternative
available to the decision maker. Each 𝑆𝑗 corresponds to a
possible value of the variable called the state of nature. 𝐶𝑖𝑗

corresponds to the payoff to be received by the decision maker
if he selects action 𝐴𝑖 and the state of nature is 𝑆𝑗 . The
problem encountered by the decision maker in MCDM is to
select the action which gives him the optimum payoff.

Among all the available MCDM approaches, Ordered
Weighted Averaging (OWA) is a very important one, which
is introduced below.

A. Ordered Weighted Averaging (OWA)

OWA was proposed by Yager in [2]. An OWA operator of
dimension 𝑛 is a function 𝐹 : ℝ𝑛 → ℝ that has associated
with a weighting vector1 𝑊 = [𝑤1, 𝑤2, ..., 𝑤𝑛]

𝑇 such that
𝑤𝑖 ∈ [0, 1] and

∑𝑛
𝑖=1 𝑤𝑖 = 1. For any set of values 𝑎1, ..., 𝑎𝑛

𝐹 (𝑎1, ..., 𝑎𝑛) =
∑𝑛

𝑖=1
(𝑤𝑖 ⋅ 𝑏𝑖) (1)

where 𝑏𝑖 is the 𝑖th largest element in the collection 𝑎1, ..., 𝑎𝑛.
It should be noted that the weights in the OWA operator are
associated with a position in the ordered arguments rather than
a particular argument.

The OWA operator depends on the associated weights,
hence the weights determination is very crucial. Some com-
monly used weights selection strategies are as follows [14]:

1) Pessimistic Attitude: If 𝑊 = [0, 0, ..., 1]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = min𝑗 [𝑎𝑗 ].

2) Optimistic Attitude: If 𝑊 = [1, 0, ..., 0]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = max𝑗 [𝑎𝑗 ].

3) Hurwicz Strategy: If 𝑊 = [𝛼, 0, ..., 1− 𝛼]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = 𝛼 ⋅max𝑗 [𝑎𝑗 ] + (1− 𝛼) ⋅min[𝑎𝑗 ].

4) Normative Strategy: If 𝑊 = [1/𝑛, 1/𝑛, ..., 1/𝑛]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = (1/𝑛) ⋅
∑𝑛

𝑖=1
𝑎𝑖.

The OWA operator can be seen as the decision-making
under ignorance, because in classical OWA, there is no knowl-
edge about the true state of the nature but that it belongs to a
finite set. It should be noted that the pessimistic and optimistic
strategies provide limited classes of OWA operators. There
also exist other strategies to determine the weights, e.g., the
weights generation based on entropy maximization. See related
references [5]–[10] for details.

1where 𝑋 is a vector or a matrix and 𝑋𝑇 denotes the transpose of 𝑋 .

Based on such OWA operators, for each alternative
𝐴𝑖, 𝑖 = 1, . . . , 𝑞, we can choose a weighting vector
𝑊𝑖 = [𝑤𝑖1, 𝑤𝑖2, . . . 𝑤𝑖𝑛] and compute its OWA value 𝑉𝑖 ≜
𝐹 (𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑛) =

∑
𝑗 𝑤𝑖𝑗 ⋅ 𝑏𝑖𝑗 where 𝑏𝑖𝑗 is the 𝑗th

largest element in the collection of payoffs 𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑛.
Then, as for decision-making under ignorance, we choose
𝐴∗ = 𝐴𝑖∗ with 𝑖∗ ≜ argmax𝑖{𝑉𝑖}.

B. Uncertainty in MCDM context
Decisions are often made based on imperfect information

and knowledge (imprecise, uncertain, incomplete) provided
by several more or less reliable sources and depend on the
states of the world: decisions can be taken in certain, risky or
uncertain environment [15]. In a MCDM context, the decision
under uncertainty means that the evaluations of the alternative
are dependent on the state of the world.

Introducing the ignorance and the uncertainty in a MCDM
process consists in considering that consequences of alterna-
tives (𝐴𝑖) depend on the state of nature represented by a finite
set 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑛}. For each state, the MCDM method
provides an evaluation 𝐶𝑖𝑗 . We assume that this evaluation
𝐶𝑖𝑗 done by the decision maker corresponds to the choice of
𝐴𝑖 ∈ {𝐴1, ..., 𝐴𝑞} when 𝑆𝑗 occurs with a given (possibly
subjective) probability. The evaluation matrix is defined as
𝐶 = [𝐶𝑖𝑗 ] where 𝑖 = 1, ..., 𝑞 and 𝑗 = 1, ..., 𝑛.

Since the payoff to the decision maker depends upon the
state of nature, his procedure for selecting the best alternative
depends upon the type of knowledge he has about the state of
nature. For representing the uncertainty for the state of nature,
the belief functions introduced in Dempster-Shafer Theory
(DST) [16] (known also as the Evidence Theory) can be used.
This is briefly introduced below.

