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Abstract: The folded hypercube FQn is a variance of the hypercube network and is

superior to Qn in some properties[IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42].

The genus of n-dimensional hypercube Qn were given by G. Ringel. In this paper, the

genus γ(FQn) of FQn is discussed. That is, γ(FQn) = (n − 3)2n−3 + 1 if n is odd and

(n − 3)2n−3 + 1 ≤ γ(FQn) ≤ (n − 2)2n−3 + 1 if n is even.
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§1. Introduction

Let G = (V (G), E(G)) be a graph, where V (G) is a finite vertex set and E(G) is the edge set

which is the subset of {(u, v)|(u, v) is an unordered pair of V (G)}. Two vertices u and v are

adjacent if (u, v) ∈ E(G). A path, written as 〈v0, v1, v2, · · · , vm〉, is a sequence of adjacent

vertices, in which all the vertices v0, v1, v2, · · · , vm are distinct except possibly v0 = vm, the

path with v0 = vm is a cycle. The girth of a graph G is the length of the shortest cycle of G.

If |G| > 1 and G − F is connected for every set F ⊆ E(G) of fewer then l edges, then

G is called l-edge-connected. The greatest integer l such that G is l-edge-connected is the

edge-connectivity λ(G) of G.

A surface is a compact connected orientable 2-manifold which could be thought of as a

sphere on which has been placed a number of handles. The number of handles is referred to

as the genus of the surface. A drawing of graph G on a surface S is such a drawing with no

edge crosses itself, no adjacent edges cross each other, no two edges intersect more than once,

and no three edges have a common point. A Smarandache λS-drawing of G on S is a drawing

of G on S with minimal intersections λS . Particularly, a Smarandache 0-drawing of G on S if

existing, is called an embedding of G on S.

A region of a graph G embedded on a surface is the connected sections of the surface

bounded by a set of edges of G. This set of edges is called the boundary of the region, and
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the number of edges is the length of the region. We will use (v0, v1, v2, · · · , vm), called a facial

cycle, to denote the region bounded by edges (v0, v1), (v1, v2), · · · , and (vm, v0). so a facial cycle

of a graph is a region of the graph. A region is a k-cycle if its length is k. A region is a 2-cell

if any simple closed curve within the region can be collapsed to a single point. An embedding

of a graph G on a surface S is a 2-cell embedding if all embedded regions are 2-cells.

An embedding of G into an oriented surface S induce a rotation system as follows: The

local rotation at a vertex v is the cyclic permutation corresponding to the order in which the

edge-ends are traversed in an orientation-preserving tour around v. A rotation system of the

given embedding of G in S is the collection of local rotations at all vertices of G. It is proved

[19] that every 2-cell embedding of a graph G in an orientable surface is uniquely determined,

up to homeomorphism, by its rotation system.

Let G be a graph and π be an embedding of G, the corresponding rotation system is

denoted by ρπ. For any v ∈ V , the local rotation at v determined by ρπ is denoted by ρπ(v). In

the following, we consider 2-cell embedding of simple undirected graphs on orientable surfaces,

the rotation at a vertex is clockwise. The readers are referred to [1] for undefined notations.

The genus γ(G) of a graph G is meant the minimum genus of all possible surfaces on

which G can be embedded with no edge crossings, similarly, the γM (G) is the maximum genus.

As a measure of the complexity of a network, the genus gives an indication of how efficiently

the network can be laid out. The smaller the genus, the more efficient the layout. The planer

graphs have genus zero since no handles are needed to prevent edge intersections.

Let G be a connected graph with a 2-cell embedding on an orientable surface of genus g,

having m vertices, q edges and r regions, then the well known Euler’s formula [16] is: m−q+r =

2 − 2g. For embedding, Duke’s interpolation theorem [5] is that a connected graph G has a

2-cell embedding on surface Sk if and only if γ(G) ≤ k ≤ γM (G), where k is the genus of surface

Sk.

Graph embeddings have been studied by many authors over years. Especially the study of

the maximum and minimum orientable genus γM (G) and γ(G) of a graph G, they have been

proved polynomial [7] and NP-complete [22], respectively. The embedding properties of a graph

and some results about surfaces are extensively treated in the books [3,4,8,19]. More results

about genera and embedding genus distributions are referred to see [9-11,13-15,17-18,20,23-

25,27] etc.. Although there are much results about maximal genera, but minimum genera for

most kinds of graphs are not known. The folded hypercube FQn is a variance of the hypercube

network and is superior to Qn in some properties such as diameters [6]. The genus γ(Qn) of

n-dimensional hypercube Qn were given by G. Ringel [21], the genus of n-cube is discussed by

Beineke and Harary [2].

In this paper, the genus γ(FQn) of FQn is discussed. That is, γ(FQn) = (n − 3)2n−3 + 1

for n is odd and (n − 3)2n−3 + 1 ≤ γ(FQn) ≤ (n − 2)2n−3 + 1 for n is even.

§2. Main Results

The n-dimensional hypercube, denoted by Qn, is a bipartite graph with 2n vertices, its any

vertex v is denoted by an n-bit binary string v = xnxn−1 · · ·x2x1 or (xnxn−1 · · ·x2x1), where
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xi ∈ {0, 1} for all i, 1 ≤ i ≤ n. Two vertices of Qn are adjacent if and only if their binary

strings differ in exactly one bit position. So Qn is an n-regular graph.

