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Abstract 
The purpose of this paper is uncertainty evaluation in a target differentiation problem. In 
the problem ultrasonic data fusion is applied using Dezert-Smarandache theory (DSmT). 
Besides of presenting a scheme to target differentiation using ultrasonic sensors, the 
paper evaluates DSmT-based fused results in uncertainty point of view. The study obtains 
pattern of data for targets by a set of two ultrasonic sensors and applies a neural network 
as target classifier to these data to categorize the data of each sensor. Then the results are 
fused by DSmT to make final decision. The Generalized Aggregated Uncertainty 
measure named GAU2, as an extension to the Aggregated Uncertainty (AU), is applied to 
evaluate DSmT-based fused results. GAU2, rather than AU, is applicable to measure 
uncertainty in DSmT frameworks and can deal with continuous problems. Therefore 
GAU2 is an efficient measure to help decision maker to evaluate more accurate results 
and smoother decisions are made in final decisions by DSmT in comparison to DST. 
 
Keywords: Generalized Aggregated Uncertainty measure; DSmT; Target differentiation; 
Ultrasonic 
 

1.   Introduction 

Ultrasonic sensors are widely used in robotics applications such as localization, target 
differentiations and mapping.  A measurement scheme is proposed which uses two sets of 
ultrasonic sensors to determine location and type of target surface (see Ref. 1). In this study, 
concentration is on target differentiation based on pattern of data which are obtained by a set of 
two ultrasonic sensors. The target classification is performed by employing time of flight (TOF) 
of the sensors. Classification of different targets by using neural networks is achieved for 
outcomes of each sensor. Afterwards the results are fused together to make final decision.  
There has been much research on sensor fusion methods in recent years. The evidence theory, 
also known as Dempster–Shafer theory, is one of the most popular frameworks to deal with 
uncertain information. This theory is often presented as a generalization of probability theory, 
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where the additivity axiom is excluded. The Dezert–Smarandache Theory (DSmT) is a theory of 
plausible and paradoxical reasoning proposed by Dezert and Smarandache (see Refs. 2-5). It can 
be considered as an extension of the classical Dempster–Shafer theory (DST)6 but with 
fundamental differences. DSmT is able to solve complex static or dynamic fusion problems 
beyond the limits of the DST framework, especially when conflicts between sources become 
large and when the refinement of the frame of the problem under consideration becomes 
inaccessible because of the vague, relative and imprecise nature of elements3. There are some 
successful applications of DSmT in target type tracking7 and robot map building8-10. Efficiency 
of DSmT in comparison to DST is confirmed in sonar grid map building9. 
On the other hand, uncertain information often exists on all levels of fusion process which are 
usually related to physical constraints, detection algorithms, and the transmitting channel of the 
sensors11. Therefore, it is important to have an uncertainty evaluation after sensor fusion for 
better decision making. Hartley12 and Shannon13 respectively established the field of information 
theory. Hartley measure and Shannon entropy have been used in the possibilities and 
probabilities frameworks, respectively. Based on these approaches, information or preferably 
uncertainty-based information can be quantified by different general measures commonly called 
measures of uncertainty14.  
Several theories have been developed to deal with uncertainty such as probability theory, fuzzy 
sets theory, possibility theory, evidence theory and rough sets theory. Instead of opponents, they 
should rather be seen as complementary, each of them being designed for dealing with different 
types of uncertainty. Three main types of uncertainty have been identified15: fuzziness, conflict, 
and non-specificity, the latter two being unified under the term ambiguity. Different measures of 
ambiguity, often called measures of total uncertainty have been proposed. Among them, a 
measure of aggregated uncertainty named AU is proposed16,17. This measure is defined in the 
framework of evidential theory that aggregates the non-specificity and conflict. It has been 
proved that this measure satisfies the five Klir & Wierman’s requirements14,18. It have been 
formalized, within a broad range of theories of imprecise probabilities, the notion of a total 
aggregated measure of uncertainty and various disaggregations into measures of non-specificity 
and conflict19. As another uncertainty measure, a new measure of aggregated uncertainty is 
introduced, named AM for Ambiguity Measure that aims at eliminating the shortcomings of AU 
such as computing complexity20. By AM, an alternative to measure ambiguity in Dempster–
Shafer theory is offered. But actually, their proposed measure is not, in a general sense, sub-
additive. It is showed this by a specific counterexample which clearly demonstrates that their 
assumption in the last step of the proof is incorrect and that AM indeed violates sub-additivity21. 
In spite of efficiency of AU measure, this uncertainty measure and its associated algorithm for 
computing18, has devoted for DST framework and cannot be applied to DSmT directly. As 
mentioned before, DSmT is a generalization of DST. Two generalized AU measures, which are 
named GAU1 and GAU2, have been introduced by the authors (see Ref. 22). It is proved that the 
new measures have enough efficiency to evaluate the DSmT based results. In this paper these 
new measures are used. An experimental setup which is based on ultrasonic sensors is 
configured. Neural networks are used in the first level of the fusion process. Neural networks are 
trained by acquired data of the set of ultrasonic sensors and then outputs are used to perform the 
differentiation task. Finally, the obtained results of the DSmT-based decision maker are 
evaluated by the proposed uncertainty measures.  
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This paper is organized as following: A short review on DSmT that are considered in uncertainty 
analysis is mentioned in Sec. 2. Sec. 3 is devoted to represent GAU2 as the new measure and a 
short discussion on the AU and GAU1 measures. In Sec. 4, experimental studies are carried out 
on uncertainty measurement for a target classification problem. Finally, some concluding 
remarks are presented in Sec. 5. 

