On filter α) -convergence and exhaustiveness of function nets in lattice groups and applications **A. Boccuto and X. Dimitriou**

Abstract: We consider (strong uniform) continuity of the limit of a pointwise convergent net of lattice group-valued functions, (strong weak) exhaustiveness and (strong) (α) -convergence with respect to a pair of filters, which in the setting of nets are more natural than the corresponding notions formulated with respect to a single filter. Some comparison results are given between such concepts, in connection with suitable properties of filters. Moreover, some modes of filter (strong uniform) continuity for lattice group-valued functions are investigated, giving some characterization. As an application, we get some Ascoli-type theorem in an abstract setting.

A *bornology* on a topological space *X* is a family B of nonempty subsets of *X* which covers *X*, stable with respect to finite unions and with $B \in \mathcal{B}$ for each nonempty subset B' of any element $B \in \mathcal{B}$.

If *X* is a topological space and $x \in X$, then we say that a function $f: X \to R$ is *continuous at x* iff there is an (*O*) -sequence $(\sigma_p)_p$ (depending on *X*) with the property that for each $p \in \mathbb{N}$ and *x*∈ *X* there exists a neighborhood U_x of *x* with $| f(x) - f(z)| \le \sigma_p$ whenever $z \in U_x$. We say that *f* ∈ *R*^{*x*} is *globally continuous on X* iff it is continuous at every point $x \in X$ with respect to a single (*O*) -sequence, which can be taken independently of *x* .

Let $X = (X, \mathcal{D})$ be a uniform space. The elements of $\mathcal D$ are often called *entourages*. If $\emptyset \neq B \subset X$, then a function $f: X \to R$ is *strongly uniformly continuous on B* iff there exists an (*O*) sequence $(\sigma_p)_p$ such that for every $p \in \mathbb{N}$ there is an entourage $D \in \mathcal{D}$ with $| f(\beta) - f(x)| \leq \sigma_p$ whenever $x \in X$, $\beta \in B$ and $(x, \beta) \in D$. If β is a bornology on X, then we say that $f: X \to R$ is *strongly uniformly continuous on* β *iff it is strongly uniformly continuous on* B *for every* $B \in \beta$ *, with* respect to an (*O*) -sequence independent of *B* .

We denote by $\mathcal{F}_{\text{conf}}$ the filter of all subsets of N whose complement is finite, by \mathcal{I}_{fin} its dual ideal, namely the family of all finite subsets of $\mathbb N$, by $\mathcal F_{st}$ the filter of all subsets of $\mathbb N$ having asymptotic density 1, and by \mathcal{I}_{st} its dual ideal, that is the family of all subsets of N with asymptotic density 0, by \mathcal{F}_{Λ} the class $\{A \subset \Lambda \text{ and } A \supset M_{\lambda}: \lambda \in \Lambda\}$ and by \mathcal{I}_{Λ} the dual ideal of \mathcal{F}_{Λ} . Observe that $\mathcal{F}_{\text{N}} = \mathcal{F}_{\text{cofin}}$ and $\mathcal{I}_{\text{N}} = \mathcal{I}_{\text{fin}}$.

We will sometimes consider free filters $\mathcal F$ of $\mathbb N$, with the property that there is a partition of the type $\mathbb{N} = \bigcup \Delta_k$ $\mathbb{N} = \bigcup_{k=1}^{\infty} \Delta_k$, such that

 ${\cal I} = {A \subset \mathbb{N} : A \text{ intersects at most a finite number of } \Delta_i's},$ (1) where $\mathcal I$ denotes the dual ideal of $\mathcal F$ (see also [6]).

k

 $=1$

Remarks 1 (a) Observe that the ideal \mathcal{I}_{fin} satisfies condition (1): indeed it is enough to take $\Delta_k = \{k\}$ for each $k \in \mathbb{N}$.

(b) If $\mathcal I$ is as in (1), and $(A_j)_j$ is any sequence of subsets of $\mathbb N$, with $A_j \notin \mathcal I$ for all $j \in \mathbb N$, then there exists a disjoint sequence $(B_j)_j$ in $\mathcal I$, with $B_j \subset A_j$ for every $j \in \mathbb N$ and $\bigcup_{i=1}^\infty B_j \notin \mathcal I$ $\bigcup_{j=1}^{\infty} B_j \notin \mathcal{I}$.

