Two conjectures on sequences of primes obtained from the lesser term from a pair of twin primes

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I make two conjectures about two types of possible infinite sequences of primes obtained starting from any given prime which is the lesser term from a pair of twin primes for a possible infinite of positive integers which are not of the form $3^{k} - 1$ respectively starting from any given positive integer which is not of the form $3^{k} - 1$ for a possible infinite of lesser terms from pairs of twin primes.

Conjecture 1:

There exist an infinity of primes q of the form q = 2*k*p + 1, where p is a lesser prime from a pair of twin primes, for any positive integer k, under the condition that k has not the digital root equal to 2, 5 or 8.

Examples:

(Of such primes q, for k = 1)

: for p = 18406781, q = 36813563 prime; : for p = 18407771, q = 36815543 prime; : for p = 18408749, q = 36817499 prime.

Examples:

(Of such primes q, for k = 3)

: for p = 18403277, q = 110419663 prime; : for p = 18408287, q = 110449723 prime; : for p = 18408581, q = 110451487 prime.

Examples:

(Of such primes q, for k = 4)

: for p = 18408287, q = 147250553 prime; : for p = 18406319, q = 147266969 prime.

Examples:

(Of such primes q, for k = 6)

: for p = 18405719, q = 220868629 prime; : for p = 18405731, q = 220868773 prime.

Examples:

```
(Of such primes q, for k = 7)
```

: for p = 18406979, q = 257697707 prime; : for p = 18408107, q = 257713499 prime.

Examples:

(Of such primes q, for k = 9)

```
: for p = 18408749, q = 331357483 prime;
: for p = 18408989, q = 331361803 prime.
```

Conjecture 2:

There exist an infinity of primes q of the form q = 2*k*p + 1, where k is a positive integer which digital root is not equal to 2, 5 or 8, for any p lesser prime from a pair of twin primes.

Examples:

(Of such primes q, for p = 11)

:	for k =	· 1,	q = 23	prime;
:	for k =	÷ 3,	q = 67	prime;
:	for k =	· 4,	q = 89	prime;
:	for k =	9,	q = 199	prime;
:	for k =	15,	q = 331	prime;
:	for k =	16,	q = 353	prime;
:	for k =	: 19 ,	q = 419	prime;
:	for k =	21,	q = 463	prime;
:	for k =	28,	q = 617	prime;
:	for k =	: 30 ,	q = 661	prime;
:	for k =	· 31,	q = 683	prime;
:	for k =	· 33,	q = 727	prime;
:	for k =	· 39,	q = 859	prime;
:	for k =	40 ,	q = 881	prime;
:	for k =	43 ,	q = 947	prime;
:	for k =	45,	q = 991	prime;
:	for k =	46,	q = 1013	prime;
:	for k =	51 ,	q = 1123	prime.
	()			

Examples:

(Of such primes q, for p = 18408749)

:	for $k = 1$,	q = 36817499	prime;
:	for $k = 9$,	q = 331357483	prime;
:	for $k = 25$,	q = 920437451	prime.
	()		