2.   Dezert–Smarandache Theory 

Dezert–Smarandache Theory is a theory of plausible and paradoxical reasoning3-5. The 
development of DSmT arises from the necessity to overcome the inherent limitations of 
Dempster–Shafer Theory (DST)6 which are closely related with the acceptance of Shafer’s 
model for the fusion problem under consideration. This means the frame of discernment Θ � ���, ��, … , �	
 is implicitly defined as a finite set of exhaustiveand exclusivehypotheses. 
The Dedekind’s lattice, also called in the DSmT framework hyper-power set �Θ is defined as the 
set of all composite propositions built from elements of Θ with ∪ and ∩ operators such that: 
(1) ∅, ��, ��, … , �	 ∈ �� 
(2) ��		�, � ∈ �� 		����		� ∪ � ∈ �� 	, � ∩ � ∈ ��  
(3) No other elements belong to	��, except those obtained by using rule (1) or rule (2). 
DSmT starts with the notion of free DSm model, denoted	���Θ�, and considers Θ only as a 
frame of exhaustive elements ���, ��, … , �	
 which can potentially overlap. When the free DSm 
model holds, the classic commutative and associative DSm rule of combination is performed. 
From a general frameΘ, a map is defined as ��. �: �Θ ⟶ "0,1%	associated to a given body of 
evidence as: 

 ��∅� � 0			,					 ∑ ����'∈() � 1					,						0 * ���� * 1                                 (2.1) 
The quantity ����	is called the generalized basic belief assignment/mass (gbba) of A. The 
generalized belief and plausibility functions are defined in almost the same manner as within the 
DST, i.e. 

                                                 ��+��� � ∑ ����,∈(-,,⊆'                                         (2.2) 
 /+��� � ∑ ����,∈(-,,∩'0∅  (2.3) 
When the free DSm model ���Θ� holds for the fusion problem under consideration, the classic 
DSm rule of combination �12�Θ� � ��. � � "�� ⊕ ��%�. � of two independent sources of 
evidences over the same frame with belief functions ��+��. �, ��+��. � associated with gbba ���. �, ���. �	corresponds to the conjunctive consensus of the sources. It is given by: 

               ∀5 ∈ �6			,				�12�6��5� � ��5� � ∑ ����������',,∈()'∩,78         (2.4) 

