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1. INTRODUCTION

In 1995, Florentin Smarandache introduced the notion of Neutrosophy as a new
branch of philosophy. Neutrosophy is the base of neutrosophic logic which is an ex-
tension of the fuzzy logic in which indeterminancy is included. In the neutrosophic
logic, each proposition is estimated to have the percentage of truth in a subset T ,
the percentage of indeterminancy in a subset I, and the percentage of falsity in a
subset F. Since the world is full of indeterminancy, several real world problems in-
volving indeterminancy arising from law, medicine, sociology, psychology, politics,
engineering, industry, economics, management and decision making, finance, stocks
and share, meteorology, artificial intelligence, IT, communication etc can be solved
by neutrosophic logic.

2. NEUTROSOPHIC ALGEBRAIC STRUCTURES

Using Neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache in-
troduced the concept of neutrosophic algebraic structures in [12]. Some of the neutro-
sophic algebraic structures introduced and studied included neutrosophic fields, neu-
trosophic vector spaces, neutrosophic groups, neutrosophic bigroups, neutrosophic
N-groups, neutrosophic semigroups, neutrosophic bisemigroups, neutrosophic N-
semigroup, neutrosophic loops, neutrosophic biloops, neutrosophic N-loop, neutro-
sophic groupoids, neutrosophic bigroupoids and so on. In [13], Vasantha Kandasamy
introduced and studied neutrosophic rings. In [1], Agboola et al. studied the struc-
ture of neutrosophic polynomial rings and in [2], Agboola et al. studied neutrosophic
ideals and neutrosophic quotient rings. In [3], Agboola et al. studied neutrosophic
groups and subgroups.
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3. NEUTROSOPHIC GROUPS

Definition 3.1. [12] Let (G, ⋆) be any group and let N(G) = ⟨G ∪ I⟩. The couple
(N(G), ⋆) is called a neutrosophic group generated by G and I under the binary
operation ⋆.

I is called the neutrosophic element with the property I ⋆ I = I. I−1, the inverse of
I is not defined and hence does not exist.

N(G) is said to be commutative if a ⋆ b = b ⋆ a for all a, b ∈ N(G).

Theorem 3.1. [12] Let N(G) be a neutrosophic group. Then,

(1) N(G) in general is not a group;

(2) N(G) always contain a group.

Definition 3.2. Let N(G) be a neutrosophic group. Then,

(1) A proper subset N(H) of N(G), where H ⊂ G, is said to be a neutrosophic
subgroup of N(G) if N(H) is a neutrosophic group, that is, N(H) contains a
proper subset which is a group;

(2) N(H) is said to be a pseudo neutrosophic subgroup if it does not contain a
proper subset which is a group.

Example 3.1. (1) (N(Z),+), (N(Q),+) (N(R),+) and (N(C),+) are neutrosophic
groups of integer, rational, real and complex numbers, respectively.

(2) (⟨{Q − {0}} ∪ I⟩ , ·), (⟨{R − {0}} ∪ I⟩ , ·) and (⟨{C − {0}} ∪ I⟩ , ·) are neutrosophic
groups of rational, real and complex numbers, respectively.

Example 3.2. [3] Let N(G) = {e, a, b, c, I, aI, bI, cI} be a set, where a2 =

b2 = c2 = e, bc = cb = a, ac = ca = b, ab = ba = c, then N(G) is a commuta-
tive neutrosophic group under multiplication since {e, a, b, c} is the Klein 4-group.
N(H) = {e, a, I, aI}, N(K) = {e, b, I, bI} and N(P) = {e, c, I, cI} are neutrosophic
subgroups of N(G).

Theorem 3.2. [3] Let N(H) be a non-empty proper subset of a neutrosophic group
(N(G), ⋆). Then, N(H) is a neutrosophic subgroup of N(G) if and only if the follow-
ing conditions hold:

(1) a, b ∈ N(H) implies that a ⋆ b ∈ N(H);

(2) there exists a proper subset A of N(H) such that (A, ⋆) is a group.

