On filter (α) -convergence and exhaustiveness of function nets in lattice groups and applications A. Boccuto and X. Dimitriou

Abstract: We consider (strong uniform) continuity of the limit of a pointwise convergent net of lattice group-valued functions, (strong weak) exhaustiveness and (strong) (α)-convergence with respect to a pair of filters, which in the setting of nets are more natural than the corresponding notions formulated with respect to a single filter. Some comparison results are given between such concepts, in connection with suitable properties of filters. Moreover, some modes of filter (strong uniform) continuity for lattice group-valued functions are investigated, giving some characterization. As an application, we get some Ascoli-type theorem in an abstract setting.

A *bornology* on a topological space X is a family \mathcal{B} of nonempty subsets of X which covers X, stable with respect to finite unions and with $B' \in \mathcal{B}$ for each nonempty subset B' of any element $B \in \mathcal{B}$.

If X is a topological space and $x \in X$, then we say that a function $f: X \to R$ is *continuous at* x iff there is an (O)-sequence $(\sigma_p)_p$ (depending on X) with the property that for each $p \in \mathbb{N}$ and $x \in X$ there exists a neighborhood U_x of x with $|f(x) - f(z)| \le \sigma_p$ whenever $z \in U_x$. We say that $f \in R^X$ is *globally continuous on* X iff it is continuous at every point $x \in X$ with respect to a single (O)-sequence, which can be taken independently of x.

Let $X = (X, \mathcal{D})$ be a uniform space. The elements of \mathcal{D} are often called *entourages*. If $\emptyset \neq B \subset X$, then a function $f: X \to R$ is *strongly uniformly continuous on* B iff there exists an (O)-sequence $(\sigma_p)_p$ such that for every $p \in \mathbb{N}$ there is an entourage $D \in \mathcal{D}$ with $|f(\beta) - f(x)| \leq \sigma_p$ whenever $x \in X$, $\beta \in B$ and $(x, \beta) \in D$. If \mathcal{B} is a bornology on X, then we say that $f: X \to R$ is *strongly uniformly continuous on* \mathcal{B} for every $B \in \mathcal{B}$, with respect to an (O)-sequence independent of B.

We denote by \mathcal{F}_{cofin} the filter of all subsets of \mathbb{N} whose complement is finite, by \mathcal{I}_{fin} its dual ideal, namely the family of all finite subsets of \mathbb{N} , by \mathcal{F}_{st} the filter of all subsets of \mathbb{N} having asymptotic density 1, and by \mathcal{I}_{st} its dual ideal, that is the family of all subsets of \mathbb{N} with asymptotic density 0, by \mathcal{F}_{Λ} the class $\{A \subset \Lambda \text{ and } A \supset M_{\lambda} : \lambda \in \Lambda\}$ and by \mathcal{I}_{Λ} the dual ideal of \mathcal{F}_{Λ} . Observe that $\mathcal{F}_{\mathbb{N}} = \mathcal{F}_{cofin}$ and $\mathcal{I}_{\mathbb{N}} = \mathcal{I}_{fin}$.

We will sometimes consider free filters \mathcal{F} of \mathbb{N} , with the property that there is a partition of the type $\mathbb{N} = \bigcup_{k=1}^{\infty} \Delta_k$, such that

 $\mathcal{I} = \{A \subset \mathbb{N} : A \text{ intersects at most a finite number of } \Delta_k \text{'s}\}, \tag{1}$ where \mathcal{I} denotes the dual ideal of \mathcal{F} (see also [6]).

Remarks 1 (a) Observe that the ideal \mathcal{I}_{fin} satisfies condition (1): indeed it is enough to take $\Delta_k = \{k\}$ for each $k \in \mathbb{N}$.

(b) If \mathcal{I} is as in (1), and $(A_j)_j$ is any sequence of subsets of \mathbb{N} , with $A_j \notin \mathcal{I}$ for all $j \in \mathbb{N}$, then there exists a disjoint sequence $(B_j)_j$ in \mathcal{I} , with $B_j \subset A_j$ for every $j \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} B_j \notin \mathcal{I}$.

(c) The ideal \mathcal{I}_{st} does not fulfil condition (1). To this aim, it is enough to show that for every partition $(\Delta_k)_k$ of \mathbb{N} there is a set belonging to \mathcal{I}_{st} which intersects infinitely many Δ_k 's. Set q(1) = 1: there is $k_1 \in \mathbb{N}$ with $1 \in \Delta_{k_1}$. At the second step, take a natural number q(2) greater than q(1)+3 and belonging to Δ_{k_2} , where k_2 is a suitable integer strictly greater than k_1 . At the n+1-th step, if we have chosen q(n), let q(n+1) be an integer greater than q(n)+2n+1 and belonging to $\Delta_{k_{n+1}}$, where $k_1 < k_2 < \ldots < k_n < k_{n+1}$. It is not difficult to check that the set $A = \{q(n): n \in \mathbb{N}\}$ has asymptotic density smaller or equal than that of the set of squares, that is 0, and thus $A \in \mathcal{I}_{st}$. Moreover, by construction, A intersects infinitely many Δ_k 's.

