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Abstract

Much research has involved the consideration of graphs which have sub-graphs of a particular kind, such
as cliques. Known classes of graphs which are eigen-bi-balanced, i.e. they have a pair a,b of non-zero
distinct eigenvalues, whose sum and product are integral, have been investigated. In this paper we will

define ta new class of graphs, called g-cliqued graphs, on g2 +1 vertices, which contain q cliques each of

order g connected to a central vertex, and then prove that these g-cliqued graphs are eigen-bi-balanced
with respect to a conjugate pair whose sum is -1 and product 1-g. These graphs can be regarded as design
graphs, and we use a specific example in an entomological experiment.
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1. Introduction

There is much interest in considering graphs which have sub-graphs of a particular kind, such as cliques —
see Babat and Sivasubramaniam [1], Graham and Hoffman [3], and Liazi, Milis, Pascual and
Zissimopoulos [6]. Known classes of graphs which are eigen-bi-balanced are considered in Winter and
Jessop [7].These graphs have an associated pair of (real) conjugate eigenvalues (from the graph’s
adjacency matrix) whose sum and product are integral. It appears that the conjugate pair arises out of the
centrality of certain vertices of the graph, which are strongly connected (edgewise) to other vertices of the
graph. For example, the wheel graph has a central vertex connected by its spokes to the remaining
vertices of the graph. Bipartite graphs have two sets of vertices strongly connected to each other. The
vertices of the complete graph are each strongly connected to each other. In this paper we will define ta

new class of graphs, called g-cliqued graphs, on g2 +1 vertices, involving a central vertex connected to q

cliques each of order g, and then prove that these g-cliqued graphs are eigen-bi-balanced with respect to a
conjugate pair whose sum is -1 and product 1-g. These graphs can be regarded as design graphs, and we
use a specific example (g=3) in an entomological experiment.

2. Construction of g-cliqued graphs



*

In this section, for g > 2, we construct a g-cliqued graph, labelled GKq » and find its associated

adjacency matrix. We take g copies of the complete graph on g vertices K, together with a single vertex

v . Generally, we label the vertices of the ith copy of (Kq)i as Vi, Vy,...Vy Lfor i=12,...4.

2.1 For g=2, the graph GKZ*

For q=2, take 2 copies of K, , namely (Kz)i; i =1,2 together with a single vertex v. Joinv to
vli; i =1,2, so that v has degree 2. More generally, join v to vi; 1<i <. so that v has degree 2
generally.
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Figure 2.1.1: Construction of GKZ* - (a)

Finally, join verticesvj and v3of (K,) and (K,)? to form a 5-cycle.
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Figure2.1.2: Construction of GKZ* - (b)

Label vertex v as vertex v;, and then for each sub-clique, label the vertices starting from v{ = v,, v} =
v3, and v? = v,,v3 = vs. This graph does not contain a 2-lantern sub-graph so it is a design graph,
namely a 2-cliqued design graph.
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By definitionof det(ﬂl - A(GKZ*)), the characteristic polynomial of A(GK2 )is A =53 4+51-2.

—1+\/§ —1—\/§
2

The eigenvalues of this adjacency matrix are: 2 (once); (twice) and 5 (twice). The

_1+45
=

conjugate eigen-pairs are

2.2 For q=3, the graph Gy~

For g =3, we take 3 copies of K, , namely (K3)l ,(K3)2, and (K3)3together with a single central vertex
v. Join v to vli; i =1,2,3:Join the remaining vertices of the 3 copies of K, to form 3 5-cycles. i.e.,v% and

2 3.3 1
vzandvy; vyandv;.

v2 U% 2




Figure 2.2.2: Construction of GK; - (b)

Label central vertex v as vertex v;, and then for each sub-clique, label the vertices starting from

Vi =V,, V3 =Vg, V3 =V,,and V7 = Vg, V2 =Vg, V2 =V5,andV; =Vg, Vi =Vg, V& =V,

Then the 10x10 adjacency matrix of GK3 , Where the rows are v, ,V;,...,Vyo and the columns are

Vy 4 Vg, VygiS:

10 1 1
1 0 1
1 0 1
11 1
. 1 1
A(GK3 >_ 1 0
1 1
1 1
1 0
- 1 1 -

All blank elements are zero. Since no two columns are the same, the exclude 3-lantern condition holds.

The characteristic polynomial of the adjacency matrix for g =3 is:

A0 1528 64" + 7518 +482° —144% —1143 + 752 + 684 +12

The eigenvalues of this adjacency matrix are: 3, 1, -2, -2, 1.879, 1.879, -0.347, -0.347, -1.532, -1.532..