Since �Θ is closed under ∪ and ∩ set operators, this new rule of combination guarantees that ��. �is a proper generalized belief assignment, i.e.��. �: �Θ ⟶ "0,1%. 
3.   Uncertainty Measurement 

Measuring uncertainty or information means assigning a number or a value from some ordinal 
scale to a given model of an epistemic state. Two types of classical evidential based 
uncertainties, non-specificity and conflict are often measured as part of the fusion techniques 
such as DST fusion (18). All of the uncertainty measures attempt to measure uncertainty in bits. 
One bit of uncertainty is the amount of total uncertainty regarding the truth or falsity of one 
proposition. One of the most appropriate uncertainty measures which are developed in DST 
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frameworks is the Aggregate Uncertainty (AU) measure. While the goal of information fusion is 
to reduce the global uncertainties, (18) explored the concept of comprehensive uncertainty 
measurement in the DST framework. 
Definition3.1. The measure of the Aggregated Uncertainty contained in��+, denoted as�9���+�, 
is defined by: 

                           �9���+� � �:;�< ∑ => +?@� =>>∈� 
        (3.1) 
where the maximum is taken over all �=>
>∈�such that => ∈ "0,1% for� ∈ A, ∑ =>>∈� � 1  and 
for all � ⊆ A , ��+��� * ∑ =BB∈' . 
It is proved that the measure satisfies all the properties for a reasonable uncertainty 
measurement, specifically the sub-additivity and additivity which are defined14. Algorithm of 
computing AU was originated18. The algorithm is applied for DST framework while it cannot be 
used for DSmT directly. The reason is hidden in the algorithm of computing AU and especially 
in the main difference of DST and DSmT. In the DST, the frame of discernment of the fusion 
problem under consideration assumed to have exhaustive and exclusive elementary hypotheses 
but in DSmT these conditions are violated. The algorithm of computing AU measure states that 
at least one part of information which is determined by� ∩ � will be missed if anyone wants to 
apply this algorithm to DSmT. Accordingly, uncertainty measurement would not be accurate. 
Two Generalized Aggregate Uncertainty measures, which are named GAU1 and GAU2, have 
been developed22. The idea of generalizing Aggregated Uncertainty measure in GAU1 to 
evaluate DSmT, is disjointing the free DSm model to separated sets (Fig. 1). In this manner, the 
main problem of fusion still have two events whereas there are three separated events such as a 
Shafer's model with 3 events. Therefore, the same algorithm of computing for AU measure can 
be used as the algorithm of computing the measure GAU1 after the mentioned extension in order 
to evaluate the DSmT-based fusion results. 

 

 
Fig. 1. Disjointing of framework of free DSm model with two jointed events to three excluded sets 

 
Although GAU1 is applicable to evaluate uncertainty in DSmT framework, the extension that is 
used in GAU1 is true for the problems where the refinement is possible. There are some cases 
that the refinement is not possible, for example when the frontiers of the sets in the frame of 
discernment are not clear. So this refinement may not work for any frame of discernment. The 
new uncertainty measure which has been called, Generalized Uncertainty measure 2 or GAU2 
has been introduced to overcome this limitation22. In GAU2, despite of GAU1, clarity of the 
frontiers of the sets in the frame of discernment is not necessary. Therefore GAU2 is a suitable 
uncertainty measure for continuous frameworks. Consider the set of non-exclusive events A � ���, ��, … , �	
 orA � ��|� � �D , � � 1,2, … , �
. GAU2 is defined based on a class of 
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probability distribution of events of a set such as AFwhereas the entropy of Shannon is 
maximized. AF	is equal to: 

AF � G�F|�F � �FH , I � 1,2, … , ��JK �
LM
N�F|�F � �FH � O �DD∈P∅0P⊆��,�,…,	
 QR

S
 

or in a simple form: AF � T��D
D7�,�,…,	, U�D ∩ �HVD,H7�,�,…,	D0H , U�D ∩ �H ∩ �WVD,H,W7�,�,…,	D0H0W , … X 