Let X be any Hausdorff topological space, $x \in X$ and \mathcal{F} be a (Λ)-free filter of Λ . A net $(x_{\lambda})_{\lambda \in \Lambda}$ be \mathcal{F} -converges to x (shortly, $(\mathcal{F})_{\lim \lambda} x_{\lambda} = x$) iff $\{\lambda \in \Lambda : x_{\lambda} \in U\} \in \mathcal{F}$ for each neighborhood U of x.

We say that a net $(x_{\lambda})_{\lambda \in \Lambda}$ in R $(O\mathcal{F})$ -converges to $x \in R$ (briefly, $(O\mathcal{F})_{\lim \lambda} x_{\lambda} = x$) iff there exists an (*O*)-sequence $(\sigma_p)_p$ with $\{\lambda \in \Lambda : | x_{\lambda} - x | \leq \sigma_p\} \in \mathcal{F}$ for each $p \in \mathbb{N}$.

Let Ξ be any nonempty set. A family $\{(x_{\lambda,\xi})_{\lambda}: \xi \in \Xi\}$ (*ROF*)-converges to $x_{\xi} \in R$ iff there is an (*O*)-sequence $(\sigma_p)_p$ in *R* such that for each $p \in \mathbb{N}$ and $\xi \in \Xi$ we get $\{\lambda \in \Lambda : | x_{\lambda,\xi} - x_{\xi} | \le \sigma_p\} \in \mathcal{F}$. We will denote by (*RO*)-convergence the (*ROF*_A)-convergence. Observe that (*RO*)-convergence coincides with the usual pointwise (*O*)-convergence of a family with respect to a single (*O*)-sequence and, when $R = \mathbb{R}$, (*ROF*)-convergence coincides with filter convergence in the ordinary sense.

Let (X, \mathcal{D}) be a uniform space, $\emptyset \neq B \subset X$, $\Xi = (\Xi, \geq)$ be a directed set and S be a (Ξ) -free filter of Ξ . We say that the pair of nets $(z_{\xi})_{\xi \in \Xi}$, $(x_{\xi})_{\xi \in \Xi}$, satisfies condition H1) with respect to S iff $x_{\xi}, z_{\xi} \in B$ for each $\xi \in \Xi$, and for every $D \in \mathcal{D}$ there is a set $F \in S$ with $(x_{\xi}, z_{\xi}) \in D$ whenever $\xi \in F$.

Let S and \mathcal{F} be any two fixed (Ξ) -free filters of Ξ . A function $f: X \to R$ is said to be *strongly* (S, \mathcal{F}) -*uniformly continuous on* B iff there is an (O)-sequence $(\sigma_p)_p$ in R such that for every pair of nets $(z_{\xi})_{\xi\in\Xi}$, $(x_{\xi})_{\xi\in\Xi}$, satisfying condition H1) with respect to S, we have:

for each $p \in \mathbb{N}$ there is $F^* \in \mathcal{F}$ with $|f(x_{\xi}) - f(z_{\xi})| \leq \sigma_p$ for each $\xi \in F^*$.

If \mathcal{B} is a bornology on X, we say that $f: X \to R$ is strongly $(\mathcal{S}, \mathcal{F})$ -uniformly continuous on \mathcal{B} iff it is strongly $(\mathcal{S}, \mathcal{F})$ -uniformly continuous on every $B \in \mathcal{B}$ with respect to a single (O)-sequence, independent of B.

Let X be any Hausdorff topological space. We say that $f: X \to R$ is (S, \mathcal{F}) -continuous at $x \in X$ iff there is an (O)-sequence $(\sigma_p)_p$ in R such that, for every net $(x_{\xi})_{\xi \in \Xi}$ S-convergent to x, the net $(f(x_{\xi}))_{\xi \in \Xi}$ $(O\mathcal{F})$ -converges to f(x) with respect to $(\sigma_p)_p$. We say that $f: X \to R$ is (S, \mathcal{F}) -continuous on X iff f is (S, \mathcal{F}) -continuous at every $x \in X$ with respect to a single (O)-sequence,

independent of $x \in X$ and of $(x_{\xi})_{\xi}$.