(c) The ideal \mathcal{I}_{st} does not fulfil condition (1). To this aim, it is enough to show that for every partition $(\Delta_k)_k$ of N there is a set belonging to \mathcal{I}_{st} which intersects infinitely many Δ_k 's. Set *q*(1) = 1: there is $k_1 \in \mathbb{N}$ with $1 \in \Delta_{k_1}$. At the second step, take a natural number *q*(2) greater than $q(1)+3$ and belonging to Δ_{k_2} , where k_2 is a suitable integer strictly greater than k_1 . At the $n+1$ -th step, if we have chosen $q(n)$, let $q(n+1)$ be an integer greater than $q(n) + 2n + 1$ and belonging to $\Delta_{k_{n+1}}$, where $k_1 < k_2 < \ldots < k_n < k_{n+1}$. It is not difficult to check that the set $A = \{q(n) : n \in \mathbb{N}\}\$ has asymptotic density smaller or equal than that of the set of squares, that is 0, and thus $A \in \mathcal{I}_{st}$. Moreover, by construction, *A* intersects infinitely many Δ_k 's.

Let *X* be any Hausdorff topological space, $x \in X$ and $\mathcal F$ be a (Λ) -free filter of Λ . A net $(x_{\lambda})_{\lambda \in \Lambda}$ be F-converges to x (shortly, (\mathcal{F}) lim_{λ} $(x_{\lambda}) = x$) iff $\{\lambda \in \Lambda : x_{\lambda} \in U\} \in \mathcal{F}$ for each neighborhood *U* of *x* .

We say that a net $(x_{\lambda})_{\lambda \in \Lambda}$ in *R* (*OF*) *-converges to* $x \in R$ (briefly, (OF) $\lim_{\lambda} x_{\lambda} = x$) iff there exists an *(O)* -sequence $(\sigma_p)_p$ with $\{\lambda \in \Lambda : |x_{\lambda} - x| \leq \sigma_p\} \in \mathcal{F}$ for each $p \in \mathbb{N}$.

Let Ξ be any nonempty set. A family $\{(x_{\lambda,\xi})_{\lambda} : \xi \in \Xi\}$ (ROF) *-converges* to $x_{\xi} \in R$ iff there is an (*O*) -sequence $(\sigma_p)_p$ in *R* such that for each $p \in \mathbb{N}$ and $\xi \in \Xi$ we get $\{\lambda \in \Lambda : |x_{\lambda,\xi} - x_{\xi}| \leq \sigma_p\} \in \mathcal{F}$. We will denote by (RO) *-convergence* the $(RO\mathcal{F}_{\Lambda})$ -convergence. Observe that (RO) -convergence coincides with the usual pointwise (O) -convergence of a family with respect to a single (*O*)-sequence and, when $R = \mathbb{R}$, (*ROF*)-convergence coincides with filter convergence in the ordinary sense.

Let (X, \mathcal{D}) be a uniform space, $\varnothing \neq B \subset X$, $\Xi = (\Xi, \geq)$ be a directed set and S be a (Ξ) -free filter of Ξ . We say that the pair of nets $(z_\xi)_{\xi \in \Xi}$, $(x_\xi)_{\xi \in \Xi}$, *satisfies condition H1) with respect to* S iff x_{ξ} , $z_{\xi} \in B$ for each $\xi \in \Xi$, and for every $D \in \mathcal{D}$ there is a set $F \in \mathcal{S}$ with $(x_{\xi}, z_{\xi}) \in D$ whenever $\xi \in F$.

Let S and F be any two fixed (Ξ) -free filters of Ξ . A function $f : X \to R$ is said to be *strongly* (S, F) *-uniformly continuous on B* iff there is an (O) -sequence $(\sigma_p)_p$ in R such that for every pair of nets $(z_{\xi})_{\xi \in \Xi}$, $(x_{\xi})_{\xi \in \Xi}$, satisfying condition H1) with respect to S, we have:

for each $p \in \mathbb{N}$ there is $F^* \in \mathcal{F}$ with $| f(x_\xi) - f(z_\xi)| \le \sigma_p$ for each $\xi \in F^*$.

If β is a bornology on *X*, we say that $f: X \to R$ is *strongly (S, F) -uniformly continuous on* B iff it is strongly (S,\mathcal{F}) -uniformly continuous on every $B \in \mathcal{B}$ with respect to a single (*O*) sequence, independent of *B* .

Let *X* be any Hausdorff topological space. We say that $f: X \to R$ is (S, \mathcal{F}) *-continuous at* $x \in X$ iff there is an (*O*) -sequence $(\sigma_p)_p$ in *R* such that, for every net $(x_\xi)_{\xi \in \Xi}$ *S* -convergent to *x*, the net $(f(x_\xi))_{\xi \in \Xi}$ $(O\mathcal{F})$ -converges to $f(x)$ with respect to $(\sigma_p)_p$. We say that $f: X \to R$ is (S, \mathcal{F}) *continuous on X* iff *f* is (S,\mathcal{F}) -continuous at every $x \in X$ with respect to a single (*O*)-sequence,

independent of $x \in X$ and of $(x_{\xi})_{\xi}$.