1449
-

The conjugate eigen-pair is

2.3For g=n, the general construction of graph GKn*



*
The general construction of the (1+ n? )x(1+ n2) adjacency matrix of GKn where the rows are

Vi, Vo,V and the columns arev,,v,,...,v is as follows:
72 1+n2 12 1+n2

a; =0; 1§i§(1+n2)
Joinvto v}; 1<i<n:
Q1 =L 0<A<n-1
Q4 ni1 =L 0<A<n-1
Sub-cliques:
A nskiand =00 0<A<n-1 1<k<n; 1<l<n; k=I
A nikansd =L 0<A<n-1 1<k<n; 1<I<n; k=I
viof clique i (the nth vertex in clique i) joins to v (the 2nd vertex in clique
(i+1)):
A4 aninir(an2 =L 0<A<n-1,
A1 (1n+224inen =4 0<A<n-1
vij of clique i (the jth vertex in clique i) joins to vijtll (the (j-1)th vertex in clique (i +1)):
Ay jrr(enna(j-y) =L 0SA<n-1L 4<j<n-1 j even
Ay (pni(j-)eansj, =L 0sA<n-1 4<j<n-1 j even
i+1

vij of clique i (the jth vertex in clique i) joins to v'™ (the jth vertex in clique (i +1)),

j=n-1 neven, j odd, i odd:
A n+jar(aspnej =L 0<4<n-1 j=n-1 Aeven

A (annrjreand =L 0<A<n-1 j=n-1 Aeven



If for a ; i>(1+n2)then i=i—(1+n2)and if for a; ; j>(1+n2)then j:j—(1+n2)

3 =0; 1sis(1+ nz) 1§js(1+n2)otherwise.

3. Eigenvalues of g-cliqued graphs and their eigen-bi-balanced property

In thissection, we focus on the g-cliqued graphs as constructed in section 1. We show that the g-cliqued
graphs have eigenvalue g and conjugate eigen-pair:

P -1+ .1+4(g-1)
- 2
The determination of the conjugate eigen-pair is equivalent to showing that the cubic

R-2@-D-2q-2q-D+aq@-1) = @A-q)(A*+1-(q-1)

is a factor of the characteristic equation determined by A(Gk*)>_< = AX where A(Gk*)is the adjacency

matrix of theg-cliqued graph.The proof requires a number of specific definitions of vertices within the g-
clique graph, and we use the connectivity between the first clique, the second to last clique, and the last
clique in the proof of the conjugate eigen-pair. The central vertex also plays a key role in this proof, as

each sub-clique of Kq is connected to the central vertex. The proof of determining the conjugate eigen-

pair and the associated eigenvectors, is first determined explicitly for the cases q=3,4, and then
generalized for the g-cliqued graph.

Once we have found the conjugate eigen-pair of the g-cliqued graph, we then determine the eigen-bi-
balanced properties of the class of g-cliqued graphs associated with this eigen-pair in section 4. The
values of all the newly defined eigen-bi-balanced properties, as defined in Winter and Jessop [7], are
easily determined for this class of graphs

Theorem 3.1

The g-cliqued graphs, as constructed in section 1,have eigenvalues A=q (and the g-cliqued graph is g-
regular) and conjugate eigen-pair:

L _—lx\lva@-1)

2




The conjugate pairarise out of the “tightness” of the connection between the central vertex and the
cliques, and between two adjacent cliques — for convention we chose the second last and last clique.

Proof of Theorem 3.1

We will illustrate Theorem 3.1 for g = 4and 5and then give the proof for all g > 6. Proof of cases
g = 2,3 can be found in Jessop [5]. First, we need the following definitions.

3.1.1Vertex notation convention

Several vertices will be important in the proof, and hence we will give them special labels as
follows:

First vertex (central vertex), X, ;
Second vertex, X,;

Third vertex, Xs;

Anchor vertexof each clique = vertex in each clique which is joined to the first vertex x,

1

2

3

4. Vertices in first clique = Jlxzyx3,..., Xg» Xq+1};

5

6. Anchor vertex of the last clique, X, = X;,q(g-1)
7

Switching pair of vertices, quil = X|_, (third last vertex) and Xq2 = X;_4 (second last

vertex);

8. Lastvertex, X, =X , .
g+l

3.1.2 The generating set
The following definitions are also required for this proof:

and T ' = {the set of vertices of the second last clique which are adjacent to vertices in the last
clique}.

ThenT' = {xkl,xkz,...,xkt };where t:qT_l, qodd, or t :%, q even, and

S - the generating setof vertices

=TuT’



K
Also, if S ={X;, Xy..., X, J, then we define DS =" x;.
=

3.1.3The two main equations that generate the conjugate eigen-pairs

We will use the relationship Ax = Ax to determine the two main equations that generate the
conjugate eigen-pairs:

DS =A% —ax 1)

and
D8 =(q-1)> S+(a-1x

_(@-Dx
=25 G-ta-0) ?

Substituting (2), into (1) we get:

(q—l)ﬂbxI _
A-(q-1)

Azx, —0x;; A=q-1

so that:
@-Di=ZA(A-(@-1)-q(A-(@Q-1)

= A2 -2@-)-gi+q(@-1)-i(q-1)=0
= (A-q)(AF +A-(q-1)=0

This gives us three eigenvalues:

e A=q(; and

12 Tra@-D

¢ the conjugate eigen-pair 4 = > .

The proof of cases q=2 and 3 can be found in Jessop [ |’



3,14Thecase =4

Refer to Jessop [5].
Step 1: Write down first equation using last vertex: equation part of
A)_( == ﬂ,)_( . X3 + X14 +Xl5 + X16 = ﬂ,X]j

Expand left hand side with their neighborsto get vertices belonging to set S:

(Xy + X4 + X5 + X7) + (X + Xg5+ X6+ X7) +
(X135 + Xpa + Xy + Xy7) + (Xp + X g + X5+ %4 7)
= A(Xg + Xq4 + X35 + Xg6)

Xg 4 Xo + Xg + X5+ 2(Xg4 + Xi5+ Xgg) + X2 + X153 +4%X7 = A(A%7)

Step 2: Put X5 = —X;5 (second and third largest have opposite signs and are called the

switching pair) — this guarantees X;s, X;5 & S.