C. Basics of Evidence Theory
In DST, the elements in the frame of discernment (FOD)

denoted by Θ are mutually exclusive and exhaustive. Suppose
2Θ denotes the powerset of FOD. One defines the function
𝑚 : 2Θ → [0, 1] as the basic belief assignment (bba, also
called mass function) if it satisfies:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (2)

The belief function (𝐵𝑒𝑙) and the plausibility function (𝑃𝑙)
are defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (3)

𝑃𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅
𝑚(𝐵) (4)

Let us consider two bba’s 𝑚1(.) and 𝑚2(.) defined over the
FOD Θ. Their corresponding focal elements2 are 𝐴1, ..., 𝐴𝑘

and 𝐵1, ..., 𝐵𝑙. If 𝑘 =
∑

𝐴𝑖∩𝐵𝑗=∅ 𝑚1(𝐴𝑖)𝑚2(𝐵𝑗) < 1, the
function 𝑚 : 2Θ → [0, 1] denoted by

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑

𝐴𝑖∩𝐵𝑗=𝐴
𝑚1(𝐴𝑖)𝑚2(𝐵𝑗)

1− ∑
𝐴𝑖∩𝐵𝑗=∅

𝑚1(𝐴𝑖)𝑚2(𝐵𝑗)
, 𝐴 ∕= ∅ (5)

2a focal element 𝑋 of a bba 𝑚(.) is an element of the power set of the
FOD such that 𝑚(𝑋) > 0.
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is also a bba. The rule defined in Eq. (5) is called Dempster’s
rule of combination.

D. MCDM with belief structures

Yager proposed an approach for decision making with belief
structures [14]. One considers a collection of 𝑞 alternatives
belonging to 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑞} and a finite set 𝑆 =
{𝑆1, 𝑆2, ..., 𝑆𝑛} of states of the nature. We assume that the
payoff/gain 𝐶𝑖𝑗 of the decision maker in choosing 𝐴𝑖 when
𝑆𝑗 occurs are given by positive (or null) numbers. The payoffs
𝑞 × 𝑛 matrix is defined by 𝐶 = [𝐶𝑖𝑗 ] where 𝑖 = 1, ..., 𝑞
and 𝑗 = 1, ..., 𝑛 as in eq. (2). The decision-making problem
consists in choosing the alternative 𝐴∗ ∈ 𝐴 which maximizes
the payoff to the decision maker given the knowledge on the
state of the nature and the payoffs matrix 𝐶. 𝐴∗ ∈ 𝐴 is called
the best alternative or the solution (if any) of the decision-
making problem.

In Yager’s approach, the knowledge on the state of the
nature is characterized by a belief structure. Clearly, one
assumes that a priori knowledge on the frame 𝑆 of the different
states of the nature is given by a bba 𝑚(.) : 2𝑆 → [0, 1].
Decision under certainty is characterized by 𝑚(𝑆𝑗) = 1;
Decision under risk is characterized by 𝑚(𝑆𝑗) > 0 for some
states 𝑆𝑗 ∈ 𝑆; Decision under full ignorance is characterized
by 𝑚(𝑆1 ∪ 𝑆2 ∪ ...∪ 𝑆𝑛) = 1, etc. Yager’s OWA for decision
making under uncertainty combines the schemes used for
decision making under risk and ignorance. It is based on the
derivation of a generalized expected value 𝐶𝑖 of payoff for
each alternative 𝐴𝑖 as follows:

𝐶𝑖 =
∑𝑟

𝑘=1
𝑚(𝑋𝑘)𝑉𝑖𝑘 (6)

where 𝑟 is the number of focal elements of the belief structure.
𝑚(𝑋𝑘) is the mass assignment of the focal element 𝑋𝑘 ∈ 2𝑆 .
𝑉𝑖𝑘 is the payoff we get when we select alternative 𝐴𝑖 and
the state of nature lies in 𝑋𝑘. The derivation of 𝑉𝑖𝑘 is done
similarly as for the decision making under ignorance (i.e., the
procedure of OWA) when restricting the states of the nature
to the subset of states belonging to 𝑋𝑘 only. One can choose
different strategies to determinate the weights. Actually, 𝐶𝑖 is
essentially the expected value of the payoffs under 𝐴𝑖. Select
the alternative with highest 𝐶𝑖 as the optimal one.

E. Cautious OWA with Evidential Reasoning

Yager’s OWA approach is based on the choice of a given
attitude measured by an optimistic index in [0, 1] to get the
weighting vector 𝑊 . How to choose such an index/attitude?
This choice is ad-hoc and very disputable for users. In our
previous work [15] we have only considered jointly the two
extreme attitudes (pessimistic and optimistic ones) jointly and
developed a method called Cautious OWA with Evidential
Reasoning (COWA-ER) for decision under uncertainty based
on the imprecise evaluation of alternatives.

In COWA-ER, the pessimistic and optimistic OWA are used
respectively to construct the intervals of expected payoffs for
different alternatives. For example, if there exist 𝑞 alternatives,

the expected payoffs are as follows.