Let (X, \mathcal{D}) be a uniform space and $\emptyset \neq B \subset X$. A net of functions $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is said to be *strongly* \mathcal{F} -*exhaustive on* B iff there is an (O)-sequence $(\sigma_p)_p$ such that for any $p \in \mathbb{N}$ there exist an entourage $D \in \mathcal{D}$ and a set $A \in \mathcal{F}$ such that for each $\lambda \in A$ and $x \in X$, $\beta \in B$ with $(x, \beta) \in D$ we have $|f_{\lambda}(x) - f_{\lambda}(\beta)| \leq \sigma_p$.

We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly weakly* \mathcal{F} -*exhaustive on* B iff there is an (O)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is an entourage $D \in \mathcal{D}$ such that, for every $x \in X$ and $\beta \in B$ with $(x,\beta) \in D$, there is $A \in \mathcal{F}$ (depending on x and β) with $|f_{\lambda}(x) - f_{\lambda}(\beta)| \leq \sigma_p$ whenever $\lambda \in A$.

Given a bornology \mathcal{B} on X, we say that $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly* (weakly) \mathcal{F} -exhaustive on \mathcal{B} iff it is strongly (weakly) \mathcal{F} -exhaustive on every $B \in \mathcal{B}$ with respect to a single (O)-sequence, independent of B.

Let $x \in X$. We say that a net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is \mathcal{F} -exhaustive at x iff there is an (O)sequence $(\sigma_p)_p$ with the property that for any $p \in \mathbb{N}$ there exist a neighborhood U of x and a set $A \in \mathcal{F}$ such that for each $\lambda \in A$ and $z \in U$ we have $|f_{\lambda}(z) - f_{\lambda}(x)| \leq \sigma_p$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *weakly* \mathcal{F} -*exhaustive at* x iff there is an (O)-sequence $(\sigma_p)_p$ such that for each $p \in \mathbb{N}$ there is a neighborhood U of x with the property that for any $z \in U$ there is $A_z \in \mathcal{F}$ with $|f_{\lambda}(z) - f_{\lambda}(x)| \leq \sigma_p$ whenever $\lambda \in A_z$.

We say that $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *(weakly)* \mathcal{F} -exhaustive on X iff it is (weakly) \mathcal{F} -exhaustive at every $x \in X$ with respect to a single (O)-sequence, independent of $x \in X$.

Let S and \mathcal{F} be as above, (X, \mathcal{D}) be a uniform space and $\emptyset \neq B \subset X$. A net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is said to be *strongly* (S, \mathcal{F}) -*exhaustive* on B iff there exists an (O)-sequence $(\sigma_p)_p$ in Rsuch that, for every pair of nets $(x_{\xi})_{\xi \in \Xi}$, $(z_{\xi})_{\xi \in \Xi}$, satisfying H1) with respect to S and for any $p \in \mathbb{N}$ there are $S \in S$, $F \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(z_{\xi})| \leq \sigma_p$ for every $\xi \in S$ and $\lambda \in F$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly weakly* (S, \mathcal{F}) -*exhaustive* on *B* iff there exists an (*O*)-sequence $(\sigma_p)_p$ in *R* such that, for each pair of nets $(x_{\xi})_{\xi \in \Xi}$, $(z_{\xi})_{\xi \in \Xi}$, satisfying H1) with respect to *S* and for every $p \in \mathbb{N}$ there is a set $S \in S$ such that for each $\xi \in S$ there exists $F_{\xi} \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(z_{\xi})| \leq \sigma_p$ whenever $\lambda \in F_{\xi}$.

Given a bornology \mathcal{B} on X, we say that the net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is *strongly (weakly)* $(\mathcal{S}, \mathcal{F})$ -*exhaustive* on \mathcal{B} iff it is strongly (weakly) $(\mathcal{S}, \mathcal{F})$ -exhaustive on every $B \in \mathcal{B}$, with respect to a single (*O*)-sequence, independent of *B*.

Let X be any Hausdorff topological space and $x \in X$. A net $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, is said to be $(\mathcal{S}, \mathcal{F})$ -exhaustive at $x \in X$ iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that, for every net $(x_{\xi})_{\xi \in \Xi}$ \mathcal{S} -convergent to x and for any $p \in \mathbb{N}$ there are $S \in \mathcal{S}$, $F \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_p$ for every $\xi \in S$ and $\lambda \in F$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is weakly $(\mathcal{S}, \mathcal{F})$ -exhaustive at $x \in X$ iff there exists an (O)sequence $(\sigma_p)_p$ in R such that, for each net $(x_{\xi})_{\xi \in \Xi}$ \mathcal{S} -convergent to x and for every $p \in \mathbb{N}$ there is

a set $S \in S$ such that for each $\xi \in S$ there exists $F_{\xi} \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_{p}$ whenever $\lambda \in F_{\xi}$.

