The Light Wave Equation and the Special Relativity

November 24, 2014.

José Francisco García Juliá

jfgj1@hotmail.es

In a recent paper, it is asserted that the wave equation for the light in the vacuum cannot be used in the special relativity. However, it might be refuted.

Key words: light wave equation, special relativity.

We consider the following scenario. We have two reference systems, S and S' , where S is at rest and S' is moving in the positive x coordinate direction with a constant speed ν with respect to S. In addition, we have a wave ψ that propagates in the space, also in the positive x (coordinate) direction, with the same constant speed v with respect to S.

The so-called retarded time, t_r , is defined as follows. Let (x_1, t_1) and (x_2, t_2) be two points of S and ψ moves from the first point to the second one, then $t_2 - t_1 = (x_2 - x_1)/v$, and doing $t_r = t_l$, $t = t_2$ and $x = x_2 - x_l$, we have that $t_r = t - x/v$.

Then, with the retarded time, $t_r = t - x/v$, with the Galileo relativity, $x' = x - vt$, and with the Einstein special relativity (SR), $x' = \gamma(x - vt)$, where $\gamma = (1 - v^2/c^2)^{-1/2}$ and c is the speed of the light in the vacuum; we obtain (see appendix A) the wave equation in one dimension [1]:

$$
\frac{\partial^2 \psi}{\partial x^2} - (1/v^2) \frac{\partial^2 \psi}{\partial t^2} = 0 \tag{1}
$$

And the wave equation for the light in the vacuum, which implies $v = c$, would be

$$
\partial^2 \psi / \partial x^2 - (1/c^2) \partial^2 \psi / \partial t^2 = 0 \tag{2}
$$

But (2) cannot be used in the SR because $v = c$ implies $\gamma = \infty$.

This might be solved as follows. In the SR, for a particle, we have:

 $E = \gamma mc^2$, where E is the energy and m the rest mass.

 $p = \gamma mv$, where p is the momentum and v the speed.

From both equations it is obtained (see appendix B) that:

$$
E^2 = p^2c^2 + m^2c^4
$$
 (3)

Then, for $v = c$, it is $p = \gamma mc$, and $pc = \gamma mc^2 = E$, which implies, from (3), $m = 0$.

Hence, for $v = c$, we have: $\gamma = \infty$ and $m = 0$.

On the other hand, for two inertial systems, S and S', it is: $f'f = ((1 - v/c)/(1 + v/c))^{1/2}$ (from the relativistic Doppler effect), where f' and f are the frequencies of the light in the moving (S') and rest (S) frames, respectively, v being the moving speed of the primed frame. But also, $E'/E = ((1 - v/c)/(1 + v/c))^{1/2}$ (from the Lorentz transformation for the energy), then $E'/E = f'/f$, $E' = hf'$ and $E = hf$, which is the Planck-Einstein equation, h being the Planck constant [2] (pp. 142-143).

Hence, for the light, that is, for the photon it would be:

 $\gamma = \infty$, $m = 0$, $E = pc$, $E = hf$, $p = hf/c$, and as $c = \lambda f$, where λ is the wavelength, then p $= h/\lambda$.

And also, as $\gamma mc^2 = E = hf$, then $\gamma m = hf/c^2$, which is the so-called "effective mass" of the photon, although $\gamma = \infty$ and $m = 0$.

Therefore, (2) would be valid also in the SR because of the effective mass of the photon.

Then, if we accept the SR, by virtue of it, (2) would be valid: 1) with the retarded time, $t_r = t - x/c$, for $v = 0$, where now v is the speed of the light source. 2) with the Galileo relativity, for $0 \leq v^2 \leq c^2$. And 3) with the SR, for $0 \leq v \leq c$.

In summary, although in a recent paper [1] it is asserted that the wave equation for the light in the vacuum cannot be used in the special relativity, this might be refuted.

Appendix A

From the retarded time, we have:

 $\psi(x,t) = f(b) = f(t - x/v)$, where f is a function, with $b = t_r = t - x/v$ $\frac{\partial \psi}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial b} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial b} (-1/\nu)$ $\frac{\partial \psi}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial b} \frac{\partial f}{\partial c}$ = ($\frac{\partial f}{\partial b}$, since $\frac{\partial b}{\partial t} = 1$ $\partial^2 \psi/\partial x^2 = (-1/\nu)(\partial/\partial x) (\partial f/\partial b) = (-1/\nu)(\partial/\partial b) (\partial f/\partial x) = (1/\nu^2)\partial^2 f/\partial b^2$ $\partial^2 \psi/\partial t^2 = (\partial/\partial t)(\partial f/\partial b) = (\partial/\partial b)(\partial f/\partial t) = (\partial/\partial b)(\partial f/\partial b) = \partial^2 f/\partial b^2$ $\partial^2 \psi / \partial x^2 = (1/\nu^2) \partial^2 f / \partial b^2 = (1/\nu^2) \partial^2 \psi / \partial t^2$ $\partial^2\psi\!\!\!\!/ \partial \!x^2$ - $(l/\mathrm{v}^2)\partial^2\psi\!\!\!\!/ \partial \!t^2=0$

which is the wave equation in one dimension (1), with $0 \le v \le \infty$, and without using neither the Galileo transformation nor the Lorentz transformation.