𝐸[𝐶] =

⎡⎢⎢⎣
𝐸[𝐶1]
𝐸[𝐶2]

...
𝐸[𝐶𝑞]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
[𝐶min

1 , 𝐶max
1 ]

[𝐶min
2 , 𝐶max

2 ]
...

[𝐶min
𝑞 , 𝐶max

𝑞 ]

⎤⎥⎥⎦
Therefore, one has 𝑞 sources of information about the

parameter associated with the best alternative to choose.
For decision making under imprecision, the belief functions
framework is used again. COWA-ER includes four steps:

∙ Step 1: normalization of imprecise values in [0, 1];
∙ Step 2: conversion of each normalized imprecise value

into elementary bba 𝑚𝑖(.);
∙ Step 3: fusion of bba 𝑚𝑖(.) with some combination rule;
∙ Step 4: choice of the final decision based on the resulting

combined bba.
In step 2, we convert each imprecise value into its bba
according to a very natural and simple transformation [17].
Here, we need to consider the finite set of alternatives
Θ = {𝐴1, 𝐴2, . . . , 𝐴𝑞} as the frame of discernment and the
sources of belief associated with them are obtained from the
normalized imprecise expected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. The
modeling for computing a bba associated to 𝐴𝑖 from any
imprecise value [𝑎; 𝑏] ⊆ [0; 1] is simple and is done as follows:⎧⎨⎩

𝑚𝑖(𝐴𝑖) = 𝑎,

𝑚𝑖(𝐴𝑖) = 1− 𝑏

𝑚𝑖(𝐴𝑖 ∪𝐴𝑖) = 𝑚𝑖(Θ) = 𝑏− 𝑎

(7)

where 𝐴𝑖 is the 𝐴𝑖’s complement in Θ. With such a conver-
sion, one sees that 𝐵𝑒𝑙(𝐴𝑖) = 𝑎, 𝑃𝑙(𝐴𝑖) = 𝑏. The uncertainty
is represented by length of the interval [𝑎; 𝑏] and corresponds
to the imprecision of the variable (here the expected payoff)
on which the belief function for 𝐴𝑖 is defined.

III. A NOVEL FUZZY-COWA-ER

The COWA-ER has its rationality and can well process the
MCDM under uncertainty. However the complexity and the
computational time of the combination of COWA-ER method
is highly dependent on the number of alternatives used for
decision-making. When the number of alternatives is large,
the computational cost will increase significantly. In COWA-
ER, each expected interval is used as the information sources,
however, these expected intervals are jointly obtained and thus
these information sources are relatively correlated, which is
harmful for the followed evidence combination. In this paper,
we propose modified COWA-ER called Fuzzy-COWA-ER.
Before presenting the principle of FCOWA-ER, we first recall
that the pessimistic and optimistic OWA versions are used
respectively to construct the intervals of expected payoffs for
different alternatives as follows:

𝐸[𝐶] =

⎡⎢⎢⎣
𝐸[𝐶1]
𝐸[𝐶2]

...
𝐸[𝐶𝑞]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
[𝐶min

1 , 𝐶max
1 ]

[𝐶min
2 , 𝐶max

2 ]
...

[𝐶min
𝑞 , 𝐶max

𝑞 ]

⎤⎥⎥⎦
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A. Principle of FCOWA-ER

In COWA-ER, each row of the expected payoff 𝐸[𝐶] is used
as information sources while in FCOWA-ER, we consider the
two columns of 𝐸[𝐶] as two information sources, representing
the pessimistic and the optimistic attitude, respectively. The
column-wise normalized expected payoff is

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎢⎣
𝑁min

1 , 𝑁max
1

𝑁min
2 , 𝑁max

2

...
𝑁min

𝑞 , 𝑁max
𝑞

⎤⎥⎥⎦
where 𝑁min

𝑖 ∈ [0, 1] (𝑖 = 1, ..., 𝑞) represents the normalized
value in the column of pessimistic attitude and 𝑁max

𝑖 ∈ [0, 1]
represents the normalized value in the column of optimistic
attitude. The vectors [𝑁min

1 , ..., 𝑁min
𝑞 ] and [𝑁max

1 , ..., 𝑁max
𝑞 ]

can be seen as two fuzzy membership functions (FMFs)
representing the possibilities of all the alternatives: 𝐴1, ..., 𝐴𝑞.

The principle of FCOWA-ER includes the following steps:
∙ Step 1: normalize each column in 𝐸[𝐶], respectively, to

obtain 𝐸𝐹𝑢𝑧𝑧𝑦[𝐶];
∙ Step 2: conversion of two normalized columns, i.e., two

FMFs into two bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.);
∙ Step 3: fusion of bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.) with some

combination rule;
∙ Step 4: choice of the final decision based on the resulting

combined bba.
In Step 2, we implement the conversion of the FMF into

the bba by using 𝛼-cut approach as follows:
Suppose the FOD is Θ = {𝐴1, 𝐴2, ..., 𝐴𝑞} and the FMF is

𝜇(𝐴𝑖), 𝑖 = 1, ..., 𝑞, the corresponding bba introduced in [18]
is used to generate 𝑀 𝛼-cut (0 < 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛼𝑀 ≤ 1),
where 𝑀 ≤ ∣Θ∣ = 𝑛.{

𝐵𝑗 = {𝐴𝑖 ∈ Θ∣𝜇(𝐴𝑖) ≥ 𝛼𝑗}
𝑚(𝐵𝑗) =

𝛼𝑗−𝛼𝑗−1

𝛼𝑀

(8)

𝐵𝑗 , for 𝑗 = 1, ...,𝑀 , (𝑀 ≤ ∣Θ∣) represents the focal element.
For simplicity, here we set 𝑀 = 𝑞 and 0 < 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ <
𝛼𝑞 ≤ 1 as the sort of 𝜇(𝐴𝑖).