Theorem 3.3. [3] Let N(H) be a non-empty proper subset of a neutrosophic group
(N(G), ⋆). Then, N(H) is a pseudo neutrosophic subgroup of N(G) if and only if the
following conditions hold:

(1) a, b ∈ N(H) implies that a ⋆ b ∈ N(H);

(2) N(H) does not contain a proper subset A such that (A, ⋆) is a group.



Introduction to Neutrosophic Hypergroups 3

4. HYPERGROUPS

The theory of hyperstructures was introduced in 1934 by Marty [9] at the 8th
Congress of Scandinavian Mathematicians. In a classical algebraic structure, the
composition of two elements is an element, while in an algebraic hyperstructure, the
composition of two elements is a set. Several books have been written on this topic,
see [4, 5, 5, 8, 10]. Hyperstructure theory both extends some well-known group
results and introduce new topics leading us to a wide variety of applications, as well
as to a broadening of the investigation fields. In this part, we present the notion of
hypergroup and some well-known related concepts. These concepts will be used in
the building of neutrosophic hypergroups, for more details we refer the readers to see
[4, 5, 5, 8, 9, 10].

Let H be a non-empty set and ◦ : H × H → P⋆(H) be a hyperoperation. The
couple (H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of
H and x ∈ H, we define

A ◦ B =
∪

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

Definition 4.1. A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of
H we have (a ◦ b) ◦ c = a ◦ (b ◦ c), which means that∪

u∈a◦b
u ◦ c =

∪
v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a of H we have a ◦ H =
H ◦ a = H. This condition is also called the reproduction axiom.

Definition 4.2. A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi-
hypergroup is called a hypergroup.

Definition 4.3. Let (H, ◦) and (H′, ◦′) be two hypergroupoids. A map ϕ : H → H′,
is called

(1) an inclusion homomorphism if for all x, y of H, we have ϕ(x◦ y) ⊆ ϕ(x)◦′ ϕ(y);

(2) a good homomorphism if for all x, y of H, we have ϕ(x ◦ y) = ϕ(x) ◦′ ϕ(y).

Let (H, ◦) be a semihypergroup and R be an equivalence relation on H. If A and B
are non-empty subsets of H, then

ARB means that ∀a ∈ A,∃b ∈ B such that aRb and
∀b′ ∈ B,∃a′ ∈ A such that a′Rb′;

ARB means that ∀a ∈ A,∀b ∈ B, we have aRb.

Definition 4.4. The equivalence relation ρ is called

(1) regular on the right (on the left) if for all x of H, from aρb, it follows that
(a ◦ x)ρ(b ◦ x) ((x ◦ a)ρ(x ◦ b) respectively);
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(2) strongly regular on the right (on the left) if for all x of H, from aρb, it follows
that (a ◦ x)ρ(b ◦ x) ((x ◦ a)ρ(x ◦ b) respectively);

(3) ρ is called regular (strongly regular) if it is regular (strongly regular) on the
right and on the left.

Theorem 4.1. . Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on
H.

(1) If ρ is regular, then H/ρ is a semihypergroup, with respect to the following
hyperoperation: x ⊗ y = {z | z ∈ x ◦ y};

(2) If the above hyperoperation is well defined on H/ρ, then ρ is regular.

Corollary 4.1. If (H, ◦) is a hypergroup and ρ is an equivalence relation on H, then
R is regular if and only if (H/ρ,⊗) is a hypergroup.

Theorem 4.2. Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on
H.

(1) If ρ is strongly regular, then H/ρ is a semigroup, with respect to the following
operation: x ⊗ y = {z | z ∈ x ◦ y};

(2) If the above operation is well defined on H/ρ, then ρ is strongly regular.

Corollary 4.2. If (H, ◦) is a hypergroup and ρ is an equivalence relation on H, then
ρ is strongly regular if and only if (H/ρ,⊗) is a group.

Definition 4.5. Let (H, ◦) is a semihypergroup and A be a non-empty subset of H.
We say that A is a complete part of H if for any nonzero natural number n and for all
a1, . . . , an of H, the following implication holds:

A ∩
n∏

i=1
ai , ∅ =⇒

n∏
i=1

ai ⊆ A.

Theorem 4.3. If (H, ◦) is a semihypergroup and R is a strongly regular relation on
H, then for all z of H, the equivalence class of z is a complete part of H.