Set T = {xl, x2} and T’ ={all vertices in S that belong to the second last clique, and which
are neighbours of the lastclique }= {Xlz, X13}. Then the generating set

S=TUT ={X, X }U X5, X3} ={X0, X5, X002, Xy 3}
Then we have
Xp + Xo + X4 + X5 +2(X4) + Xpp + Xg3 +4X7 = A(AX7)

Step 3: Set X, = X5 = X4 =0;

This verifies equation (1) of Section 5.1.2 for the case ( = 4.

Step 4:Taking the neighbours of the verticesin S = {xl, X5, X192, X13}We get

(Xo + Xg + X0+ Xga) + (X + X3 + X4 + X5) +

(Xg0 + X1+ X3+ X6) + (X0 + Xg1 + X2 + Xg5) = A(Xg + Xp + Xy + Xg3)



From above, X, = X5 = X14 =0; X5 =X

X1+X2 +X3+X6 +3X10+2X11+X12+X13=O

Set X9 =AX7;

Set X3 =2x%;

Set Xqq1 =Xo

X, =0

Set 2X;3=Xg

Xq 4 Xo + 2% + 3% 7 + 2%y 4+ 3Xqp +3X13 = A(Xg + Xo + Xq0 + Xq3)

3(Xg + Xy 4 X9 + Xq3) + 3% 7 = A(Xg + Xy + Xg2 + X43)

— X+ X, + Xy + X _ 3y
1 2 12 13 /1_3
31X
> 3 @)

This verifies equation (2) of Section 5.1.2 for the case ¢ = 3.

Step 5: Substitute (2) into (1) to we get

Bﬂifjj - /12)(17 - 4X17
=  2(A-3)Xy —4(A-3)x;; =31%
= Xy —3Xyy — Ty +12%, =0
= (A-4)(P+1-3)x; =0
~1+1-(4)-3) -1+
= A=dord= 2() ): 1_2\/E

So, solving this equation, we have eigenvalues A = 4, (which is the same as the degree of

-1+41
the vertices in the 4-cliqued graph), and the conjugate eigen-pairs A4 = T\/_s

Let X =[x, Xy,....%7] . Then A(GK4*)>_< = Ax gives



[ X, + Xg + Xg + X4
Xy + X3 + X4 + Xy
X, +Xg + X7 + Xg

X

X1t X1+ X3+ Xge

X190t X1+ Xp + X5

X

X13+ Xig + X6 + X7
Xip X4+ X5+ X7

X3+ X4 + X5 + X

X3+ X5 + X, + Xg

X; + X + Xg + Xg
Xs + Xg + Xg + Xg

9 T X0+ Xpp +Xg3

1T X5+ X6 + X7

Xy + 2%3 + X7 +0 ]
2% +0+0+x
Xo +0+0+ X,
2% +0+ X, + Xg
Xy + 2% +0+ X,
X; + X7 + Xg + Xq
0+ 2Xy5+ X5 + Xg
0+ 2Xy5 + X; + Xg

2Xj3+ X, + Xg + X, | =

X, + Xy + X3
Xg + AXy7 + Xq3
AXq7 + Xy + X3+ X6
X7+ X, +0— X6
X + 0+ X7
Xi3+ 04 X6 + X7
X6+ X7
2% +0+0




Step 6:We will now verify equations (1) and (2) in this section, using the definition of the
eigenvector above.
We use the generating set S ={Xy, X,, X, X3} with its sum

ZS = X; + X, + Xq5 + X13. Now, using equations (4), ( 5) and (15) and(16) in the above,

and noting that the variable x, is 0:

DS =AM+ Xy + Xpp+ Xg3)
= (X, + 2Xy3 + AXy7 )+ (2%, + X))+ (AXg7 + X + Xy3 + Xgg) + (AXg7 + Xp — Xg6)
=3(Xy + Xy + X + Xq3) +34%5
=3 S+2x;

This is the same result as equation (2) above.

Step 7: We now verify equation (1) in this section, using the definition of the eigenvector
above.

Next: equation 20 and 6 gives:
Equation 17 gives X, + X7 =0and 18 +19 gives: X3 +2X;; =0and X;, =0, so that:

This is the same result as equation (1) above.

So we have verified both equations (1) and (2) by using the definition of the eigenvector.
3.1.5 The case q=5

Step 1: Write down first equation using last vertexpart of the equation
AX = AX

Expand left hand side with their neighborsto get vertices belonging to set S:



(X + X4 + X5 + Xg + Xog ) + (X, + Xz + Xog + Xos + Xp)
Jr(X21 + X + Xp4 + Xp5 + Xze) + (Xzo + Xop + Xo3 + Xp5 + Xze)
+ (Xg + Xop + X3+ Xo4 + Xg5)

= /1()(3 + Xop + Xp3 + X4 + X25)

X+ Xy 42X, + Xg + Xg + Xog 4 Xo1 +3Xy5 + 3Xy5 + 33Xy, + 3Xy5 + OXog
= (M%)

Step 2: Put x,5 =—X,, (second and third largest have opposite signs and are called the

switching pair) — this guarantees no X,,, X,5 & S.