B. Example of FCOWA-ER versus COWA-ER and OWA

Example 1: Let’s take states 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5} with
the associated bba 𝑚(.) given by:⎧⎨⎩𝑚(𝑆1 ∪ 𝑆3 ∪ 𝑆4) = 0.6

𝑚(𝑆2 ∪ 𝑆5) = 0.3

𝑚(𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5) = 0.1

Let’s also consider alternatives 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} and
the payoffs matrix:

𝐶 =

⎡⎢⎣ 7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

⎤⎥⎦ (9)

1) Implementation of OWA: The 𝑟 = 3 focal elements of
𝑚(.) are 𝑋1 = 𝑆1 ∪ 𝑆3 ∪ 𝑆4, 𝑋2 = 𝑆2 ∪ 𝑆5 and 𝑋3 =
𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5. 𝑋1 and 𝑋2 are partial ignorance
and 𝑋3 is the full ignorance. One considers the following
submatrix (called bags by Yager) for the derivation of 𝑉𝑖𝑘, for
𝑖 = 1, 2, 3, 4 and 𝑘 = 1, 2, 3.

𝑀(𝑋1) =

⎡⎢⎣𝑀11

𝑀21

𝑀31

𝑀41

⎤⎥⎦ =

⎡⎢⎣ 7 12 13
12 5 11
9 3 10
6 11 15

⎤⎥⎦

𝑀(𝑋2) =

⎡⎢⎣𝑀12

𝑀22

𝑀32

𝑀42

⎤⎥⎦ =

⎡⎢⎣ 5 6
10 2
13 9
9 4

⎤⎥⎦

𝑀(𝑋3) =

⎡⎢⎣𝑀13

𝑀23

𝑀33

𝑀43

⎤⎥⎦ =

⎡⎢⎣ 7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

⎤⎥⎦ = 𝐶

∙ Using pessimistic attitude, and applying the OWA op-
erator on each row of 𝑀(𝑋𝑘) for 𝑘 = 1 to 𝑟, one
gets finally: 𝑉 (𝑋1) = [𝑉11, 𝑉21, 𝑉31, 𝑉41]

𝑇
= [7, 5, 3, 6]

𝑇 ,
𝑉 (𝑋2) = [𝑉12, 𝑉22, 𝑉32, 𝑉42]

𝑇
= [5, 2, 9, 4]

𝑇 and 𝑉 (𝑋3). =
[𝑉13, 𝑉23, 𝑉33, 𝑉43]

𝑇
= [5, 2, 3, 4]

𝑇 . Applying formula (6)
for 𝑖 = 1, 2, 3, 4 one gets finally the following generalized
expected values using vectorial notation:

[𝐶1, 𝐶2, 𝐶3, 𝐶4]
𝑇 =

∑𝑟=3

𝑘=1
𝑚(𝑋𝑘) ⋅ 𝑉 (𝑋𝑘) = [6.2, 3.8, 4.8, 5.2]𝑇

According to these values, the best alternative to take is 𝐴1

since it has the highest generalized expected payoff.

∙ Using optimistic attitude, one takes the max value of each
row, and applying OWA on each row of 𝑀(𝑋𝑘) for 𝑘 = 1 to 𝑟,
one gets: 𝑉 (𝑋1) = [𝑉11, 𝑉21, 𝑉31, 𝑉41]

𝑇
= [13, 12, 10, 15]

𝑇 ,
𝑉 (𝑋2) = [𝑉12, 𝑉22, 𝑉32, 𝑉42]

𝑇
= [6, 10, 13, 9]

𝑇 , and
𝑉 (𝑋3) = [𝑉13, 𝑉23, 𝑉33, 𝑉43]

𝑇
= [13, 12, 13, 15]

𝑇 . One fi-
nally gets [𝐶1, 𝐶2, 𝐶3, 𝐶4]

𝑇
= [10.9, 11.4, 11.2, 13.2]

𝑇 and
the best alternative to take with optimistic attitude is 𝐴4 since
it has the highest generalized expected payoff. Then we have
expected payoff as

𝐸[𝐶] =

⎡⎢⎣𝐸[𝐶1]
𝐸[𝐶2]
𝐸[𝐶3]
𝐸[𝐶4]

⎤⎥⎦ ⊂

⎡⎢⎣[6.2; 10.9][3.8; 11.4]
[4.8; 11.2]
[5.2; 13.2]