Let (X, \mathcal{D}) be a uniform space and $\emptyset \neq B \subset X$. A net of functions $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly F -exhaustive on B* iff there is an (O) -sequence $(\sigma_p)_p$ such that for any $p \in \mathbb{N}$ there exist an entourage $D \in \mathcal{D}$ and a set $A \in \mathcal{F}$ such that for each $\lambda \in A$ and $x \in X$, $\beta \in B$ with $(x, \beta) \in D$ we have $| f_{\lambda}(x) - f_{\lambda}(\beta)| \le \sigma_{p}$.

We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly weakly F-exhaustive on B* iff there is an (*O*) -sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is an entourage $D \in \mathcal{D}$ such that, for every $x \in X$ and $\beta \in B$ with $(x, \beta) \in D$, there is $A \in \mathcal{F}$ (depending on *x* and β) with $|f_\lambda(x) - f_\lambda(\beta)| \le \sigma_p$ whenever $\lambda \in A$.

Given a bornology B on X, we say that $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly (weakly)* F *-exhaustive on* B iff it is strongly (weakly) F -exhaustive on every $B \in \mathcal{B}$ with respect to a single (*O*) -sequence, independent of *B* .

Let $x \in X$. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is \mathcal{F} *-exhaustive at x* iff there is an (*O*)sequence $(\sigma_p)_p$ with the property that for any $p \in \mathbb{N}$ there exist a neighborhood *U* of *x* and a set *A*∈ *F* such that for each $\lambda \in A$ and $z \in U$ we have $| f_{\lambda}(z) - f_{\lambda}(x) | \le \sigma_{p}$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *weakly F*-exhaustive at x iff there is an *(O)*-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is a neighborhood *U* of *x* with the property that for any $z \in U$ there is $A_z \in \mathcal{F}$ with $| f_\lambda(z) - f_\lambda(x) | \leq \sigma_p$ whenever $\lambda \in A_z$.

We say that $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *(weakly)* \mathcal{F} -exhaustive on X iff it is (weakly) \mathcal{F} exhaustive at every $x \in X$ with respect to a single (*O*) -sequence, independent of $x \in X$.

Let S and F be as above, (X, \mathcal{D}) be a uniform space and $\mathcal{O} \neq B \subset X$. A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly* (S, F)*-exhaustive* on *B* iff there exists an (*O*)-sequence $(\sigma_p)_p$ in *R* such that, for every pair of nets $(x_{\xi})_{\xi \in \Xi}$, $(z_{\xi})_{\xi \in \Xi}$, satisfying H1) with respect to S and for any $p \in \mathbb{N}$ there are $S \in \mathcal{S}$, $F \in \mathcal{F}$ with $| f_{\lambda}(x_{\xi}) - f_{\lambda}(z_{\xi})| \leq \sigma_{p}$ for every $\xi \in S$ and $\lambda \in F$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly weakly* (S, \mathcal{F}) *-exhaustive* on *B* iff there exists an *(O*) -sequence $(\sigma_p)_p$ in *R* such that, for each pair of nets $(x_\xi)_{\xi \in \Xi}$, $(z_\xi)_{\xi \in \Xi}$, satisfying H1) with respect to S and for every $p \in \mathbb{N}$ there is a set $S \in S$ such that for each $\xi \in S$ there exists $F_{\xi} \in \mathcal{F}$ with $| f_{\lambda}(x_{\xi}) - f_{\lambda}(z_{\xi}) | \leq \sigma_{p}$ whenever $\lambda \in F_{\xi}$.

Given a bornology B on X, we say that the net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly (weakly)* (S,\mathcal{F}) *-exhaustive* on $\mathcal B$ iff it is strongly (weakly) (S,\mathcal{F}) -exhaustive on every $B \in \mathcal B$, with respect to a single (*O*) -sequence, independent of *B* .

Let *X* be any Hausdorff topological space and $x \in X$. A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be (S, \mathcal{F}) *-exhaustive* at $x \in X$ iff there exists an (*O*) -sequence $(\sigma_p)_p$ in *R* such that, for every net $(x_{\xi})_{\xi \in \Xi}$ S -convergent to x and for any $p \in \mathbb{N}$ there are $S \in \mathcal{S}$, $F \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_p$ for every $\xi \in S$ and $\lambda \in F$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *weakly* (S, \mathcal{F}) *-exhaustive* at $x \in X$ iff there exists an (O) sequence $(\sigma_p)_p$ in *R* such that, for each net $(x_\xi)_{\xi \in \Xi}$ *S* -convergent to *x* and for every $p \in \mathbb{N}$ there is a set $S \in S$ such that for each $\xi \in S$ there exists $F_{\xi} \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_{p}$ whenever $\lambda \in F_{\xi}$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *(weakly)* (S, \mathcal{F}) *-exhaustive* on *X* iff it is *(weakly)* (S, \mathcal{F}) exhaustive at every $x \in X$ with respect to a single (O) -sequence, independent of x.