The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is (weakly) $(\mathcal{S}, \mathcal{F})$ -exhaustive on X iff it is (weakly) $(\mathcal{S}, \mathcal{F})$ -exhaustive at every $x \in X$ with respect to a single (O)-sequence, independent of x.

Note that the analogous concepts of (strong weak) filter exhaustiveness can be formulated analogously for *sequences* of functions, by taking $\Lambda = \mathbb{N}$ with the usual order.

Let \mathcal{B} be a bornology on X. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, (\mathcal{FB}) -converges to $f: X \to R$ iff there exists an (*O*)-sequence $(\sigma_p)_p$ such that $(f_{\lambda})_{\lambda}$ is $(RO\mathcal{F})$ -convergent to f with respect to $(\sigma_p)_p$, and for every $B \in \mathcal{B}$ and $p \in \mathbb{N}$ there is $F \in \mathcal{F}$ with $|f_{\lambda}(x) - f(x)| \leq \sigma_p$ for each $x \in B$ and $\lambda \in F$.

We now consider (α) -convergence of nets $(f_{\lambda})_{\lambda \in \Lambda}$ of (ℓ) -group-valued functions, defined on a Hausdorff topological space X. When we deal with nets, in general it is not always advisable to follow an approach similar as that used for sequences, since the cardinality of Λ can be larger than the one of X, and we want to consider possibly nets in X of the type $x_{\xi}, \xi \in \Xi$, whose points are all distinct. We say that $f_n: X \to R$, $n \in \mathbb{N}$, *c*-converges (continuously converges) to $f: X \to R$ at $x \in X$ iff there is an (O)-sequence $(\sigma_p)_p$ such that for each sequence $(x_n)_n$ in X with $\lim_n x_n = x$ we get $(O)\lim_n f_n(x_n) = f(x)$ (with respect to the (O)-sequence $(\sigma_p)_p$).

The sequence $(f_n)_n$ *c*-converges to $f: X \to R$ on X iff it *c*-converges to f at every $x \in X$ with respect to a single (O)-sequence, independent of $x \in X$.

Let \mathcal{F} be a fixed free filter of \mathbb{N} . We say that a sequence $(f_n)_n$ in \mathbb{R}^X ($\mathcal{F}c$)-converges (filter continuously converges) to $f \in \mathbb{R}^X$ at $x \in X$ iff there exists an (O)-sequence $(\sigma_p)_p$ such that for each sequence $(x_n)_n$ in X with $(\mathcal{F})_{\lim_n x_n} = x$ we get $(O\mathcal{F})_{\lim_n f_n}(x_n) = f(x)$ with respect to $(\sigma_p)_p$.

The sequence $(f_n)_n$ is $(\mathcal{F}c)$ -convergent to $f: X \to R$ on X iff it $(\mathcal{F}c)$ -converges to f at every $x \in X$ with respect to a single (O)-sequence $(\sigma_p)_p$, independent of the choice of x.

Note that $(f_n)_n$ is c-convergent to f if and only if $(f_n)_n$ is $(\mathcal{F}_{cofin}c)$ -convergent to f.

Let now Λ and Ξ be two directed sets, S and \mathcal{F} be a (Ξ) -free filter of Ξ and a (Λ) -free filter of Λ respectively. We say that a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ at $x \in X$ iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that, for every net $(x_{\xi})_{\xi \in \Xi}$ S-convergent to x and for each $p \in \mathbb{N}$ there are $S \in S$, $F \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f(x)| \leq \sigma_p$ whenever $\xi \in S$ and $\lambda \in F$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on $x \in X$ iff it $(S, \mathcal{F}\alpha)$ converges to $f: X \to R$ at every $x \in X$ with respect to a single (*O*)-sequence, independent of the
choice of x.

Let (X, \mathcal{D}) be a uniform space and $\emptyset \neq B \subset X$. We say that a sequence $(f_n)_n$ in \mathbb{R}^X strongly $(\mathcal{F}c)$ -converges to $f \in \mathbb{R}^X$ on B iff there exists an (O)-sequence $(\sigma_p)_p$ such that for each pair of sequences $(x_n)_n$, $(z_n)_n$ in X satisfying condition H1) with respect to \mathcal{F} we get $(\mathcal{OF})\lim_n f_n(x_n) = f(x)$ with respect to $(\sigma_p)_p$.