⎤⎥⎦
2) Implementation of COWA-ER: Let’s describe in details

each step of COWA-ER. In step 1, we divide each bound of
intervals by the max of the bounds to get a new normalized
imprecise expected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. In our example,
one gets:

𝐸𝐼𝑚𝑝[𝐶] =

⎡⎢⎣[6.2/13.2; 10.9/13.2][3.8/13.2; 11.4/13.2]
[4.8/13.2; 11.2/13.2]
[5.2/13.2; 13.2/13.2]

⎤⎥⎦ ≈

⎡⎢⎣[0.47; 0.82][0.29; 0.86]
[0.36; 0.85]
[0.39; 1.00]

⎤⎥⎦
In step 2, we convert each imprecise value into its bba

according to a very natural and simple transformation [17].
Here, we need to consider the finite set of alternatives Θ =
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{𝐴1, 𝐴2, 𝐴3, 𝐴4} as FOD. The sources of belief associated
with them are obtained from the normalized imprecise ex-
pected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. The modeling for computing
a bba associated to the hypothesis 𝐴𝑖 from any imprecise
value [𝑎; 𝑏] ⊆ [0; 1] is very simple and is done as in (7).
where 𝐴𝑖 is the complement of 𝐴𝑖 in Θ. With such a simple
conversion, one sees that 𝐵𝑒𝑙(𝐴𝑖) = 𝑎, 𝑃𝑙(𝐴𝑖) = 𝑏. The
uncertainty is represented by the length of the interval [𝑎; 𝑏]
and it corresponds to the imprecision of the variable (here
the expected payoff) on which the belief function for 𝐴𝑖 is
defined. In the example, one gets:

TABLE I
BBA’S OF THE ALTERNATIVES USED IN COWA-ER.

Alternatives 𝐴𝑖 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖 ∪𝐴𝑖)
𝐴1 0.47 0.18 0.35
𝐴2 0.29 0.14 0.57
𝐴3 0.36 0.15 0.49
𝐴4 0.39 0 0.61

In step 3, we use Dempster’s rule of combination to obtain3

the combined bba, which is listed in Table II.

TABLE II
FUSION OF 4 BBA’S WITH DEMPSTER’S RULE FOR COWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.2522
𝐴2 0.1151
𝐴3 0.1627
𝐴4 0.1894

𝐴1 ∪𝐴4 0.0087
𝐴2 ∪𝐴4 0.0180
𝐴3 ∪𝐴4 0.0137

𝐴1 ∪𝐴2 ∪𝐴4 0.0368
𝐴1 ∪𝐴3 ∪𝐴4 0.0279
𝐴2 ∪𝐴3 ∪𝐴4 0.0576

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.1179

In step 4, we use Pignistic Transformation to obtain the
bba’s corresponding pignistic probability listed in Table III.
More efficient (but complex) transformations, like DSmP,
could be used instead [19]. Based on the pignistic probability
obtained, the decision result is 𝐴1.

TABLE III
PIGNISTIC PROBABILITY BASED ON COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.3076
𝐴2 0.1851
𝐴3 0.2275
𝐴4 0.2798

3) Implementation of FCOWA-ER: In step 1 of FCOWA-
ER, we normalize each column in 𝐸[𝐶], respectively. In our
example, one gets:

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎣[6.2/6.2; 10.9/13.2][3.8/6.2; 11.4/13.2]
[4.8/6.2; 11.2/13.2]
[5.2/6.2; 13.2/13.2]

⎤⎥⎦ ≈

⎡⎢⎣[1.0000; 0.8258][0.6129; 0.8636]
[0.7742; 0.8485]
[0.8387; 1.0000]

⎤⎥⎦
3Other combination rules can be used instead to circumvent the limitations

of Dempsters rule discuseed in [19], [20].

Then we obtain two FMFs, which are
𝜇1 = [1, 0.6129, 0.7742, 0.8387];
𝜇2 = [0.8258, 0.8636, 0.8485, 1.0000].
In step 2, by using 𝛼-cut approach, 𝜇1 and 𝜇2 are converted

into two bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.) as listed in Table IV.
In Step 3, we use Dempster’s rule4 to combine 𝑚𝑃𝑒𝑠𝑠(.) and

TABLE IV
THE TWO BBA’S TO COMBINE OBTAINED FROM FMFS.

Focal Element 𝑚𝑃𝑒𝑠𝑠(.) Focal Element 𝑚𝑂𝑝𝑡𝑖(.)
𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.6129 𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.8257

𝐴1 ∪𝐴3 ∪𝐴4 0.1613 𝐴2 ∪𝐴3 ∪𝐴4 0.0227
𝐴1 ∪𝐴4 0.0645 𝐴2 ∪𝐴4 0.0152

𝐴1 0.1613 𝐴4 0.1364

𝑚𝑂𝑝𝑡𝑖(.) to get 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.) as listed in Table V.