Set T ={x,, X, } and T’ ={all vertices in S that belong to the second last clique, and which
are neighbours of the lastclique } = {Xzo, X21}. Then the

generating set S =T UT' ={X;, X, }U {Xp0, Xp1 } = {X, X5, X00» X213

Then we have
22
X1 + Xy +2X, + X5 + Xg + X0 + Xpq +3X55 +3Xy5 +9Xog = A Xog

Step 3: Put
X4 = X5 = 0, X6 = —3X22; X23 = O

This verifies equation (1) of Section 5.1.2 for the case ( = 4.
Step 4:Taking the neighbours of the vertices in S = {xl, X5, X0, X21}we get

(X + Xg + Xgp + Xg7 + Xop )+ (Xy + Xg + Xy + X + Xg)
+ (X17 + Xig T Xgg + Xp1 + X24) + (X17 + Xig + Xgg + Xpo + X23)

Switching pair: X,, = —X,5 and set X, = X = 0; Xg = —3X55; X3 =0



X3 =3X2

3
X8 = 5 X20, %19 = 5 X1

X4 =X5 :Xl7 =O

X5 = —2Xg7 = X4

(X2 +3X;, +4X,6 + 0+ X22)+(x1+3x2 +0+0-3X,,)
3 3 3 3

Therefore
X + X, + Xon + X AXas
pr— = pr—
1 2 20 21 ﬂ _ 4
4x
> S=—2 @)

A-4

This verifies equation (2) of Section 5.1.2 for the case ( = 4.

Step 5: Substitute (2) into (1) to we get

% = A% Xy — X
= (A =8 Xyg —5(A —4) Xy = 4K
= PXpg — 41 X5 —5AXog + 20%o6 — 4AXpg =0
= PXyg — 41Xy — I + 20X, =0
= (A-5)P+A1-4)%,=0
— ﬂp:50r/1:_1i\/m:_li\/E

2 2



So, solving this equation, we have eigenvalues A =5, (which is the same as the degree of the

vertices in the 5-cliqued graph), and the conjugate eigen-pairs A = #
Let x = [xl, x2,...,x26]T . Then A(GKS*)>_< = Axgives (see Jessop [ ]:
X, 33X A+ Xy, |
X, +3X, —3X,, X, 4
X3 _3X22 + Xz X S
Xy 6
X4 7
Xg 8
Xg 9
X4 10
Xg 11
Xq 12
X10 13
X1 14
X1p 15
_2 X3 16
X14 17
Xi5 18
X16 19
X7 20
3 Xig 21
);15 +0 +3§ Xpo + Xpo + Xy X, 2
3 X0 + > Xo1 + Xy +2X,, Xp0 23
§x +§x + X, +0 = >
2 20 2 21 20 X22 25
X, + 0+ Xy 0 26
Xo; + Xop + 0+ Xog Xy 27
Xog F Xop + 2Xpy 4 Xog X, 28
0+ Xy, —2Xy, + Xog X 29
X3+ X, +0+0+0 |




Step 6:We will now verify equation (2) in this section, using the definition of the
eigenvector above.

We use the generating set S ={X;, X5, X571, X5, }With its sum
DS =Xy + Xy + Xp1 + Xgp. Now, using equations (4),( 5),(23) and (24) in the above, and
noting that the variable x, =0:
ADS = A%, + Xy + Xo1 + Xp5)
3 3
= (X, + 3%, + 42Xy + Xpp )+ (X, +3X, — 3%y, )+ S Xao+ S Xor F Xy 2X,,
+ 3 Xy + 3 Xoq 4 Xp0 +0
2 20 2 21 20

=4S +42%y

4
= > S= sz: (30)

This is the same result as equation (2) above.

Step 7: We now verify equation (1) in this section, using the definition of the eigenvector
above.

(24) +(25) yield:

Xo0 + 2X9p + 2X56 =0 (31)
From (29) we get

Xg 4+ X50 = A Xog

= AXp = AXg + WXy

Substituting (6) and (25), we get

o = (X =3Xap + Xag )+ (¥ + 0+ Xs5) (32)
Adding (31) and (26) to (32) we get

)LZXZG = (Xz —3Xp, + X26)+(X1 +0+ X26)+(X20 +2Xpp + 2X26)+(X21 + Xy +0+ X26)



= DS = Xy —5Xyg (33)

This is the same result as equation (1) above.

So we have verified both equations (1) and (2) by using the definition of the eigenvector.

3.1.6  Eigenvalues of general case

Refer to Section 3.1 for the vertex notation and definitions. We require the following
additional definitions to clarify the proof for the general case, where q > 6.

10.

11.

12.

13.

X, is the first vertex (central vertex);

X, is the second vertex;

X5 is the third vertex;

Vertices in first clique = {Xz,xsf---f Xq xq+1k

Vertices in last clique = {Xayxaﬂ,..., X1_3s Xj_2s X1_1, X| };

Anchor vertexof clique is the vertex in each clique which is joined to the first vertex
X1

Anchor vertex of the last clique, X; = Xp.4(q-1)

Switching pair of vertices are qu,l = X,_, (third last vertex) and xqz = X4 (second

last vertex);
X =X , is the last vertex;
g°+1

AX, is the sum of the neighbours of X i.e.