Note that the analogous concepts of (strong weak) filter exhaustiveness can be formulated analogously for *sequences* of functions, by taking $\Lambda = \mathbb{N}$ with the usual order.

Let B be a bornology on X. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, (FB) *-converges* to $f: X \to R$ iff there exists an (*O*) -sequence $(\sigma_p)_p$ such that $(f_\lambda)_\lambda$ is (ROF) -convergent to *f* with respect to $(\sigma_p)_p$, and for every $B \in \mathcal{B}$ and $p \in \mathbb{N}$ there is $F \in \mathcal{F}$ with $|f_\lambda(x) - f(x)| \leq \sigma_p$ for each $x \in B$ and $\lambda \in F$.

We now consider (α) -convergence of nets $(f_{\lambda})_{\lambda \in \Lambda}$ of (ℓ) -group-valued functions, defined on a Hausdorff topological space *X* . When we deal with nets, in general it is not always advisable to follow an approach similar as that used for sequences, since the cardinality of Λ can be larger than the one of *X*, and we want to consider possibly nets in *X* of the type x_{ξ} , $\xi \in \Xi$, whose points are all distinct. We say that $f_n: X \to R$, $n \in \mathbb{N}$, *c*-*converges (continuously converges) to* $f: X \to R$ *at* $x \in X$ iff there is an (*O*)-sequence $(\sigma_p)_p$ such that for each sequence $(x_n)_n$ in *X* with $\lim_n x_n = x$ we get (O) lim_n $f_n(x_n) = f(x)$ (with respect to the (O) -sequence $(\sigma_p)_p$).

The sequence $(f_n)_n$ *c -converges to* $f : X \to R$ *on* X iff it *c* -converges to f at every $x \in X$ with respect to a single (O) -sequence, independent of $x \in X$.

Let F be a fixed free filter of N. We say that a sequence $(f_n)_n$ in R^X (Fc)-converges (filter *continuously converges) to* $f \in R^X$ *at* $x \in X$ iff there exists an (O) -sequence $(\sigma_p)_p$ such that for each sequence $(x_n)_n$ in *X* with $(\mathcal{F})\lim_n x_n = x$ we get $(O\mathcal{F})\lim_n f_n(x_n) = f(x)$ with respect to $(\sigma_p)_p$.

The sequence $(f_n)_n$ is (Fc) -convergent to $f: X \to R$ on X iff it (Fc) -converges to f at every $x \in X$ with respect to a single *(O)*-sequence $(\sigma_p)_p$, independent of the choice of *x*.

Note that $(f_n)_n$ is *c*-convergent to *f* if and only if $(f_n)_n$ is $(\mathcal{F}_{\text{cofin}}c)$ -convergent to *f*.

Let now Λ and Ξ be two directed sets, S and F be a (Ξ)-free filter of Ξ and a (Λ)-free filter of Λ respectively. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ at $x \in X$ iff there exists an *(O)*-sequence $(\sigma_p)_p$ in *R* such that, for every net $(x_\xi)_{\xi \in \Xi}$ *S* -convergent to *x* and for each $p \in \mathbb{N}$ there are $S \in \mathcal{S}$, $F \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f(x)| \leq \sigma_p$ whenever $\xi \in S$ and $\lambda \in F$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on $x \in X$ iff it $(S, \mathcal{F}\alpha)$ converges to $f: X \to R$ at every $x \in X$ with respect to a single (*O*) -sequence, independent of the choice of *x* .

Let (X, \mathcal{D}) be a uniform space and $\emptyset \neq B \subset X$. We say that a sequence $(f_n)_n$ in R^X strongly (Fc)-converges to $f \in R^X$ on B iff there exists an (O)-sequence $(\sigma_p)_p$ such that for each pair of sequences $(x_n)_n$, $(z_n)_n$ in *X* satisfying condition H1) with respect to *F* we get (OF) lim_n $f_n(x_n) = f(x)$ with respect to $(\sigma_p)_p$.