TABLE V
FUSION OF TWO BBA’S WITH DEMPSTER’S RULE FOR FCOWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.1370
𝐴4 0.1227

𝐴1 ∪𝐴4 0.0549
𝐴2 ∪𝐴4 0.0096
𝐴3 ∪𝐴4 0.0038

𝐴1 ∪𝐴3 ∪𝐴4 0.1370
𝐴2 ∪𝐴3 ∪𝐴4 0.0143

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.5207

In step 4, we use again the Pignistic Transformation to
get the pignistic probabilities listed in Table VI. Based on

TABLE VI
PIGNISTIC PROBABILITY BASED ON FCOWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.3403
𝐴2 0.1397
𝐴3 0.1826
𝐴4 0.3374

these probabilities, the decision result is also 𝐴1. The decision
results of COWA-ER and FCOWA-ER are the same.

IV. ANALYSES ON FCOWA-ER

A. On computational complexity

In FCOWA-ER, only two bba’s are involved in the combi-
nation. That is to say only one combination step is needed.
Whereas in the original COWA-ER, if there exists 𝑞 alterna-
tives, there should be 𝑞 − 1 evidence combination operations
to do. Furthermore, the bba’s obtained in the FCOWA-ER
by using 𝛼-cut are consonant support (nested in order). This
will bring less computational complexity when compared with
the bba’s generated in the original COWA-ER. In summary,
it is clear that the new proposed FCOWA-ER has lower
computational complexity.

4In fact, and more generally the choice of a rule of combination is entirely
left to the preference of the user in our FCOWA-ER methodology.
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B. On physical meaning

In this new FCOWA-ER approach, the two different infor-
mation sources are pessimistic OWA and optimistic OWA. The
combination result can be regarded as a tradeoff between these
two attitudes. the physical or practical meaning is relatively
clear. Furthermore, if the decision-maker has preference on
pessimistic or optimistic attitude, one can use discounting in
evidence combination to satisfy one’s preference. We can set
the preference of pessimistic attitude as 𝜆𝑝 and set the the
preference of optimistic attitude as 𝜆𝑜. Then the discounting
factor can be obtained as{

𝛽 = 𝜆𝑜/𝜆𝑝, 𝜆𝑜 ≤ 𝜆𝑝

𝛽 = 𝜆𝑝/𝜆𝑜, 𝜆𝑝 < 𝜆𝑜
(10)

Then according to the discounting method [16], one will take:{
𝑚𝛽(𝑋) = 𝛽 ⋅𝑚(𝑋), for 𝑋 ∕= Θ

𝑚𝛽(Θ) = 𝛽 ⋅𝑚(Θ) + (1− 𝛽)
(11)

If 𝜆𝑜 ≤ 𝜆𝑝, then 𝑚(.) in (11) should be 𝑚𝑂𝑝𝑡𝑖(.); If
𝜆𝑝 ≤ 𝜆𝑜, then 𝑚(.) in (11) should be 𝑚𝑃𝑒𝑠𝑠(.); By using
the discounting and choosing a combination rule, the decision
maker’s has a flexibility in his decision-making process.

C. On management of uncertainty

In the FCOWA-ER, we first define the bba vertically
taking into account the uncertainty between alternatives for
the pessimist attitude and for the optimistic attitude. Then
we combine two columns. The uncertainty incorporated in
the FMF obtained, which represents the possibility of each
alternative to be chosen as the final decision result. Based
on 𝛼-cut approach, the FMF is transformed into bba. The
uncertainty is thus transformed to the bba. Although based on
each column, only the information of pessimistic or optimistic
is used, the combination operation followed can use both the
two information sources (pessimistic and optimistic attitudes).
Thus the available information can be fully used in FCOWA-
ER. In COWA-ER, the modeling for each row (interval) takes
into account the true uncertainty one has on the bounds of
payoff for each alternative, then after modeling each bba
𝑚𝑖(.), one combines them ”vertically” to take into account
the uncertainty between alternatives.

Although the ways to manage the uncertainty incorporated
in are different for COWA-ER and FCOWA-ER, they both
utilize (differently) the whole available information.

D. On robustness to error scoring

Based on many experiments, we have observed that almost
all the decision results given by FCOWA-ER agree5 with
COWA-ER results and are rational. However when the dif-
ference among the values in payoff matrix is significant, the
COWA-ER can yield to wrong decisions whereas FCOWA-ER
yields to rational decisions as illustrated in Example 2 below.

5when using the same rule of combination in steps 3, and the same
probabilistic transformation in steps 4.