AX| = Xg +Xq +Xgpq + Xapo +oo X3+ X0 + X

Q is the set of vertices in the last clique which give ’0’’ equations, i.e.,

Q ={Xa.1: Xas2- X3} and {XI—Z’XI—lv X }¢ Q

Neighbours of X, = {xl, Xj_2y X|_15 X| } and all other neighbours of X, from fromQ
(which are 0)

Neighbours of X, = N(x,)

={x|1,x|2,...,x,q}

= {Xs 1 Xa1 Xas1s Xap2s-++- X3, Xl—zaxl—l}



14.
15.

16.

17.
18.

19.

20.

The sum of the neigbours of x,i; 1<i<qis A(Ax)

The set T’ consists of vertices from A(Ax, ) which belong to the second last ((q—1)
th) clique, which are neighbours of the vertices from the last ( q th) clique

q_—l; g odd
ie, T'= {Xkl,xkz,...,xkt };Where t=
%; q even

T ={X, x,}

Let S =the generating set of verticesthen S =T UT".

P = the set of vertices in the second last clique, excluding the anchor vertex, which
are not neighbours of the last clique, and are therefore not in T’ as defined

above
q_—l; g odd
ie., P:ixpl,xpz,...,qu_l_t},where t= q
E; q even

Q'isa subset of Q, whose vertices join backwards to vertices of T”. All vertices in
Q’are in the last clique.

K
If S ={X, Xpumss X, J» then we define DS =" x,.

i=1

Step 1- write down the first equation using the last vertex:

2
=X central vertex
+Xp + Xg + X5 o+ Xg + Xgug all vertices in first clique

+(A4=2)Xa +(4=2)%301, (A= 2)Xasp + - + (A= 2) X+ + (A= 2) X, 3
+(q=2)X + (A= 2) X + A% + (X + X+t X )

+ (Xp1 +Xp, ot quiH)
Step2:  Set X3 =—X_, switching vertices
Step3:  Put Xy =X =..=X%X, =0; Q={0,0,..,0};

Xgi1 = —(9- Z)Xa;



22X = X +X+0+0+..+0
+0+0+...+40+0
+(q-2)x_, —(4—2)%_, + 0%
+ (X + Xy ot X )
+(0+0+...+0)
= 22X =X+ Xg + 0%+ (X + Xiep +ot X))
= 1°X — QX =X + X, +(x|<1 + Xy oot th)
= A% —0x = .S
= 'S =X -

Step 4:

Now we look at the neighbors of the generating set S:
S=TUT =%, %3} Xy r--- X }

q-1 q

wheret = ——,qgodd, and t =—, g even.
2 2

Neighbours of X; I X5, Xo, ¢y X242+ X21q(q-1) = Xa

Neighbours of X, : Xy, X3, X4,y Xg11

Sum of neighbours of T' = (t _1)21-' +3P+>Q

Then the sum of the neighbors of the elements of S:

1)

AD'S = (Xg + Xorq + Xaioq oo+ Xorq(qny) + (X0 +Xg + Xy F o+ Xg +Xg 1)

+E-DD T +tD P+>Q

From before:

Put X, =X =..=X; =0; Q={0,0,...,0} X4y =—(d—2)X3; X1 = X5,

AD'S =Xy + Xguq + Xgi2q + o+ Xorq(qn))

+ (X + X3 +0+...+0-(g—-2)x,)

+HE-DD T +tD P+x_,

+(t —1)ZT' + P +X_,



Set
Xg = (4 —2)Xy;
Xorq =(A=2)%
Xo12q = (A —=1)AX,
Xaq = X24q(g-2) =0
Xi_p = (4 =3)Xy ==Xy

ADS =X+ X +(A-2)% — (A= 2)X, +(q—2)% + (q —DAx, +
+04X, + (=D T +tD P+(q—3)x,
=(q-Dx +([@-DX, +(q—DAX +t-DD T +tD P

Set
_g-t .
Xy = T X »
_9q-t
Xp t Xk
_gq-t
Xt t Xy
and
Xp(s1) = Oifq is even, as P has one more vertex than T "when g is even.

Then,

2)°S  =(q-Dx+(q-Dx, +(a-1)2x

q

-t
+(E=D(Xyy + Xy, +o t xkt)+t{T(xkl + Xy ot xkt)}

=(@-Dx +(@-1x;, +(q-DA +(@=D) (X +Xy,, +--FXy)

=(q-D) (X + X, + X +Xpp Heet X )+(q-DAx
=(q-D S +(a-)
—(a-2)> s =(a-1)x,

(q- 1/1x,
s_
:Z 4-(a-1)

)



Substituting (2) into (1), we get

=1)Ax,
i (q)—l) = -
=  Z(A-@-D)x -q(A-(q-1)x =(a-1)x
= 2% -(Q-DAx —a +q(q-1)x —(q-)x =0
= 2% —-(q-DAx —(2q-D)Ax +q(q-1)x =0
= (A-9)(F+21-(0-D)x =0
R i:qomz—li,/l—(—4(q—l)) 151+ 4 D)