And cardinality of AF is: |AF| � ��J � ∑ Y	D Z	D7� . 
Definition 3.2. The measure of the Generalized Aggregated Uncertainty 2 contained 
in��+,[�92���+�, which is defined by: 
                 [�92���+� � �:;U< ∑ =>J +?@� =>J>J∈�J V                      (3.2) =>J is the associated probability distribution assignment of each event of AF and the maximum is 
taken over allU=>JV>J∈�Jsuch thatfor all �F ∈ AF,	0 * =>J * 1, ∑ �<1�\�>J�]�=>J>J∈�J � 1	, ^��F � ⋂ �DD∈P � � |`|a��b�	�∅ c ` ⊆ �1,2, … , �
�, ��+��� * d =>J>J∈'

�?b:++		∅ c � ⊆ AF 

The generalized algorithm for computing the GAU2 measure is: 
Input: a frame of discernmentA (with n non-exclusive events), a generalized belief function ��+ 
onA 
Output: [�92���+�, U=>JV>J∈�J such that: 

[�92���+� � < d =>J +?@� =>J>J∈�J
 

AF � G�F|�F � �FH , I � 1,2, … , ��JK � G�F�, �F�, … , �F	-JK 

=>J � =>Je|>J7>Je,H7�,�,…,	-J
		, d �<1�\�>J�]�. =>J>J∈�J

� 1						,						0 * =>J * 1 

^ f�F � O �DD∈P
g � |`|a��b�				�∅ c ` ⊆ �1,2, … , �
� 

��+��� * d =>J>J∈'
�?b:++∅ c � ⊆ AF 

Line 1) begin 
Line 2) make 

	AF � G�F|�F � �FH , I � 1,2, … , ��JK �
LM
N�F|�F � �FH � O �DD∈P∅0P⊆��,�,…,	
 QR

S
 

Line 3) h � AF, ��+i � ��+ 
Line 4) while Y c ∅ and ��+i�h� k 0	do 
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Line 5) find a non-empty set � ⊆ AF such that ��+��� ⁄ |�|	is maximal if there are more such 
sets � than one, take the one with maximal cardinality endif 
Line 6) for each �F ∈ � do=>J � ��+i��� |�|⁄  endfor 
Line 7) for each � ⊆ �h < �� ∪ �h ∩ �� do ��+i��� � ��+i�� ∪ �� < ��+i��� m ��+i�� ∩ ��endfor 
Line 8) h � �h < �� ∪ �h ∩ �� 
Line 9) endwhile 
Line 10) if ��+i�h� � 0 and h c ∅  then 
Line 11) for all  �F ∈ h do =>J � 0 endfor 
Line 12) endif 
Line 13) [�92���+� � < ∑ =>J +?@� =>J>J∈�J  
Line 14) end 
Clearly, one may see the differences between the above algorithm and the algorithm of AU 
measure. The differences are: 

• Replacing the set of non-exclusive events A by the new set AF 
• The condition imposed to �F in the Definition 3.2 
• Lines 7 and 8 of the GAU2 measure algorithm to continue the computations of the next 

probability assignments 

4.   Experimental Study: Ultrasonic Sensors for Target Classification 

4.1.   Experiment Setup 

In the experimental setup, two identical acoustic transmitter/receiver pairs with center-to-center 
separation d=35 cm are employed. The common targets that there exist in real environment of 
mobile robot applications such as Plane, Cylinder with diameter 20 cm and Corner with 90° 
angle are considered. TOF data are collected at 20 sensor locations which are located at 5 
different angles from n � <30° to n � m30° in 15° increments, and from r = 0.5 m to r = 2 m 
in 0.5 m increments separately (Fig. 2). To disaffect the distances of targets in target 
classification, the data are normalized regarding distance. Consequently, the targets can be 
classified regardless to the mentioned positions. Fig. 3 indicates normalized data of ultrasonic 
sensors for these 20 positions for the targets. 