Example 2 Let’s take states 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5} with
associated bba 𝑚(𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5) = 1, and consider
alternatives 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} and the payoffs matrix:

𝐶 =

⎡⎢⎣12 11 10 120 7
9 10 6 110 3
7 13 5 100 6
6 2 3 150 4

⎤⎥⎦ (12)

We see that the difference between max value and min value
of each line is significant. For example, in the fourth row of
𝐶, only 𝑆4 brings extremely high score for 𝐴4 whereas other
states bring homogeneous low score values for 𝐴4. Whatever
state of nature we consider 𝑆1, 𝑆2,. . . , or 𝑆5, 𝐴1 is either the
top 1 or top 2 choice according to the ranks of the alternatives
for states 𝑆𝑖, 𝑖 = 1, . . . , 5 as shown below:

𝐴1 𝐴2 𝐴3 𝐴4

𝑆1 1 2 3 4
𝑆2 2 3 1 4
𝑆3 1 2 3 4
𝑆4 2 3 4 1
𝑆5 1 4 2 3

So, intuitively, according to the principle of majority voting,
the decision result should be 𝐴1 but not 𝐴4. According to
rank-level fusion, the decision result should also be 𝐴1.

The expected payoffs are:

𝐸[𝐶] =

⎡⎢⎣ [7, 120]
[3, 110]
[5, 100]
[2, 150]

⎤⎥⎦
∙ Using COWA-ER, one has

𝐸𝐼𝑚𝑝[𝐶] =

⎡⎢⎣ [0.0467, 0.8000]
[0.0200, 0.7333]
[0.0333, 0.6667]
[0.0133, 1.0000]

⎤⎥⎦
The bba’s to combine are listed in Table VII and the

combination results by using Dempster’s rule are in Table VIII.

TABLE VII
EXAMPLE 2: BBA’S OF THE ALTERNATIVES USED IN COWA-ER.

Alternatives 𝐴𝑖 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖 ∪𝐴𝑖)
𝐴1 0.0467 0.2000 0.7533
𝐴2 0.0200 0.2667 0.7133
𝐴3 0.0333 0.3333 0.6334
𝐴4 0.0133 0 0.9867

The pignistic probabilities listed in IX indicate that the
decision result6 of COWA-ER is 𝐴4.

∙ Using FCOWA-ER, one has

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎣ [1.0000, 0.8000]
[0.4286, 0.7333]
[0.7143, 0.6667]
[0.2857, 1.0000]

⎤⎥⎦
In FCOWA-ER, the bba’s to combine are listed in Table X
and their Dempster’s combination is listed in Table XI.
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TABLE VIII
EXAMPLE 2: DEMPSTER’S FUSION OF 4 BBA’S FOR COWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.0438
𝐴2 0.0182
𝐴3 0.0309
𝐴4 0.0297

𝐴1 ∪𝐴4 0.0664
𝐴2 ∪𝐴4 0.0471
𝐴3 ∪𝐴4 0.0335

𝐴1 ∪𝐴2 ∪𝐴4 0.1775
𝐴1 ∪𝐴3 ∪𝐴4 0.1261
𝐴2 ∪𝐴3 ∪𝐴4 0.0895

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.3373

TABLE IX
EXAMPLE 2: PIGNISTIC PROBABILITY BASED ON COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.2625
𝐴2 0.2152
𝐴3 0.2038
𝐴4 0.3185

TABLE X
EXAMPLE 2: BBA’S OF THE ALTERNATIVES USED IN FCOWA-ER.

Focal Element 𝑚𝑃𝑒𝑠𝑠(.) Focal Element 𝑚𝑂𝑝𝑡𝑖(.)
𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.2857 𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.6667

𝐴1 ∪𝐴2 ∪𝐴3 0.1429 𝐴1 ∪𝐴3 ∪𝐴4 0.0667
𝐴1 ∪𝐴3 0.2857 𝐴3 ∪𝐴4 0.0667

𝐴1 0.2857 𝐴1 0.1999

TABLE XI
EXAMPLE 2: DEMPSTER’S FUSION OF THE TWO BBA’S FOR FCOWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.3223
𝐴4 0.0667

𝐴1 ∪𝐴2 0.0111
𝐴1 ∪𝐴3 0.2222
𝐴1 ∪𝐴4 0.0222

𝐴1 ∪𝐴2 ∪𝐴3 0.1111
𝐴1 ∪𝐴2 ∪𝐴4 0.0222

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.2222

The pignistic transformation of 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.) yields to the
pignistic probabilities listed in Table XII.

TABLE XII
EXAMPLE 2: PIGNISTIC PROBABILITY BASED ON FCOWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.5500
𝐴2 0.1056
𝐴3 0.2037
𝐴4 0.1407

Based on the pignistic probabilities, the decision result
obtained with FCOWA-ER is now 𝐴1, which is the correct
one. In this example, FCOWA-ER shows its robustness when
compared with COWA-ER.

E. On the normalization procedures

In fact, there exist at least three normalization procedures
that we briefly recall below. Suppose x is the original vector

6based on max of 𝐵𝑒𝑡𝑃 (.).

input, xi represents the 𝑖th dimension of x. 𝑦𝑖 represents the
𝑖th dimension of the normalized vector y, then we examine
the following three types of normalization:

1) Type I: 𝑦𝑖 = 𝑥𝑖/max(x)
2) Type II: 𝑦𝑖 = (𝑥𝑖 −min(x))/(max(x)−min(x))
3) Type III: 𝑦𝑖 = 𝑥𝑖/

∑
𝑗(𝑥𝑗)

To verify wether the decision results of COWA-ER and
the new FCOWA-ER can be affected by the normalization
procedure, we did some tests as follows. We randomly
generate payoff matrices and use all the three types of
normalization approaches in COWA-ER and FCOWA-
ER respectively. Then we make comparisons among the
results obtained. We repeat the experiment 50 times (50
Monte-Carlo runs). Based on our simulation results, we
find that normalization approaches can affect the decision
results of COWA-ER and FCOWA-ER, although the ratio of
disagreement among different normalization approach is small
(about 1 to 2 times of disagreement out of 50 experiments in
average). Example 3 is a case where the disagreement occurs
due to the different types of normalization.