5. NEUTROSOPHIC HYPERGROUPS

Definition 5.1. Let (H, ⋆) be any hypergroup and let < H ∪ I >= {x = (a, bI) : a, b ∈
H}. The couple N(H) = (< H∪I >,⋆) is called a neutrosophic hypergroup generated
by H and I under the hyperoperation ⋆. The part a is called the non-neutrosophic
part of x and the part b is called the neutrosophic part of x.

If x = (a, bI) and y = (c, dI) are any two elements of N(H), where a, b, c, d ∈ H,
we define x⋆y = (a, bI)⋆(c, dI) = {(u, vI) | u ∈ a⋆c, v ∈ a⋆d∪b⋆c∪b⋆d} =
(a⋆c, (a⋆d∪b⋆c∪b⋆d)I). Note that a⋆c ⊆ H and (a⋆d∪b⋆c∪b⋆d) ⊆ H.
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Definition 5.2. Let N(H) be a neutrosophic hypergroup and let N(K) be a proper
subset of N(H). Then,

(1) N(K) is said to be a neutrosophic sub-hypergroup of N(H) if N(K) is a neu-
trosophic hypergroup, that is, N(K) must contain a proper subset which is a
hypergroup;

(2) N(K) is said to be a pseudo neutrosophic sub-hypergroup of N(H) if N(K) is
a neutrosophic hypergroup which contains no proper subset which is a hyper-
group.

Theorem 5.1. Let N(H) be a neutrosophic hypergroup. Then, N(H) is a semihyper-
group.

Proof. Let x = (a, bI), y = (c, dI), z = (e, f I) be arbitrary elements of N(H), where
a, b, c, d, e, f ∈ H. Then,

x ⋆ y = (a, bI) ⋆ (c, dI)
= {(u, vI) | u ∈ a ⋆ c, v ∈ a ⋆ d ∪ b ⋆ c ∪ b ⋆ d}
= (a ⋆ c, (a ⋆ d ∪ b ⋆ c ∪ b ⋆ d)I)
⊆ N(H).

Hence, (N(H), ⋆) is a hypergroupoid.
Next,

x ⋆ (y ⋆ z) = (a, bI) ⋆ ((c, dI) ⋆ (e, f I))
= (a, bI) ⋆ (c ⋆ e, (c ⋆ f ∪ d ⋆ e ∪ d ⋆ f )I))
= (a ⋆ (c ⋆ e), ((a ⋆ (c ⋆ f )) ∪ (a ⋆ (d ⋆ e)) ∪ (a ⋆ (d ⋆ f )) ∪ (b ⋆ (c ⋆ e))
∪(b ⋆ (c ⋆ f )) ∪ (b ⋆ (d ⋆ e)) ∪ (b ⋆ (d ⋆ f )))I)

= ((a ⋆ c) ⋆ e, (((a ⋆ c) ⋆ f ) ∪ ((a ⋆ d) ⋆ e) ∪ ((a ⋆ d) ⋆ f ) ∪ ((b ⋆ c) ⋆ e)
∪((b ⋆ c) ⋆ f ) ∪ ((b ⋆ d) ⋆ e) ∪ ((b ⋆ d) ⋆ f ))I)

= ((a, bI) ⋆ (c, dI)) ⋆ (e, f I)
= (x ⋆ y) ⋆ z.

Accordingly, (N(H), ⋆) is a semihypergroup.

Lemma 5.1. Let N(H) be a neutrosophic hypergroup. Then, x⋆N(H) = N(H)⋆ x ⊂
N(H) for all x = (a, bI) ∈ N(H).

Proof. We have

x ⋆ N(H) = (a, bI) ⋆ N(H)
= (a, bI) ⋆ {(h1, h2I) : h1, h2 ∈ H}
= {(a ⋆ h1, (a ⋆ h2 ∪ b ⋆ h1 ∪ b ⋆ h2)I) : a, b, h1, h2 ∈ H}
= {(u, vI) : u ∈ a ⋆ h1, v ∈ (a ⋆ h2 ∪ b ⋆ h1 ∪ b ⋆ h2)}
⊂ N(H)
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Similarly, N(H) ⋆ x ⊂ N(H) and therefore, x ⋆ N(H) = N(H) ⋆ x ⊂ N(H).