2 2

So, solving this equation, we have eigenvalues A = q, (which is the same as the degree of

~1+/1+4(q-1)

the vertices in the g-cliqued graph), and the conjugate eigen-pairs A = >

3.1.7General eigenvector

T
Let X= [xl, X, ,...xq2+J be an eigenvector of GKq . Then, from applying the construction

of the g-cliqued graphs and the anaylsis in the preceding sections, we have:

Xy =X+ Xy +X5+Xg oot Xgg +X
=(0-Dx,

XgsXg 100 Xq =0
Xgu = —(d—2)X,
Xo.q = (A-1)X
Xo.0q = AUA-1)X

Xa = Xi(g) =X T Xau F Xgeo T F Xqp T F X X £ X)



X, = Xy,
P t k]_
q-t
Xy, = X
p2 t 2
gq-t
= X
Pt t kt
and
Xplen) = Oifq is even, as P has one more vertex than T "when q is even.
X, =X
2 -2
=X, +(q=3)X, + X, +X = AX_,,
where x,, € T' and is connected to switching vertex X,_,
X =X _
¢ I-1

— X — (A= 3)%, +%

Xy =(0=3)X; =—X3

X1 ==X
X, =X
2a N

The general eigenvector will have q—4 —(t —1) entries which contain X, + X + X4 + X|_,.

Zero equations (obtained from all vertices in the last clique, which connect backwards to the
(q-1) clique, i.e., to the vertices of T'\{x,}. (t —1)of these such equations

Xa + X5 + (X1 +X0) +X =X, + Xy T 0+ (t—1) of these such equationswhere
ls[)’ét,andxkﬁ # Xy
Sum of generating set T* without X, : (t —2)T "\, }+({t -DP +(t -1)X, g = X

Equation for X, in generating set: TX, 3+ P+Xa g + X

3.1.8The final general equations



As in the specific cases for g =4and 5, we need to verify the following two equations using
the values of the entries in the eigenvector:

'S =A% —0x. )
and
2Y°S =(a-1DD_S+(q-1)x 2)

We shall now prove that equation (1) holds for values of the eigenvector:

The last equation in A(GKn*)>_< = AXyields
Xg + X, = AX
= WX + X, = 12X,
Substituting ath and 3™equations of A(GKH*)>_< = AX we get
2X, = AXg + AX,
:(x2 + X4 + X5 + Xg +...+xq+1+x,)

(X Xaug F Xauz oo+ Xagg F o F X + X X))

(ot F Xauz oo+ Koy o+ X1 + X4 +2%))
Setting Xy = X5 =... = Xq = 0,and Xg,; =—(q —2)X,, we get
2
2% =X+ X — (4= 2)Xg +(Xaug + Koy oo+ Xaup +ooe + X o + X1 +2X))

Now, adding the switching vertices, we get
X+ X1 = (Xa = (0= 3)%, +X)+ (%, + (A=3)%; + %, +%)=0

= 2X, + X, +2% =0
Adding the 0 equations yields: (t —1)X, +(t —1)X; + X,1 + Xa_p + -+ Xa_ (11
Adding the other 0 equations yield: g —4—(t —1) of X5 +X

This all yields:

2% =X X = (@=2)Xy A+ (Xgug T Xayp oo F Xgyg Foo+ Xpp F Xy +2X))

+2X, + X, +2X,



+(E-Dx, +(E DX +Xyg +Xgp +..+ Xa(t-1)
+(q-4-(t-D)[x, +x1]

=X, + Xy —(Q—2)X, +2X, +2X, + X, +2X
+(E-Dx, +(E-DX + Xy g +Xgp +..+ Xa(t-1)

+(q—4—(t-1)[x, +x]
= sum of elements from generating set + gXx,

Therefore,
ZS = /IZX, —0X,;, which is equation (1) above.

Using the vector values as per 5.1.8, and referring to section 5.1.7, we have verified that

(q- 1ﬂx,

2
~(g-1) @

:>ZS—

So we have verified both equations (1) and (2) by using the general definition of the
eigenvector. Substituting (2) into (1), we solve for the conjugate eigen-pair. O

This concludes the proof of the conjugate eigen-pair of the adjacency matrix associated with the g-cliqued
graphs, as constructed in section 2. It is interesting to note that the conjugate eigen-pair are a function of
the clique number of the graph.

In the next section, we determine the eigen-bi-balanced properties of g-cliqued graphs associated with the

~1+\1+4(q-1)

conjugate eigen-pair A = 5

4 Eigen-bi-balanced properties of g-cliqued graphs

Now that we have determined the conjugate eigen-pair for the class of g-cliqued graphs, we can
determine the eigen-bi-blanced properties as defined in Winter and Jessop [7], for this newly defined class

~1+ 1+ 4@-1)
2

cliqued graphs as defined in Section 2. We will determine the eigen-bi-balanced properties of the class of
g-cliqued graphs, associated with this conjugate eigen-pair. We note the importance of the central vertex,

of graphs. We recall from Section 3 that the conjugate eigen-pair is (a, b) = for all g-



which is connected to the anchor vertex of each of the g sub-cliques in the g-cliqued graphs. The proof of
the following results can easily be verified.