 
Fig. 2. Experiment setup and 20 different positions of targets 
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TOF signals of each sensor pair are used as input signals of a neural network. The hidden layer 
comprises 50 neurons and hyperbolic tangent as nonlinear functions and linear functions at the 
output layer with 3 neurons. For each sensor, One set of data are collected for each target 
location for each target primitive, resulting in 60 (=4 ranges×5 angles×3 target types) sets of 
data. The network is a multi-layer perceptron (MLP) network with a learning constant equal to 
0.9, momentum constant equal to 0.5, and a sigmoid-type nonlinearity. The neural network 
estimates the target type using these data. 

 

 

 
Fig. 3. Normalized data of ultrasonic sensors in 20 positions (4 ranges and 5 angles) for the targets “Plane”, 

“Cylinder” and “Corner”  
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4.2.    Sensor Fusion with Uncertainty Measurement 

In this section, DST and DSmT are applied to the results that are obtained by neural networks in 
order to differentiate the target types. After the results of two sensors are fused, uncertainty 
measurement has been carried out according to AU measure for DST and the GAU1 and GAU2 
measures for DSmT. 
Table 1 gives the results of correct target type classification that are considered as basic belief 
assignment of each sensor of the three targets for the case that the target object is “Plane” . 
Accordingly, each sensor by using a trained neural network presents a quantity to differentiate 
the targets. In this table, “P” is used to represent “Plane” , “Cy”  is for “Cylinder”  and “Co”  is 
for “Corner”  and “Θ” is devoted to represent total ignorance i.e.Θ � / ∪ 5q ∪ 5?. 
 
Table 1. Outputs of neural network based classifier as basic belief assignment and DST based fusion results; Target 

type: “Plane”  �(rs��� Sensor2 Sensor1 2� 
0.8698 0.5333 0.7333 P 
0.0178 0.1333 0 Cy 
0.0592 0.0667 0 Co 
0.0355 0.1333 0.1333 / ∪ 5q 
0.0059 0 0.0667 / ∪ 5? 
0.0118 0.0667 0.0667 5q ∪ 5? 
0 0.0667 0 Θ 

4.2.1.   Results of DSmT-based Fusion and Uncertainty evaluation by GAU2 Measure 

Table 2 illustrates the results of DSmT-based fusion results. When DSmT is used, the number of 
events to be decided is more than number of events in DST because of using hyper-power set 
and free DSm model. DSmT fusion showed its capabilities in continuous problems as well as 
problems with non-exclusive events. Basically, DST has not enough efficiency to deal with 
problems with such models. On the other hand, advantages of using DSmT fusion should be 
studied in uncertainty point of view as well. Therefore, DSmT-based fusion results of the target 
differentiation are evaluated by GAU2 measure. According to Definition 3.2, members of the set AFare defined as: AF � �	��, 	��, … , 	�t
 where:	�� � /,�� � 5q,�u � 5?,�v � / ∩ 5q,�w �/ ∩ 5?,�x � 5q ∩ 5?, �t � / ∩ 5q ∩ 5?. 
The first step of the algorithm of computing is illustrated in Table 2. The maximum value of ��+��� |�|⁄  is obtained for the event/, therefore=F � 0.8755. According to the algorithm, by 
discarding the event P and consequently its union the results the GAU2 measure continues. It is 
concluded that =8| � 0.1957,=8~ � 0.1022, =F∩8| � 0.0978,=F∩8~ � 0.0489, =8|∩8~ �0.0267, =F∩8|∩8~ � 0. Therefore uncertainty in the DSmT-based results by GAU2 (Eq. (6)) is 
equal to 1.6453. 
To investigate the uncertainty improvement in the results of DSmT fusion, uncertainties in the 
results of each sensor have to be considered. Similarly uncertainty in each sensor can be 
computed by the measure GAU2. The value of uncertainties in Sensor1 and Sensor2 by the 
GAU2 are computed by the algorithm and are equal to 1.1034 and 1.4036, respectively. 
Uncertainty evaluation of DSmT fusion by GAU2 shows that the DSmT reduces the amount of 
uncertainty in final decisions. Uncertainty in DSmT fusion results are less than the sum of 
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uncertainties in Sensors1&2.  So it can be concluded that DSmT has improved the results in 
uncertainty point of view. 
 