Given a bornology β on X , we say that a sequence $(f_n)_n$ in R^X is *strongly (Fc)*-convergent *to* $f: X \to R$ *on* β iff it strongly ($\mathcal{F}c$)-converges to f on every $B \in \beta$ with respect to an (*O*)-

sequence $(\sigma_p)_p$, independent of *B*.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly* $(S, \mathcal{F}\alpha)$ *-convergent to* $f: X \to R$ on *B* iff there exists an (*O*)-sequence $(\sigma_p)_p$ in *R* such that, for every pair of nets $(x_\xi)_{\xi \in \Xi}$, $(z_\xi)_{\xi \in \Xi}$ satisfying condition H1) with respect to S and for each $p \in \mathbb{N}$ there are $S \in S$, $F \in \mathcal{F}$ with $|f_{\lambda}(z_{\xi}) - f(x_{\xi})| \leq \sigma_{p}$ whenever $\xi \in S$ and $\lambda \in F$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, *strongly* $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on β iff it strongly $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on every $B \in \mathcal{B}$ with respect to a single (*O*)-sequence, independently of *B* .

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to *(strongly)* $(\mathcal{F}\alpha)$ *-converge to* $f: X \to R$ at $x \in X$ and on *X* (resp. on *B* and on *B*) iff it is (strongly) $(S, \mathcal{F}\alpha)$ -convergent to $f : X \to R$ at $x \in X$ and on *X* (resp. on *B* and on β) for every directed set $\Xi = (\Xi, \geq)$ and for each (Ξ) -free filter S of Ξ .

We will prove that the limit of any (strongly) ($\mathcal{F}\alpha$)-convergent net is a (strongly uniformly) continuous function.

Remarks 2 (a) Note that, even when $R = \mathbb{R}$ and $\mathcal{F} = \mathcal{F}_{\Lambda}$, to use arbitrary nets of the type $(x_{\xi})_{\xi \in \Xi}$ instead of arbitrary sequences $(x_n)_n$ is essential. Indeed there are nets $(f_{\lambda})_{\lambda}$ and functions *f* in \mathbb{R}^X such that $(f_\lambda)_\lambda$ does not $(\mathcal{F}_\lambda \alpha)$ -converge to f, but for every $\varepsilon > 0$, $x \in X$ and for each sequence $(x_n)_n$ convergent to x in the usual sense there are $n_0 \in \mathbb{N}$ and $\lambda_0 \in \Lambda$, with $| f_{\lambda}(x_n) - f(x) | \leq \varepsilon$ whenever $n \geq n_0$ and $\lambda \geq \lambda_0$.

(b) Observe that, in general, $(S,\mathcal{F}\alpha)$ -convergence is strictly weaker than strong $(S,\mathcal{F}\alpha)$ convergence. Indeed, let $\Lambda = \mathbb{N}$ be with the usual order, $X = [0,1]$ with the usual metric, $R = \mathbb{R}$, *n* $f_n(x) = x^n$ for each $n \in \mathbb{N}$ and $x \in [0,1]$, $f(1) = 1$ and $f(x) = 0$ for every $x \in [0,1)$. We prove that for every (Ξ)-free filter S of Ξ and for each free filter F of N the sequence $(f_n)_n$ (S,Fa)-converges to *f*, but does not strongly $(S, F\alpha)$ -converge to *f* on *B* := [0,1). Indeed, if $(x_\xi)_{\xi \in \Xi}$ is any net in *B*, S-convergent to $x_0 \in B$, then $f_n(x_\xi) = x_\xi^n$ and $f(x_0) = 0$, and there exist $S \in S$ and $x_0 < y < 1$ with $x_{\xi} < y$ whenever $\xi \in S$. Choose arbitrarily $\varepsilon > 0$. Since $0 < y < 1$, there exists $n \in \mathbb{N}$ with $y^{n} < \varepsilon$ for each $n \ge n$. Hence for such *n*'s and $\xi \in S$ we get $0 < x_{\xi}^{n} < y^{n} < \varepsilon$. Thus $(f_{n})_{n}$ $(S, \mathcal{F}\alpha)$ -converges to *f* on *B*. On the other hand, pick any pair of nets $(x_{\xi})_{\xi}$, $(z_{\xi})_{\xi} \in B$, with (S) $\lim_{\xi} x_{\xi} = (S) \lim_{\xi} z_{\xi} = 1$. Then we get $f(x_\xi) = 0$ for each $\xi \in \Xi$. Now we claim that

for every
$$
S \in S
$$
 and $F \in \mathcal{F}$ there are $\xi' \in S, n' \in F$ with $z_{\xi'}^{n'} > \frac{1}{3}$. (2)