Theorem 4.1

For the class of g-cliqued graphs and the conjugate eigen-pair

(ab)= ~1+.1+4(q-1)

2

1. The class of g-cliqued graphs is sum*(-1)*eigen-pair balanced with respect to the conjugate

—1+./1+4(q-1)

eigen-pair (a,b) = 5 ,

2. The class of g-cliqued graphs is product* (1— q)*eigen-pair balanced with respect to the

-1+,1+4(q-1
conjugate eigen-pair (a,b): m

2 )

3. The class of g-cliqued graphs has eigen-bi-balanced ratio

r[—1+,/1+4(q—1)G »=1- 1+4(q—1)] 1

2 “ 2 (@-1)°

witheigen-bi-balanced ratio asymptote

2 Kq 2

r(_“‘/l”(q_l)e L—1- 1+4(q—l)J 0 ang

density Q, (GKq*) =|asymp

({u,/n Ma-D , «-1-1+4@-D D‘
2

Kq 2

4. The class of g-cliqued graphs has eigen-bi-balanced ratio area
\“l+y1+4(g-1) —1-,/1+4(g-1)

Ar(GKq | 2 =Jn—1(4Jn—1+4|n\Jﬁ—ﬂ);and




5.

The class of g-cliqued graphs has|a -+ b| +|ab] = ¢ with respect to the conjugateeigen-pair

(ab)= ~1+\1+4q-1)

2

The sum of the conjugate eigen-pair (a,b)is

Sum(—1+1/1+4(q—1) ~1- 1+4(q—1)J

2 2
_—1+.1+4(q-1) ,~1-y1+4(@-D)
N 2 2
-1

Therefore, the class of g-cliqued graphs isexact sum*(-1)*eigen-pair balanced. It is
interesting that it is the conjugate pair of eigenvalues that satisfy the
sum*(-1)*eigen-pair balanced criteria.

The product of the conjugate eigen-pair (a,b) is

~1+1+4(q-1) -1- 1+ 4(q—1)J

product( ,

2 2

(-1)* -(1+4(q-1)
4
-(q-1)

We have shown that the product of the conjugate eigen-pair is an integral function of g i.e.,
f(q)=—(q—1) where q—1 is also the degree of the vertices in a complete graph of orderq.

These eigenvalues are therefore non-exact product* (1— q)*eigen-pair balanced.

The eigen-bi-balanced ratio is



—1+\/1+4(WG «—1- 1+ 4(q-2)
2 “q 2
_ -1
-(-1
_1
(a-1)

Note that the eigen-bi-balanced ratio is equal to the negative of the reciprocal of the product
of the conjugate pairs. The asymptote of this ratio is 0, as the value of q increases. So

2 Kq 2

r(_1+‘/1+4(q_1)c; P—1- 1+4(q—1)] 0. and

Qr (GKq*) =

asymp[{u\/me L —1- 1+4(q1)]}‘20;

2 Kg 2

4. The eigen-bi-balanced ratio area is

N \71+\/1+4(q71) ’*1*«/1+4(C|*1) 2mlea+b
Ar(GKq ) 2 ? :T.[ ab d‘
_ g9’ +1)‘f ‘
(9-1)
1
q-[\/n—l—l
udu
4 m
g u-— 1+u 1 U

= Jn—1lavn-1+4l[Jn-1-1)+c

When n=1 we have Ar =0 sothat c=0.

So



\“1+1+4(g-1) -1-/1+4(q-D)

Ar(GKq*) 22 =\/n_—1(4\/n_—l+4ln‘\/n_—1—lb

5. [atb+[ab

14 T RQD) | 1 A@D]| |1+ IrA@-D -1 T D)
2 2 2

2 ] |

_|-2, 1-(+4(q-D)
2| | 4 |

=1+(q-1)

5. Design graphs and an entomological experiment

The study of the interaction between insects and host-specific plants is important in bio-control situations
and is well documented - see Jans and Nylin [4]. Many such experiments use block designs (see, for
example, Coll [2]) and optimal scheduling would be advantageous when there is the occurrence of large
number of treatments and blocks.

5.1 Design graphs

We can associate designs with the g-cliqued graphs as follows: the vertices are the treatments and the
blocks are the neighbours of each vertex (see Jessop [5]). Since we have a g-cliques graph which is a
block design graph, any application of graph theory to our graphs can be applied to its associated design,
and in particular to experiments where block designs can be used to study the interaction of insects and
plants. One of the important studies in graph theory is vertex colourings of graphs. It can be shown that a
graph’s chromatic number is greater or equal to the order of its largest clique, since a complete graph on n
vertices requires n colours for a proper colouring.

Thus for our g-cliqued block graphs, their chromatic number is greater than or equal to g. Jessop

[5]showed that ¥ (G Kq*) =( . We now apply a 3-colouring to the design associated with the 3-cliqued

block graph relating to an entomological experiment.



5.2 Experiment

We investigate the effect of 3 different species of insects on 10 different types of leaves (plants). We will
have 10 cages containing the leaves and the insects, and they will be labelled as Cage 1, ..., Cage 10.

We have 3 sets of leaves, each containing 10 different leaves. These leaves are to be divided (arbitrarily)
into 10 cages, each cage labelled Cage 1, Cage 2,..., Cage 10. Thus each type of leaf must appear 3 times
in the experiment so that we need 3 sets of the 10 leaves.