Table 2. The 1st step of the algorithm of computing GAU2 measure for the DSmT results; Target type: “Plane”  ��  �(r�s��� ��+��� ��+��� |�|⁄  
P 0.6444 0.8755 0.8755 
Cy 0.0267 0.1334 0.1334 
Co 0.0089 0.0667 0.0667 / ∪ 5q 0.0267 0.9734 0.4867 / ∪ 5? 0.0044 0.9199 0.4600 5q ∪ 5? 0.0089 0.3156 0.1578 / ∩ 5q 0.0978 0.0978 0.0978 / ∩ 5? 0.0489 0.0489 0.0489 5q ∩ 5? 0 0 0 / ∩ �5q ∪ 5?� 0.0844 0.1467 0.0734 5q ∩ �/ ∪ 5?� 0.0089 0.0978 0.0489 5? ∩ �/ ∪ 5q� 0.0089 0.0489 0.0245 / ∪ �5q ∩ 5?� 0.0089 0.9022 0.4511 5q ∪ �/ ∩ 5?� 0.0178 0.2934 0.1467 5? ∪ �/ ∩ 5q� 0.0044 0.2622 0.1311 / ∩ 5q ∩ 5? 0 0 0 �/ ∩ 5q� ∪ �/ ∩ 5?� ∪ �5q ∩ 5?� 0 0 0 

Θ 0 1 0.3333 

Table 3 summarizes the results of uncertainty measurement in the experiment. In the case of 
conflict measurements, DSmT must be used instead of DST. Also these experiments demonstrate 
that DSmT presents smoother decisions, especially in continuous models. Since AU is presented 
for DST and cannot be applied to the DSmT results, GAU1 and GAU2 are applicable as 
uncertainty measure for DSmT fusion results. Moreover this study shows the efficiency of 
DSmT to improve the final results in uncertainty point of view. Additionally, application of the 
GAU2 measure has not the limitation of the GAU1 measure to deal with events with non-
distinguishable borders. 
 

Table 3. Uncertainty measurement for sensor 1&2, DST and DSmT fusion results 

Results 
Sensor
1 

Sensor
2 

Sensor1+
Sensor2 

DST DSmT 

Uncertainty measurement by AU 1.1035 1.2730 2.3765 0.6680 - 
Uncertainty measurement by GAU1 2.7259 2.8078 5.5337 - 2.4866 
Uncertainty measurement by GAU2 1.1034 1.4036 2.5070 - 1.6453 

5.   Conclusions 

In this paper, uncertainty evaluation problem in a decision making system is considered. An 
experimental setup of ultrasonic sensors is established to study target differentiation problem and 
uncertainty measurement in decision making. A common neural network is used as classifier for 
each sensor path to get the classification results of the sensors. DSmT overcomes the limitations 
of DST. On the other hand, AU cannot be applied to DSmT because of the involved assumption 
in the algorithm of computing AU which states the events of frame of discernment must be 
without community. Generalized AU measures, i.e.GAU1 and GAU2 have been developed to 
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overcome this limitation DSmT and the associated uncertainty measures are applied to the results 
of sensors and the results are discussed in details. The final decision in the presented 
configuration has uncertainty less than each sensor’s measurement. On the other hand, efficiency 
of Generalized Uncertainty measures to measure uncertainty and more accurate results and 
smoother decisions are made in final decisions by DSmT in comparison to DST are validated. 
The following suggestions might be considered as further studies; 
• employing other classification methods instead of neural networks 
• utilizing ultrasonic echo signal amplitudes as acquired data in addition to TOF data 
• looking for an uncertainty measure with less complexity than AU, GAU1 and GAU2 in 

computation, which satisfies the requirements of uncertainty measures 
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