Given a bornology \mathcal{B} on X, we say that a sequence $(f_n)_n$ in \mathbb{R}^X is strongly $(\mathcal{F}c)$ -convergent to $f: X \to \mathbb{R}$ on \mathcal{B} iff it strongly $(\mathcal{F}c)$ -converges to f on every $B \in \mathcal{B}$ with respect to an (O)-

sequence $(\sigma_p)_p$, independent of *B*.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to be *strongly* $(S, \mathcal{F}\alpha)$ -convergent to $f: X \to R$ on B iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that, for every pair of nets $(x_{\xi})_{\xi \in \Xi}$, $(z_{\xi})_{\xi \in \Xi}$ satisfying condition H1) with respect to S and for each $p \in \mathbb{N}$ there are $S \in S$, $F \in \mathcal{F}$ with $|f_{\lambda}(z_{\xi}) - f(x_{\xi})| \leq \sigma_p$ whenever $\xi \in S$ and $\lambda \in F$.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, strongly $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on \mathcal{B} iff it strongly $(S, \mathcal{F}\alpha)$ -converges to $f: X \to R$ on every $B \in \mathcal{B}$ with respect to a single (O)-sequence, independently of B.

A net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is said to (*strongly*) ($\mathcal{F}\alpha$)-converge to $f: X \to R$ at $x \in X$ and on X (resp. on B and on \mathcal{B}) iff it is (strongly) ($\mathcal{S}, \mathcal{F}\alpha$)-convergent to $f: X \to R$ at $x \in X$ and on X (resp. on B and on \mathcal{B}) for every directed set $\Xi = (\Xi, \geq)$ and for each (Ξ)-free filter \mathcal{S} of Ξ .

We will prove that the limit of any (strongly) $(\mathcal{F}\alpha)$ -convergent net is a (strongly uniformly) continuous function.

Remarks 2 (a) Note that, even when $R = \mathbb{R}$ and $\mathcal{F} = \mathcal{F}_{\Lambda}$, to use arbitrary nets of the type $(x_{\xi})_{\xi \in \Xi}$ instead of arbitrary sequences $(x_n)_n$ is essential. Indeed there are nets $(f_{\lambda})_{\lambda}$ and functions f in \mathbb{R}^X such that $(f_{\lambda})_{\lambda}$ does not $(\mathcal{F}_{\Lambda}\alpha)$ -converge to f, but for every $\varepsilon > 0$, $x \in X$ and for each sequence $(x_n)_n$ convergent to x in the usual sense there are $n_0 \in \mathbb{N}$ and $\lambda_0 \in \Lambda$, with $|f_{\lambda}(x_n) - f(x)| \le \varepsilon$ whenever $n \ge n_0$ and $\lambda \ge \lambda_0$.

(b) Observe that, in general, $(S, \mathcal{F}\alpha)$ -convergence is strictly weaker than strong $(S, \mathcal{F}\alpha)$ -convergence. Indeed, let $\Lambda = \mathbb{N}$ be with the usual order, X = [0,1] with the usual metric, $R = \mathbb{R}$, $f_n(x) = x^n$ for each $n \in \mathbb{N}$ and $x \in [0,1]$, f(1) = 1 and f(x) = 0 for every $x \in [0,1)$. We prove that for every (Ξ) -free filter S of Ξ and for each free filter \mathcal{F} of \mathbb{N} the sequence $(f_n)_n$ $(S, \mathcal{F}\alpha)$ -converges to f, but does not strongly $(S, \mathcal{F}\alpha)$ -converge to f on B := [0,1). Indeed, if $(x_{\xi})_{\xi \in \Xi}$ is any net in B, S-convergent to $x_0 \in B$, then $f_n(x_{\xi}) = x_{\xi}^n$ and $f(x_0) = 0$, and there exist $S \in S$ and $x_0 < y < 1$ with $x_{\xi} < y$ whenever $\xi \in S$. Choose arbitrarily $\varepsilon > 0$. Since 0 < y < 1, there exists $n' \in \mathbb{N}$ with $y^n < \varepsilon$ for each $n \ge n'$. Hence for such n's and $\xi \in S$ we get $0 < x_{\xi}^n < y^n < \varepsilon$. Thus $(f_n)_n$ $(S, \mathcal{F}\alpha)$ -converges to f on B. On the other hand, pick any pair of nets $(x_{\xi})_{\xi}$, $(z_{\xi})_{\xi} \in B$, with $(S)_{\lim\xi} x_{\xi} = (S)_{\lim\xi} z_{\xi} = 1$. Then we get $f(x_{\xi}) = 0$ for each $\xi \in \Xi$. Now we claim that

for every
$$S \in S$$
 and $F \in \mathcal{F}$ there are $\xi' \in S, n' \in F$ with $z_{\xi'}^{n'} > \frac{1}{3}$. (2)