Choose arbitrarily *S* ∈ *S* and *F* ∈ *F*. As *n e n n* $\lim_{n} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$ $\left(1-\frac{1}{2}\right)$ l $\left(1 - \frac{1}{n}\right)^n = \frac{1}{n}$, there is $n_0 \in \mathbb{N}$ with

$$
\left(1 - \frac{1}{n}\right)^n > \frac{1}{3} \quad \text{for every } n \ge n_0. \tag{3}
$$

Let *n*['] be any integer greater than n_0 and belonging to *F*. Since (S) $\lim_{\xi} z_{\xi} = 1$, in correspondence with *n*['] there is $S_n \in S$ with $z_\xi > 1 - \frac{1}{n}$ $z_{\xi} > 1 - \frac{1}{n}$ whenever $\xi \in S_{n}$. Let $\xi \in S \cap S_{n}$ $\xi \in S \cap S_n$. Since $z_{\xi} > 1 - \frac{1}{n}$ $z_{\xi} > 1 - \frac{1}{n}$, taking into account (3) we get

$$
z_{\xi}^{n} > \left(1 - \frac{1}{n}\right)^{n} > \frac{1}{3},
$$

that is (2). Thus, the sequence $(f_n)_n$ does not strongly $(S, \mathcal{F}\alpha)$ -converge to f on B.

Theorem 3 Let *X* be a Hausdorff topological space, *x* be a fixed element of *X*, $f_n: X \to R$, *n*∈ $\mathbb N$, *be a sequence,* (*ROF*) *-convergent to* $f: X \to R$ *. If* $(f_n)_n$ *is* $\mathcal F$ *-exhaustive at* x *, then* $(f_n)_n$ ($\mathcal{F}c$)-converges to f at x.

Conversely, if $\mathcal F$ *satisfies condition* (1) and $(f_n)_n$ *is* $(\mathcal F_c)$ -convergent to f at x , then $(f_n)_n$ *is* F *-exhaustive at x .*

Theorem 4 *Let* (X, \mathcal{D}) *be any uniform space,* $\emptyset \neq B \subset X$, *S and F be two free filters of* \mathbb{N} *with* $S \supset F$, and $f_n: X \to R$, $n \in \mathbb{N}$, be a function sequence, strongly $(S, \mathcal{F}\alpha)$ -convergent to $f \in R^X$ *on B. Then* $(f_n)_n$ *is strongly (Sc)-convergent to f on B.*

Theorem 5 Let *X* be a Hausdorff topological space, $x \in X$, *S* and *F* be as in Theorem 3.2 *and* $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, $(S, \mathcal{F}\alpha)$ -convergent to $f \in R^X$ at x. Then $(f_n)_n$ is (Sc) *convergent to f at x .*

Theorem 6 Let (X, \mathcal{D}) be a uniform space with a decreasing base $(U_k)_k$ of entourages, $\emptyset \neq B \subset X$, *S* be a (Ξ) -free filter of Ξ , *F* be a free filter of $\mathbb N$, satisfying condition (1), and $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, strongly $(\mathcal{F}c)$ -convergent to $f \in R^X$ on B . Then $(f_n)_n$ is strongly $(S, \mathcal{F}\alpha)$ -convergent to f on B.

Theorem 7 *Let X be a Hausdorff topological space,* $x \in X$, $(U_k)_k$ *be a decreasing base of neighborhoods of x, S be a* (Ξ) *-free filter of* Ξ , $\mathcal F$ *be a free filter of* $\mathbb N$ *, satisfying condition (1), and* $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, $(\mathcal{F}c)$ -convergent to $f \in R^X$ at x. Then $(f_n)_n$ is $(\mathcal{S}, \mathcal{F}\alpha)$ *convergent to f at x .*

Theorem 8 *Let* (X, \mathcal{D}) *be any uniform space,* $\emptyset \neq X \subset B$, Λ *and* Ξ *be two directed sets,* S \Box *and* \Box *be a* (Ξ) *-free filter of* Ξ *and a* (Λ) *-free filter of* Λ *respectively, and* $f_{\lambda}: X \to R$ *,* $\lambda \in \Lambda$ *, be a function net, strongly* $\mathcal F$ *-exhaustive on* B *. Then* $(f_{\lambda})_{\lambda}$ *is strongly* $(S,\mathcal F)$ *-exhaustive on* B .

Conversely, if $(D_{\xi})_{\xi \in \Xi}$ *is a decreasing net in* D *, such that*

for each $U \in \mathcal{D}$ *there exists* $\xi \in \Xi$ *with* $D_{\xi} \subset U$ (4)

and $(f_{\lambda})_{\lambda}$ is strongly (S, \mathcal{F}) -exhaustive on B, then $(f_{\lambda})_{\lambda}$ is strongly \mathcal{F} -exhaustive on B.