From the Galileo transformation, we have:

 $x' = x - vt$ $\psi(x,t) = f(x') = f(x - vt)$ $\frac{\partial \psi}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$ ')($\frac{\partial x}{\partial x} = \frac{\partial f}{\partial x}$ ', since $\frac{\partial x}{\partial x} = 1$ $\frac{\partial \psi}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x'}(\frac{\partial x'}{\partial t}) = \frac{\partial f}{\partial x'}(-v) = -v \frac{\partial f}{\partial x'}$ $\partial^2 \psi/\partial x^2 = (\partial/\partial x)(\partial \bar{f}/\partial x^{\, \prime}) = (\partial/\partial x^{\, \prime})(\partial \bar{f}/\partial x) = (\partial/\partial x^{\, \prime})(\partial \bar{f}/\partial x^{\, \prime}) = \partial^2 f/\partial x^{\, \prime 2}$ $\partial^2 \psi/\partial t^2 = (\partial/\partial t)(\text{-} \nu \partial \text{\textit{f}}/\partial x^{\text{-}}) = -\nu (\partial/\partial x^{\text{-}})(\partial \text{\textit{f}}/\partial t) = -\nu (\partial/\partial x^{\text{-}})(\text{-} \nu \partial \text{\textit{f}}/\partial x^{\text{-}}) = \nu^2 \partial^2 \text{\textit{f}}/\partial x^{\text{-}}$ $\partial^2 \psi / \partial x^2 = \partial^2 f / \partial x^2 = (1/v^2) \partial^2 \psi / \partial t^2$

 $\partial^2 \psi / \partial x^2$ - $(l/\nu^2) \partial^2 \psi / \partial t^2 = 0$

which is also the wave equation in one dimension, with $0 \le v \le \infty$.

And, from the Lorentz transformation, we have:

 $x' = \gamma(x - vt)$, with $\gamma = (1 - v^2/c^2)^{-1/2}$ $\psi(x,t) = f(x') = f(\gamma(x - vt))$ $\frac{\partial \psi}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$ ') $\frac{\partial x}{\partial x} = \frac{\partial f}{\partial x}$ ') $\gamma = \frac{\partial f}{\partial x}$ ' $\partial \psi/\partial t = \partial f/\partial t = (\partial f/\partial x')(\partial x'/\partial t) = (\partial f/\partial x')(-\psi) = -\psi \partial f/\partial x'$ $\partial^2 \psi \!\!\!/ \partial \! x^2 = (\partial \!\!\!/ \partial \! x) (\psi \!\!\! \partial \! f \!\!\!/ \partial \! x^{\, \prime}) = \gamma \!\!\! \partial \!\!\! / \partial \! x^{\, \prime}) (\partial \! f \!\!\! / \partial \! x) = \gamma \!\!\! / \partial \! f \!\!\! / \partial \! x^{\, \prime}) = \gamma^2 \partial^2 \! f \!\!\! / \partial \! x^{\, \prime 2}$ $\partial^2\psi\!\!\!/\partial t^2=(\partial\!\!\!/\partial t)(\text{-} \gamma\!\!\!/\partial\!\!\!/\partial t')\!\!\!=-\gamma\!\!\!/\gamma\!\!\!/\partial t\!\!\!/\partial t)=\text{-}\gamma\!\!\!/\gamma\!\!\!/\partial t\!\!\!/\partial t\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\partial t\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma\!\!\!/\gamma$ $\partial^2 \psi \!\!\!/ \partial \! x^2 = \gamma^2 \partial\!\!\!/ f \!\!\!/ \partial \! x^{\, ,2} = (1/\!\nu^2) \partial^2 \psi \!\!\!/ \partial \!\!\! r^2$ $\partial^2 \psi / \partial x^2$ - $(l/\nu^2) \partial^2 \psi / \partial t^2 = 0$

which is again the wave equation in one dimension, but now by virtue of the SR it would be $0 \le v \le c$, because $v = c$ would imply $\gamma = \infty$.

Appendix B

$$
E = \gamma mc^2, p = \gamma mv \text{ and } \gamma = (1 - v^2/c^2)^{-1/2}
$$

\n
$$
E^2 = \gamma^2 m^2 c^4 \text{ and } p^2 = \gamma^2 m^2 v^2
$$

\n
$$
E^2 = (m^2 c^4)/(1 - v^2/c^2) = c^2 (m^2 c^4)/(c^2 - v^2)
$$

\n
$$
E^2/c^2 = (m^2 c^4)/(c^2 - v^2)
$$

\n
$$
p^2 = (m^2 v^2)/(1 - v^2/c^2) = c^2 (m^2 v^2)/(c^2 - v^2)
$$

\n
$$
E^2/c^2 - p^2 = (m^2 c^4)/(c^2 - v^2) - c^2 (m^2 v^2)/(c^2 - v^2) = (m^2 c^2)(c^2 - v^2)/(c^2 - v^2) = m^2 c^2
$$

\n
$$
E^2 = p^2 c^2 + m^2 c^4
$$

[1] José Francisco García Juliá, A Possible Refutation of the Relativity, viXra: 1409.0234 [Relativity and Cosmology]. http://vixra.org/abs/1409.0234

[2] James H. Smith, Introducción a la Relatividad Especial, Reverté, Barcelona, 1969. Original edition, Introduction to Special Relativity, Benjamin, New York.