A useful criterion to identify candidate twin primes

Prashanth R. Rao

Abstract: In a previous paper we derived that if p, p+2 are twin-primes then 2^{p-2} is of the form (pz+y) where z, y must have unique solutions. We extend this result to derive a single criterion that we believe is novel that may be useful to screen for candidate twin primes.

Results:

If p, p+2 are large twin primes then as shown in a previous paper

 2^{p-2} =pz+y (where z and y are unique solutions for any pair of twin primes)

Multiplying by 4,

$$2^p=4pz+4y$$

Subtracting 2 from both sides,

$$2^{p}-2=4pz+4y-2$$

Since p is prime, therefore it follows from Fermat's little theorem that $2^p\text{-}2$ is divisible by p therefore

4y-2=p*u (where u is an even integer, since p is a large prime and therefore odd)

Therefore y=(p*u+2)/4(I)

Since p+2 is also prime, therefore it follows Fermat's little theorem, 2^{p+2} -2 is divisible by p+2.

 $2^{p+2}-2 = (p+2)b$ where b=6y, (as shown in previous paper)

we can rewrite $b=6y=(2^{p+2}-2)/(p+2)$

Therefore $y=\{(2^{p+2}-2)\}/\{6(p+2)\}$

Or
$$y=\{(2^{p+1}-1)\}/\{3(p+2)\}....(II)$$

From (I) and (II) it follows that

$$(p*u+2)/4={(2^{p+1}-1)}/{3(p+2)}$$

$$\begin{array}{l} (p^*u+2) = & \{(4)(2^{p+1}-1)\}/\{3(p+2)\}\\ \\ \text{Therefore} \\ \\ p^*u = & \{(4)(2^{p+1}-1)\}/\{3(p+2)\}-2\\ \\ p^*u = & \{(2^{p+3}-4)-(2)(3)(p+2)\}/\{3(p+2)\}\\ \\ p^*u = & \{2(2^{p+2}-2-3p-6)\}/\{3(p+2)\}\\ \\ p^*u = & \{2(2^{p+2}-3p-8)\}/\{3(p+2)\}\\ \\ u = & \{2(2^{p+2}-3p-8)\}/\{3p(p+2)\}\\ \end{array}$$

Therefore if p, p+2 represent large twin-primes then the expression $(2^{p+2}-3p-8)$ is perfectly divisible by thrice the product of the twin primes. This single criterion may be directly applied to screen for large candidate twin primes.

References:

1. An elementary approach to explore possible constraints on the infinite nature of twin primes

[816] viXra:1410.0112 (Number Theory)