Remark 9 It is easy to check that the set $\Xi = \mathcal{D}$, endowed with the order $D_1 \ge D_2$ if and only if $D_1 \subset D_2$, is a directed set, and that (4) is satisfied.

Theorem 10 *Let X be a Hausdorff topological space,* $x \in X$ *be fixed,* (T_x, \subset) *be the set of all neighborhoods of x;* Λ , Ξ , S , \mathcal{F} *be as in Theorem 8, and* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, *be a net,* \mathcal{F} *exhaustive at* x *. Then* $(f_{\lambda})_{\lambda}$ *is* (S, \mathcal{F}) *-exhaustive at* x *.*

Conversely, if $(D_\xi)_{\xi \in \Xi}$ *is a decreasing net in* T_x *satisfying (5), and* $(f_\lambda)_\lambda$ *is* (S, \mathcal{F}) *-exhaustive at x*, *then* $(f_{\lambda})_{\lambda}$ *is F -exhaustive at x*.

Theorem 11 *Let* (X, \mathcal{D}) *be any uniform space,* \mathcal{B} *<i>be a bornology on* X *,* Ξ *and* Λ *be as*

above, *S* and *F* be any two (Ξ) *-free and* (Λ) *-free filters of* Ξ *and* Λ *respectively, and* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, (\mathcal{FB}) -convergent to $f : X \to R$. Let $B \in \mathcal{B}$ be fixed. Then $(f_{\lambda})_{\lambda}$ is *strongly* $(S, \mathcal{F}\alpha)$ -convergent to f on B if and only if $(f_{\lambda})_{\lambda}$ is strongly (S, \mathcal{F}) -exhaustive on B .

Theorem 12 *Let X be a Hausdorff topological space,* $x \in X$ *, S and F be as in Theorem 11,* and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, (ROF) *-convergent to* $f: X \to R$. Then $(f_{\lambda})_{\lambda}$ is $(S, \mathcal{F}\alpha)$ -convergent to f at x if and only if $(f_{\lambda})_{\lambda}$ is (S, \mathcal{F}) -exhaustive at x.

Theorem 13 *Let* X , R , Λ , Ξ , \mathcal{F} , S , \mathcal{B} *be as in Theorem 11, B*∈ \mathcal{B} *be fixed, and* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a function net, (ROF) *-convergent to* $f \in R^{X}$.

Then $(f_{\lambda})_{\lambda}$ is strongly weakly (S,\mathcal{F}) -exhaustive on *B* if and only if f is strongly (S,\mathcal{S}) *uniformly continuous on B .*

Theorem 14 *Let* X , R , Λ , Ξ , \mathcal{F} , S , *be as in Theorem 12,* $x \in X$ *be fixed, and* $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net, (ROF) *-convergent to* $f \in R^X$.

Then $(f_{\lambda})_{\lambda}$ *is weakly* (S, \mathcal{F}) *-exhaustive at x if and only if f is* (S, \mathcal{S}) *-continuous at x.*

Theorem 15 *Let* (X, \mathcal{D}) *be a uniform space,* (Ξ, \geq) *be a directed set,* $f : X \to \mathbb{R}$,

 $\emptyset \neq B \subset X$, S_1 and S_2 be any two fixed (Ξ) -free filters of Ξ *. Suppose that for every point* $x \in X$ *there is a net* $(y_{\xi})_{\xi \in \Xi}$ *in* X *, with*

$$
(\mathcal{S}_1) \lim_{\xi} y_{\xi} = x. \tag{5}
$$

Then the following results hold.

(a) If $S_1 \setminus S_2 \neq \emptyset$, then f is strongly (S_1, S_2) -uniformly continuous on *B* if and only if f is *constant.*

(b) If $(D_\xi)_{\xi \in \Xi}$ is a decreasing net in $\mathcal D$, satisfying (5), and $\mathcal S_1 \subset \mathcal S_2$, then f is strongly (S_1, S_2) -uniformly continuous on *B* if and only if f is strongly uniformly continuous on *B*.

Theorem 16 Let *X* be a Hausdorff topological space, $f: X \to R$, (Ξ, Ξ) be a directed set, S_1 and S_2 be two fixed (Ξ) -free filters of Ξ , $x \in X$ be such that there is a net $(y_\xi)_{\xi \in \Xi}$ in X, *fulfilling (5). Then the following results hold.*

(a) If $S_1 \setminus S_2 \neq \emptyset$, then f is (S_1, S_2) -continuous at x if and only if f is constant.

(b) If (T_x, \subset) is the set of all neighborhoods of x, $(D_\xi)_{\xi \in \Xi}$ is a decreasing net in T_x fulfilling (5) and $S_1 \subset S_2$, then f is (S_1, S_2) -continuous at x if and only if it is continuous at x.