Example 3: We consider the following payoff matrix

𝐶 =

⎡⎢⎣15 5 30
5 40 40
40 30 30
15 10 40

⎤⎥⎦
The bba is 𝑚(𝑋1) = 0.5439, 𝑚(𝑋2) = 0.3711,
𝑚(𝑋3) = 0.0849, where 𝑋1 = 𝑆2 ∪ 𝑆3, 𝑋2 = 𝑆1 ∪ 𝑆2 and
𝑋3 = 𝑆1 ∪ 𝑆3.

∙ Using COWA-ER, based on normalization Type I, Type
II and Type III, we can obtain the corresponding expected
payoffs

𝐸𝐼 [𝐶] =

[
[0.1462, 0.6108]
[0.6009, 1.0000]
[0.7500, 0.8640]
[0.2606, 0.7680]

]

𝐸𝐼𝐼 [𝐶] =

[
[0.0000, 0.5442]
[0.5326, 1.0000]
[0.7072, 0.8407]
[0.1340, 0.7283]

]

𝐸𝐼𝐼𝐼 [𝐶] =

[
[0.0292, 0.1221]
[0.1202, 0.2000]
[0.1500, 0.1728]
[0.0521, 0.1536]

]
Then we obtain the pignistic probabilities listed in Table

XIII. From Table XIII, one sees that the decision result with
Type III normalization is 𝐴2 while those of Type I and Type
II yields 𝐴3.

TABLE XIII
EXAMPEL 3: PIGNISTIC PROB. FOR TYPES I, II & III AND COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼𝐼(.)
𝐴1 0.0587 0.0388 0.1690
𝐴2 0.3203 0.3324 0.3180
𝐴3 0.5223 0.5444 0.2920
𝐴4 0.0987 0.0844 0.2210
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∙ Using FCOWA-ER, based on normalization of Type I,
Type II and Type III, we get the corresponding expected
payoffs

𝐸𝐼 [𝐶] =

[
[0.1950, 0.6108]
[0.8013, 1.0000]
[1.0000, 0.8640]
[0.3475, 0.7680]

]

𝐸𝐼𝐼 [𝐶] =

[
[0.0000, 0.0000]
[0.7531, 1.0000]
[1.0000, 0.6506]
[0.1894, 1.4040]

]

𝐸𝐼𝐼𝐼 [𝐶] =

[
[0.0832, 0.1884]
[0.3419, 0.3084]
[0.4267, 0.2664]
[0.1483, 1.2368]

]

Then we can get the pignistic probabilities listed in Table
XIV. From Table XIV, one sees that the decision with Type II
normalization is 𝐴2 while those of Type I and Type III yields
𝐴3.

TABLE XIV
EXAMPLE 3: PIGNISTIC PROBABILITY BASED ON FCOWA-ER

Focal Element 𝐵𝑒𝑡𝑃𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼𝐼(.)
𝐴1 0.0306 0.0000 0.0306
𝐴2 0.4118 0.5421 0.4118
𝐴3 0.4763 0.4300 0.4763
𝐴4 0.0813 0.0279 0.0813

So in a little percentage of cases, we must be cautious when
choosing a normalization procedure and so far there is no
clear theoretical answer for the choice of the most adapted
normalization procedure. We prefer the Type I normalization
procedure since it is very simple and intuitively appealing.

V. CONCLUSION

In this paper, we have proposed a fuzzy cautious OWA
method using evidential reasoning (FCOWA-ER) to implement
the multi-criteria decision making, where evidence theory,
fuzzy membership functions and OWA are used jointly. This
method has less computational complexity and has clearer
physical meaning. Furthermore, it is more robust to the error
scoring in MCDM. Experimental results and related analyses
show that our FCOWA-ER is interesting and flexible because
its three main specifications can be adapted easily for working:
1) with other rules of combination than Dempster’s rule,
2) with other probabilistic transformations than BetP, and
3) with different normalization procedures. Of course the
performances of FCOWA-ER depend on the choice of these
three main specifications taken by the MCDM system designer.
The method to generate the bba from the FMF based on 𝛼-
cut depends on the selection of the parameter vector of 𝛼.
The impact of the choice of the specifications as well as 𝛼
to evaluate the performance of FCOWA-ER will be further
analyzed in our future works. This paper was devoted to the
theoretical developemnt of FCOWA-ER and its evaluation for
applications to real MCDM problems is part of our future
research works.
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