Theorem 5.2. If N(H) is a neutrosophic hypergroup, then

(1) N(H) in general is not a hypergroup;

(2) N(H) always contain a hypergroup.

Proof. (1) Follows directly from Theorem 5.3 and Lemma 5.4.
(2) Follows from the definition of a neutrosophic hypergroup.

Example 5.1. Let H = {a, b, (a, aI), (a, bI), (b, aI), (b, bI)} be a set and let ⋆ be a
hyperoperation on H defined in the table below.

⋆ a b (a, aI) (a, bI) (b, aI) (b, bI)

a a b (a, aI) (a, bI) (b, aI) (b, bI)

b b
a
b (b, bI)

(b, aI)
(b, bI)

(a, bI)
(b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

(a, aI) (a, aI) (b, bI) (a, aI)
(a, aI)
(a, bI)

(b, aI)
(b, bI) (b, bI)

(a, bI) (a, bI)
(b, aI)
(b, bI)

(a, aI)
(a, bI)

(a, aI)
(a, bI)

(b, aI)
(b, bI)

(b, aI)
(b, bI)

(b, aI) (b, aI)
(b, bI)
(a, bI)

(b, aI)
(b, bI)

(b, aI)
(b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

(b, bI) (b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

(b, bI)
(b, aI)
(b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

(a, aI)
(a, bI)
(b, aI)
(b, bI)

It is clear from the table that (H, ⋆) is a neutrosophic hypergroup since it contains a
proper subset {a, b} which is a hypergroup under ⋆.

Theorem 5.3. Let (N(H), ⋆1) and (N(K), ⋆2) be any two neutrosophic hypergroups.
Then, (N(H) × N(K), ⋆) is a neutrosophic hypergroup, where

(x1, x2)⋆(y1, y2) = {(x, y) : x ∈ x1⋆1y1, y ∈ x2⋆2y2, ∀ (x1, x2), (y1, y2) ∈ N(H)×N(K)}.
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Theorem 5.4. Let (N(H), ⋆) be a neutrosophic hypergroup and let (K, ◦) be a hyper-
group. Then, (N(H) × K, ⋆

′
) is a neutrosophic hypergroup, where

(h1, k1)⋆
′
(h2, k2) = {(h, k) : h ∈ h1 ⋆ h2, k ∈ k1 ◦ k2, ∀ (h1, k1), (h2, k2) ∈ N(H) × K}.

Definition 5.3. Let (N(H1), ⋆1) and (N(H2), ⋆2) be any two neutrosophic hyper-
groups and let f : N(H1)→ N(H2) be a map. Then,

(a) f is called a homomorphism if:
(1) for all x, y of N(H1), f (x ⋆1 y) ⊆ f (x) ⋆2 f (y),
(2) f (I) = I.

(b) f is called a good homomorphism if:
(1) for all x, y of N(H1), f (x ⋆1 y) = f (x) ⋆2 f (y),
(2) f (I) = I.

(c) f is called an isomorphism if f is a homomorphism and f −1 is also a homo-
morphism.

(d) f is called a 2-homomorphism if for all x, y of N(H1),

f −1( f (x) ⋆2 f (y)) = f −1( f (x ⋆1 y)).

(e) f is called an almost strong homomorphism if for all x, y of N(H1),

f −1( f (x) ⋆2 f (y)) = f −1( f (x)) ⋆1 f −1( f (y)).

Definition 5.4. Let N(K) be a neutrosophic sub-hypergroup of a neutrosophic hyper-
group (N(H), ⋆). Then,

(1) N(K) is said to be closed on the left (right) if for all k1, k2 ∈ N(K), x ∈ N(H)
we have k2 ∈ x ⋆ k1 (k2 ∈ k1 ⋆ x) implies that x ∈ N(K);

(2) N(K) is said to be ultraclosed on the left (right) if for all x ∈ N(H) we have
x ⋆ N(K) ∩ x ⋆ (N(H)\N(K)) = ∅(N(K) ⋆ x ∩ (N(H)\N(K)) ⋆ x = ∅);

(3) N(K) is said to be left (right) conjugable if N(K) is left (right) closed and if for
all x ∈ N(H), there exists h ∈ N(H) such that x ⋆ h ⊆ N(K) (h ⋆ x ⊆ N(K));

(4) N(K) is said to be (closed, ultraclosed, conjugable) if it is left and right (closed,
ultraclosed, conjugable).