The effect of three species of insects (using 10 insects per species) on the leaves in each cage will be
studied. The insects will be labelled The application of the 3 different insects to the mini-groups (cages)
must be done in the smallest number of time sessions, such that the following conditions hold:

Al. Each mini-group of triple leaves must be exposed to 3 different insects.

A2. An arbitrary mini-group of leaves will be called the central-trial set or central cage, and denoted by
Vy.

A3. There must be 3 groups of 3-cliques P, Q and R of cages not containing the central trial set.

A4. Each cage in a cligue cannot receive insects at the same time.

A5.  Exactly one member from each different clique must receive a 3-set of insects at the same time, as
well as not at the same time as the central cage receives its 3-set of insects.

A6. Exactly one member of each different clique, different from the cages in A5, must not receive a 3-
set of insects at the same time.

A7. The three clique groups receiving the insects must be interchangeable (permutable) so that each
clique can be exposed to all 3 insects other than the control.

These requirementscan be depicted in a 3-cliqued graph, where its central vertex is the central-trial set.
The 10 vertices (labeled 1 to 10) represent the 10 cages each containing a set of 3 leaves, the 3 leaves in
each cage (vertex) having their labels from the neighbour of the vertex (this is the block of the associated
design).

The edges (adjacent cages) of the 3-cliqued graph represent tubes connected to the cages (vertices) with
the condition that the tube cannot be open at both ends at the same time - forcing the insect into only one
cage incident with the edge at a time.

The 3-cliqued graph has 15 edges, each vertex incident with 3 edges so that three different insect sets of
10 insects will be used. The proper colouring of the graph will refer to the time sessions when the insects
can be released subject to conditions A1 — A7.



The chromatic number 3 refers to the condition where we require the smallest number of time sessions so
that conditions A1 — A7hold.

The 10 blocks containing 3 different leaves from the 10 different leaves will be:

1. {258} 2. {134}
3. {2410} 4. {2,36};
5. {167} 6. {457}
7. {56,9}; 8. {1,910}
9. {7.810} 10. {389}

The colouring is as follows (see figure 5.1):




Figure 5.1The graph of GK3*

Put 3 colours red, green and blue — vertex 1 coloured blue, vertices 2,5,8coloured , vertices 4,7,10
coloured blue, vertices 3,6,9 coloured red.

Label the insects i(1), i(2)....,i(30), where i(1+; 3k); i(2+3k) and i(3+3k), k=0,1,2,...9,represent the three
different species (10 each), and allocate them as follows:

1. The trial-set is the (arbitrary) block 1={2,5,8} — this block contains leaves 2,5 and 8 and is
colouredblue. The other blocks which are colouredblue are: block 4={2,3,6}; block 7={5,6,9};
block 10={3,8,9}. We release insects i(1), i(2), i(3) into cage 1, i(4), i(5), i(6) into cage 4, i(7), i(8),
i(9) into cage 7 and i(10), i(11), i(12) into cage 10 (we only open the side incident with these
vertices).

2. For the vertices 2={1,4,3}; 5={1,6,7}; 8={1,9,10} coloured we release the next 9 insects (3
per vertex): i(13) to i(21).

3. For the remaining 3 vertices 3={2,4,10}; 6={4,5,7}; 9={7,8,10} colouredred,we release the
remaining 9 insects (3 for each vertex): i(22) to i(30).

With this assignment of colours in GK;, we will now show that the 7 conditions are satisfied.

We have now released all the insects in the least number of time sessions of 3, each cage being exposed to
3 different insects, satisfying Al.

The central cage receives insects at a different time from a block from each clique, and these respective
blocks receive insects at the same time, satisfying A5.

The 3 cliques P,Q and R each do not have their 3 blocks receiving insects at the same time (all blocks are
adjacent in each clique) and do not contain the central cage, satisfying conditions A3 and A4.

The edges between the cliques allow condition A6 to be satisfied.

Three 5-cycles through the central cage are each coloured with 3 colours representing the central cage not
receiving insects at the same time as a cage from each block required in A5. 2 cages from 2 separate
cliques do receive insects at the same time and 2 cages from the same separate cliques do not.

Once we have applied the insects with 3 different time sessions, we keep the central vertices fixed and
rotate the vertices (cages) of each clique once keeping the edges (tubes) fixed releasing 27 (fresh insects
other than those released into vertex 1). For example, the block represented by vertex 2 with colour

has edges (insects) i(13),i(14),and i(15). These insects remain connected to the tubes when we rotate, but
vertex 4 will replace vertex 2 or vertex 3 will replace vertex 2. This rotation allows each block of the
clique to receive each of the 3 (edges of the triangle) of the clique. Keeping the edges fixed of each clique
and rotating the vertices of each clique (not the colours of the vertices), and doing this for two sessions on
3-time intervals, each block of each clique will then have been exposed to the 9 insects connected to each
clique.



After the first two time sessions, we fix the edges (tubes) and we move the whole cliques (as vertices)
around without changing the vertex colouring, so that conditions Al, A2 still hold, and each blockother
than the trial block, is exposed to all 27 insects involved in the 3 cliques. Thus condition A7 holds without
violating any other condition.
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