 A consequence of the previous theorems is that, if *X* is a Hausdorff topological space (resp. a uniform space) and a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is (strongly) $(\mathcal{F}\alpha)$ -convergent to $f: X \to R$ on *X* (resp. on B), then it (ROF) -converges to f, and f is (strongly uniform) continuous on X (resp. on B).

As an application, we give an Ascoli-type theorem. Given a topological space *X* , a nonempty set $\Phi \subset R^X$ and a convergence (σ) on Φ , we say that Φ is (σ) -compact iff every net $(f_\lambda)_{\lambda \in \Lambda}$ in Φ admits a subnet $(f_{\lambda_k})_{k \in \Lambda}$, (σ) -convergent to an element $f \in \Phi$, and that Φ is (σ) -closed iff $f \in \Phi$ whenever $(f_{\lambda})_{\lambda \in \Lambda}$ is a net in Φ , (σ) -convergent to $f \in R^X$. The (σ) -closure of Φ is the set of the functions $f \in R^X$, having a net $(f_\lambda)_{\lambda \in \Lambda}$ in $\Phi(\sigma)$ -convergent to f. A set Φ is (σ) -closed if and only if it coincides with its (σ) -closure.

Theorem 17 *Let X be a Hausdorff topological space,* S *and* F *be as above.*

If $\Phi \subset \Psi \subset R^X$, where Φ *is* $(S, \mathcal{F}\alpha)$ *-closed and* Ψ *is* (ROF) *-compact, and*

every net $(f_{\lambda})_{\lambda \in \Lambda}$, (ROF) *-convergent in* Φ *, has a subnet* $(f_{\lambda_K})_{\kappa \in \Lambda}$ *,* (ROF) *-convergent (in*

 R^X) and (S, \mathcal{F}) *-exhaustive,*

then Φ *is* (S , $F\alpha$)*-compact.*

Moreover, if Φ *is* (S , $F\alpha$)-compact, then Φ satisfies condition $H^{'}$).

In our setting, a related question, which arises naturally, is to find some necessary and/or sufficient conditions under which the limit function of a suitably pointwise convergent net is constant, or (S,\mathcal{F}) -continuous. In this framework, it is advisable to consider the following extensions of the concepts of (S,\mathcal{F}) -exhaustiveness and corresponding (α) -convergence.

Let *X* be any Hausdorff topological space, $x \in X$, *R* be any Dedekind complete lattice group, (Ξ, \geq) and (Λ, \geq) be two directed sets, \mathcal{F}_1 and \mathcal{F}_2 be two (Ξ) -free filters of Ξ , \mathcal{F}_3 be a (Λ) -free filter of Λ , and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a function net. We say that $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3})$ *-exhaustive* at $x \in X$ iff there exists an *(O)* -sequence $(\sigma_p)_p$ in *R* such that, for every net $(x_\xi)_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to *x* and for any $p \in \mathbb{N}$ there are $F_2 \in \mathcal{F}_2$ and $F_3 \in \mathcal{F}_3$ with $| f_\lambda(x_\xi) - f_\lambda(x)| \leq \sigma_p$ for every $\xi \in F_2$ and $\lambda \in F_3$. The net $f_\lambda: X \to R$, $\lambda \in \Lambda$, is *weakly* $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ *-exhaustive* at $x \in X$ iff there is an (O) sequence $(\sigma_p)_p$ in *R* such that, for each net $(x_\xi)_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to *x* and for every $p \in \mathbb{N}$ there is a set $F_2 \in \mathcal{F}_2$ such that for each $\xi \in F_2$ there exists $F_{\xi} \in \mathcal{F}_3$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \le \sigma_p$ whenever $\lambda \in F_{\xi}$. The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\alpha)$ -converges to $f: X \to R$ at $x \in X$ iff there exists an (*O*) -sequence $(\sigma_p)_p$ in *R* such that, for every net $(x_\xi)_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to *x* and for each $p \in \mathbb{N}$ there are $F_2 \in S$, $F_3 \in \mathcal{F}$ with $| f_\lambda(x_\xi) - f(x)| \le \sigma_p$ whenever $\xi \in F_2$ and $\lambda \in F_3$.

Theorem 18 Let $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, (ROF_{3}) -convergent to $f: X \to R$, and $x \in X$. Then $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3} \alpha)$ -convergent to f at x if and only if $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3})$ *exhaustive at x. Moreover,* $(f_{\lambda})_{\lambda}$ *is weakly* $(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3})$ *-exhaustive at x if and only if f is* $(\mathcal{F}_{1}, \mathcal{F}_{2})$ *continuous at x .*