Choose arbitrarily $S \in S$ and $F \in \mathcal{F}$. As $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$, there is $n_0 \in \mathbb{N}$ with

$$\left(1-\frac{1}{n}\right)^n > \frac{1}{3} \quad \text{for every } n \ge n_0. \tag{3}$$

Let n' be any integer greater than n_0 and belonging to F. Since $(S)_{\lim_{\xi} z_{\xi}} = 1$, in correspondence with n' there is $S_n \in S$ with $z_{\xi} > 1 - \frac{1}{n'}$ whenever $\xi \in S_n$. Let $\xi \in S \cap S_n$. Since $z_{\xi'} > 1 - \frac{1}{n'}$, taking into account (3) we get

$$z_{\xi'}^{n'} > \left(1 - \frac{1}{n'}\right)^n > \frac{1}{3},$$

that is (2). Thus, the sequence $(f_n)_n$ does not strongly $(\mathcal{S}, \mathcal{F}\alpha)$ -converge to f on B.

Theorem 3 Let X be a Hausdorff topological space, x be a fixed element of X, $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, $(RO\mathcal{F})$ -convergent to $f: X \to R$. If $(f_n)_n$ is \mathcal{F} -exhaustive at x, then $(f_n)_n$ $(\mathcal{F}c)$ -converges to f at x.

Conversely, if \mathcal{F} satisfies condition (1) and $(f_n)_n$ is $(\mathcal{F}c)$ -convergent to f at x, then $(f_n)_n$ is \mathcal{F} -exhaustive at x.

Theorem 4 Let (X, \mathcal{D}) be any uniform space, $\emptyset \neq B \subset X$, S and \mathcal{F} be two free filters of \mathbb{N} with $S \supset \mathcal{F}$, and $f_n : X \rightarrow R$, $n \in \mathbb{N}$, be a function sequence, strongly $(S, \mathcal{F}\alpha)$ -convergent to $f \in R^X$ on B. Then $(f_n)_n$ is strongly (S_c) -convergent to f on B.

Theorem 5 Let X be a Hausdorff topological space, $x \in X$, S and \mathcal{F} be as in Theorem 3.2 and $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, $(S, \mathcal{F}\alpha)$ -convergent to $f \in R^X$ at x. Then $(f_n)_n$ is (Sc)convergent to f at x.

Theorem 6 Let (X, \mathcal{D}) be a uniform space with a decreasing base $(U_k)_k$ of entourages, $\emptyset \neq B \subset X$, S be a (Ξ) -free filter of Ξ , \mathcal{F} be a free filter of \mathbb{N} , satisfying condition (1), and $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, strongly $(\mathcal{F}c)$ -convergent to $f \in \mathbb{R}^X$ on B. Then $(f_n)_n$ is strongly $(S, \mathcal{F}\alpha)$ -convergent to f on B.

Theorem 7 Let X be a Hausdorff topological space, $x \in X$, $(U_k)_k$ be a decreasing base of neighborhoods of x, S be a (Ξ) -free filter of Ξ , \mathcal{F} be a free filter of \mathbb{N} , satisfying condition (1), and $f_n: X \to R$, $n \in \mathbb{N}$, be a sequence, $(\mathcal{F}c)$ -convergent to $f \in R^X$ at x. Then $(f_n)_n$ is $(S, \mathcal{F}\alpha)$ -convergent to f at x.

Theorem 8 Let (X, \mathcal{D}) be any uniform space, $\emptyset \neq X \subset B$, Λ and Ξ be two directed sets, S and \mathcal{F} be a (Ξ) -free filter of Ξ and a (Λ) -free filter of Λ respectively, and $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, be a function net, strongly \mathcal{F} -exhaustive on B. Then $(f_{\lambda})_{\lambda}$ is strongly (S, \mathcal{F}) -exhaustive on B.

Conversely, if $(D_{\xi})_{\xi \in \Xi}$ is a decreasing net in \mathcal{D} , such that

for each $U \in \mathcal{D}$ there exists $\xi \in \Xi$ with $D_{\xi} \subset U$

and $(f_{\lambda})_{\lambda}$ is strongly $(\mathcal{S}, \mathcal{F})$ -exhaustive on B, then $(f_{\lambda})_{\lambda}$ is strongly \mathcal{F} -exhaustive on B.

Remark 9 It is easy to check that the set $\Xi = D$, endowed with the order $D_1 \ge D_2$ if and only if $D_1 \subset D_2$, is a directed set, and that (4) is satisfied.