Lemma 5.2. Let N(K) be a neutrosophic sub-hypergroup of a neutrosophic hyper-
group (N(H), ⋆). For all x ∈ N(H), we have

(1) x ⋆ N(K) ⊂ N(H);

(2) x ⋆ (N(H)\N(K)) ⊂ N(H);
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(3) x ⋆ N(K) ∪ x ⋆ (N(H)\N(K)) ⊂ N(H).

Lemma 5.3. Let N(K) be a neutrosophic sub-hypergroup of a neutrosophic hyper-
group (N(H), ⋆). For all x ∈ N(K), we have

(1) x ⋆ N(K) ⊂ N(K),

(2) x ⋆ (N(H)\N(K)) ⊂ N(K);

(3) x ⋆ N(K) ∪ x ⋆ (N(H)\N(K)) ⊂ N(H).

Theorem 5.5. Let N(K) be a neutrosophic sub-hypergroup of a neutrosophic hyper-
group (N(H), ⋆). Then,

(1) N(K) ⋆ N(K) ⊂ N(K);

(2) N(K) ⋆ (N(H)\N(K)) ⊂ N(K).

Theorem 5.6. Let N(K) be a neutrosophic sub-hypergroup of a neutrosophic hyper-
group (N(H), ⋆). If N(K) is conjugable then it is not ultraclosed.

Proof. Suppose that N(K) is conjugable. Then, N(K) is closed and for all x ∈ N(H),
there exists y ∈ N(H) such that x ⋆ y ⊆ N(K) and y ⋆ x ⊆ N(K). Let B = N(K) ∩
(N(H)\N(K)) so that

x ⋆ B = x ⋆ N(K) ∩ x ⋆ (N(H)\N(K))
⊂ N(H) ∩ N(H)
= N(H).

This shows that B , ∅ and thus, N(K) is not left ultraclosed. Similarly, it can be
shown that N(K) is not right ultraclosed. Hence, N(K) is not ultraclosed.

Theorem 5.7. Let (N(H1), ⋆1) and (N(H2), ⋆2) be any two neutrosophic hypergroups
and let f : N(H1)→ N(H2) be a map.

(1) If f is a bijective homomorphism, then f is an isomorphism if and only if it is
good.

(2) If f is a strong homomorphism, then it is almost strong.

(3) If f is a good homomorphism and N(K) is a neutrosophic(pseudo neutro-
sophic) sub-hypergroup of N(H1), then f (N(K)) is a neutrosophic(pseudo neu-
trosophic) sub-hypergroup of N(H2).

Theorem 5.8. Let (N(H), ⋆) be a neutrosophic hypergroup and let ρ be an equiva-
lence relation on N(H).

(1) If ρ is regular, then N(H)/ρ is a neutrosophic hypergroup.
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(2) If ρ is strongly regular, then N(H)/ρ is a neutrosophic group.

Proof. The proof follows from Theorem 4.7 and Corollary 4.8.

Theorem 5.9. Let (N(H), ⋆) be a neutrosophic hypergroup and let ρ be a regular
equivalence relation on N(H). Then, the map ϕ : N(H) → N(H)/ρ defined by
ϕ(x) = x is not a homomorphism (good homomorphism).

Proof. It is clear since I ∈ N(H) but ϕ(I) , I.

Theorem 5.10. Let (N(H), ⋆) be a neutrosophic hypergroup and let ρ be a strongly
regular equivalence relation on N(H). Then, for all x ∈ N(H), x is a complete part
of N(H).

6. CONCLUSION

In this paper, we have extended neutrosophic theory to hypergroup theory. Basic
properties of neutrosophic hypergroups were presented and it was shown that every
hypergroup is contained in a neutrosophic hypergroup but generally, a neutrosophic
hypergroup is not a hypergroup.
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