(4)

Theorem 10 Let X be a Hausdorff topological space, $x \in X$ be fixed, (\mathcal{T}_x, \subset) be the set of all neighborhoods of x; Λ , Ξ , S, \mathcal{F} be as in Theorem 8, and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net, \mathcal{F} -exhaustive at x. Then $(f_{\lambda})_{\lambda}$ is (S, \mathcal{F}) -exhaustive at x.

Conversely, if $(D_{\xi})_{\xi \in \Xi}$ is a decreasing net in \mathcal{T}_x satisfying (5), and $(f_{\lambda})_{\lambda}$ is $(\mathcal{S}, \mathcal{F})$ -exhaustive at x, then $(f_{\lambda})_{\lambda}$ is \mathcal{F} -exhaustive at x.

Theorem 11 Let (X, \mathcal{D}) be any uniform space, \mathcal{B} be a bornology on X, Ξ and Λ be as

above, S and \mathcal{F} be any two (Ξ) -free and (Λ) -free filters of Ξ and Λ respectively, and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, (\mathcal{FB}) -convergent to $f: X \to R$. Let $B \in \mathcal{B}$ be fixed. Then $(f_{\lambda})_{\lambda}$ is strongly $(S, \mathcal{F}\alpha)$ -convergent to f on B if and only if $(f_{\lambda})_{\lambda}$ is strongly (S, \mathcal{F}) -exhaustive on B.

Theorem 12 Let X be a Hausdorff topological space, $x \in X$, S and \mathcal{F} be as in Theorem 11, and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, $(RO\mathcal{F})$ -convergent to $f: X \to R$. Then $(f_{\lambda})_{\lambda}$ is $(\mathcal{S}, \mathcal{F}\alpha)$ -convergent to f at x if and only if $(f_{\lambda})_{\lambda}$ is $(\mathcal{S}, \mathcal{F})$ -exhaustive at x.

Theorem 13 Let X, R, Λ , Ξ , \mathcal{F} , \mathcal{S} , \mathcal{B} be as in Theorem 11, $B \in \mathcal{B}$ be fixed, and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a function net, (RO \mathcal{F})-convergent to $f \in R^{X}$.

Then $(f_{\lambda})_{\lambda}$ is strongly weakly (S, \mathcal{F}) -exhaustive on B if and only if f is strongly (S, S)-uniformly continuous on B.

Theorem 14 Let X, R, Λ , Ξ , \mathcal{F} , \mathcal{S} , be as in Theorem 12, $x \in X$ be fixed, and $f_{\lambda} : X \to R$, $\lambda \in \Lambda$, be a net, $(RO\mathcal{F})$ -convergent to $f \in R^{X}$.

Then $(f_{\lambda})_{\lambda}$ is weakly (S, \mathcal{F}) -exhaustive at x if and only if f is (S, S)-continuous at x.

Theorem 15 Let (X, \mathcal{D}) be a uniform space, (Ξ, \geq) be a directed set, $f: X \to R$,

 $\emptyset \neq B \subset X$, S_1 and S_2 be any two fixed (Ξ) -free filters of Ξ . Suppose that for every point $x \in X$ there is a net $(y_{\xi})_{\xi \in \Xi}$ in X, with

$$(\mathcal{S}_1)\lim_{\xi} y_{\xi} = x.$$
(5)

Then the following results hold.

(a) If $S_1 \setminus S_2 \neq \emptyset$, then f is strongly (S_1, S_2) -uniformly continuous on B if and only if f is constant.

(b) If $(D_{\xi})_{\xi \in \Xi}$ is a decreasing net in \mathcal{D} , satisfying (5), and $S_1 \subset S_2$, then f is strongly (S_1, S_2) -uniformly continuous on B if and only if f is strongly uniformly continuous on B.

Theorem 16 Let X be a Hausdorff topological space, $f: X \to R$, (Ξ, \geq) be a directed set, S_1 and S_2 be two fixed (Ξ) -free filters of Ξ , $x \in X$ be such that there is a net $(y_{\xi})_{\xi \in \Xi}$ in X, fulfilling (5). Then the following results hold.

(a) If $S_1 \setminus S_2 \neq \emptyset$, then f is (S_1, S_2) -continuous at x if and only if f is constant.

(b) If (\mathcal{T}_x, \subset) is the set of all neighborhoods of x, $(D_{\xi})_{\xi \in \Xi}$ is a decreasing net in \mathcal{T}_x fulfilling (5) and $S_1 \subset S_2$, then f is (S_1, S_2) -continuous at x if and only if it is continuous at x.

A consequence of the previous theorems is that, if X is a Hausdorff topological space (resp. a uniform space) and a net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is (strongly) ($\mathcal{F}\alpha$)-convergent to $f: X \to R$ on X (resp. on \mathcal{B}), then it ($RO\mathcal{F}$)-converges to f, and f is (strongly uniform) continuous on X (resp. on \mathcal{B}).

As an application, we give an Ascoli-type theorem. Given a topological space X, a nonempty set $\Phi \subset R^X$ and a convergence (σ) on Φ , we say that Φ is (σ) -compact iff every net $(f_{\lambda})_{\lambda \in \Lambda}$ in Φ admits a subnet $(f_{\lambda_K})_{\kappa \in \Lambda}$, (σ) -convergent to an element $f \in \Phi$, and that Φ is (σ) -closed iff $f \in \Phi$ whenever $(f_{\lambda})_{\lambda \in \Lambda}$ is a net in Φ , (σ) -convergent to $f \in R^X$. The (σ) -closure of Φ is the set of the functions $f \in R^X$, having a net $(f_{\lambda})_{\lambda \in \Lambda}$ in Φ (σ) -convergent to f. A set Φ is (σ) -closed if and only if it coincides with its (σ) -closure.

Theorem 17 Let X be a Hausdorff topological space, S and \mathcal{F} be as above.

If $\Phi \subset \Psi \subset \mathbb{R}^{X}$, where Φ is $(S, \mathcal{F}\alpha)$ -closed and Ψ is $(RO\mathcal{F})$ -compact, and every net $(f_{\lambda})_{\lambda \in \Lambda}$, $(RO\mathcal{F})$ -convergent in Φ , has a subnet $(f_{\lambda_{\kappa}})_{\kappa \in \Lambda}$, $(RO\mathcal{F})$ -convergent (in

 R^{X}) and (S, \mathcal{F}) -exhaustive,

then Φ is $(S, \mathcal{F}\alpha)$ -compact.

Moreover, if Φ is $(S, \mathcal{F}\alpha)$ -compact, then Φ satisfies condition H').

In our setting, a related question, which arises naturally, is to find some necessary and/or sufficient conditions under which the limit function of a suitably pointwise convergent net is constant, or (S, F)-continuous. In this framework, it is advisable to consider the following extensions of the concepts of (S, F)-exhaustiveness and corresponding (α) -convergence.

Let X be any Hausdorff topological space, $x \in X$, R be any Dedekind complete lattice group, (Ξ, \geq) and (Λ, \geq) be two directed sets, \mathcal{F}_1 and \mathcal{F}_2 be two (Ξ) -free filters of Ξ , \mathcal{F}_3 be a (Λ) -free filter of Λ , and $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a function net. We say that $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ -exhaustive at $x \in X$ iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that, for every net $(x_{\xi})_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to x and for any $p \in \mathbb{N}$ there are $F_2 \in \mathcal{F}_2$ and $F_3 \in \mathcal{F}_3$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_p$ for every $\xi \in F_2$ and $\lambda \in F_3$. The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, is weakly $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ -exhaustive at $x \in X$ iff there is an (O)sequence $(\sigma_p)_p$ in R such that, for each net $(x_{\xi})_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to x and for every $p \in \mathbb{N}$ there is a set $F_2 \in \mathcal{F}_2$ such that for each $\xi \in F_2$ there exists $F_{\xi} \in \mathcal{F}_3$ with $|f_{\lambda}(x_{\xi}) - f_{\lambda}(x)| \leq \sigma_p$ whenever $\lambda \in F_{\xi}$. The net $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \alpha)$ -converges to $f: X \to R$ at $x \in X$ iff there exists an (O)-sequence $(\sigma_p)_p$ in R such that, for every net $(x_{\xi})_{\xi \in \Xi}$ \mathcal{F}_1 -convergent to x and for each $p \in \mathbb{N}$ there are $F_2 \in S$, $F_3 \in \mathcal{F}$ with $|f_{\lambda}(x_{\xi}) - f(x)| \leq \sigma_p$ whenever $\xi \in F_2$ and $\lambda \in F_3$.

Theorem 18 Let $f_{\lambda}: X \to R$, $\lambda \in \Lambda$, be a net of functions, $(RO\mathcal{F}_3)$ -convergent to $f: X \to R$, and $x \in X$. Then $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 \alpha)$ -convergent to f at x if and only if $(f_{\lambda})_{\lambda}$ is $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ exhaustive at x. Moreover, $(f_{\lambda})_{\lambda}$ is weakly $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ -exhaustive at x if and only if f is $(\mathcal{F}_1, \mathcal{F}_2)$ continuous at x.