If x = xnxn−1 · · ·x2x1 and y = ynyn−1 · · · y2y1 are two vertices in Qn such that yi = 1−xi

for 1 ≤ i ≤ n, then we denote y = x, and we say that x and x have complementary addresses.

As a variance of the Qn, the n-dimensional folded hypercube, denoted by FQn, proposed first

by El-Amawy and Latifi[?], is defined as follows: FQn is an (n+1)-regular graph, its vertex set

is exactly V (Qn), and its edge set is E(Qn)
⋃

E0, where E0 = {xx|x ∈ V (Qn)}. In other words,

FQn is a graph obtained from Qn by adding edges, called complementary edges, between any

pair of vertices with complementary addresses. FQ2 and FQ3 are shown in Fig.1.
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Fig.1 FQ2 and FQ3

Lemma 2.1([2, 21]) Let Qn be an n-hypercube, then γ(Qn) = (n − 4)2n−3 + 1.

Lemma 2.1([6]) The edge-connectivity of n-folded hypercube λ(FQn) ≥ n + 1.

Lemma 2.3(Jungerman [12], Xuong [25]) If G is a 4-edge-connected graph with m vertices and

q edges, then γM (G) = ⌊q − m + 1

2
⌋.

Lemma 2.4 Let Qn be an n-dimensional hypercube. Then there exists an embedding πn of Qn

for n ≥ 3 on the surface S of genus (n− 4)2n−3 + 1, such that each of the following three kinds

of cycles for xi ∈ {0, 1}, 3 ≤ i ≤ n,

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xnxn−1 · · ·x300), (xnxn−1 · · ·x310)) and

((xn · · ·x301), (xn · · ·x311), (xnxn−1 · · ·x311), (xnxn−1 · · ·x301))

is a facial 4-cycle of πn.

Proof It is true for Q3, shown in Fig.2. Assume it is true for Qn−1, n ≥ 4. There

exists an embedding πn−1 of Qn−1 on the surface S′ of genus (n − 5)2n−4 + 1, such that

each of three kinds of cycles ((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301), (xn−1 · · ·x311));

((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1xn−2 · · ·x300), (xn−1xn−2 · · ·x310)) and ((xn−1 · · ·x301),

(xn−1 · · ·x311), (xn−1xn−2 · · ·x311), (xn−1xn−2 · · ·x301)) for xi ∈ {0, 1}, 3 ≤ i ≤ n− 1, is a fa-

cial cycle on embedding πn−1 of Qn−1. So the rotations of πn−1 are as follows:
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ρπn−1(xn−1 · · ·x310) = (A′(xn−1 · · ·x311)(xn−1 · · ·x300)),

ρπn−1(xn−1 · · ·x300) = (B′(xn−1 · · ·x310)(xn−1 · · ·x301)),

ρπn−1(xn−1 · · ·x301) = (C′(xn−1 · · ·x300)(xn−1 · · ·x311)),

ρπn−1(xn−1 · · ·x311) = (D′(xn−1 · · ·x301)(xn−1 · · ·x310))

because of ((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301), (xn−1 · · ·x311)) being facial cycles

along counter-clockwise; or

ρπn−1(xn−1 · · ·x310) = (A′(xn−1 · · ·x300)(xn−1 · · ·x311)),

ρπn−1(xn−1 · · ·x300) = (B′(xn−1 · · ·x301)(xn−1 · · ·x310)),

ρπn−1(xn−1 · · ·x301) = (C′(xn−1 · · ·x311)(xn−1 · · ·x300)),

ρπn−1(xn−1 · · ·x311) = (D′(xn−1 · · ·x310)(xn−1 · · ·x301))

because of ((xn−1 · · ·x311), (xn−1 · · ·x301), (xn−1 · · ·x300), (xn−1 · · ·x310)) being facial cycles

along counter-clockwise, where A′, B′, C′, D′ are the ordered subsequences of vertices which

incident with (xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301) and (xn−1 · · ·x311), respectively.

By Euler’s formula, the boundary of every region in πn−1 of Qn−1 on S′ is a 4-cycle. Let

Qn−1 embed on another copy surface S′′ of genus (n − 5)2n−4 + 1 such that the embedding

of Qn−1 on S′′ is a ”mirror image” of the embedding of Qn−1 on S′. As a subgraph of Qn,

the vertices in embedding of Qn−1 on S′ and on S′′ are labeled by (0xn−1 · · ·x3x2x1) and

(1xn−1 · · ·x3x2x1) respectively, where xi ∈ {0, 1}, 1 ≤ i ≤ n− 1. For simplification, we also use

the signals of A′, B′, C′ and D′ in the following.

Based on πn−1, the rotation system of πn is given as follows:

ρπn
(xn · · ·x310) = ((xnxn−1 · · ·x310)A′(xn · · ·x311)(xn · · ·x300)),

ρπn
(xn · · ·x300) = (B′(xnxn−1 · · ·x300)(xn · · ·x310)(xn · · ·x301)),

ρπn
(xn · · ·x301) = ((xnxn−1 · · ·x301)C′(xn · · ·x300)(xn · · ·x311)),

ρπn
(xn · · ·x311) = (D′(xnxn−1 · · ·x311)(xn · · ·x301)(xn · · ·x310)); or

ρπn
(xnxn−1 · · ·x310) = (A′(xn · · ·x310)(xnxn−1 · · ·x300)(xnxn−1 · · ·x311)),

ρπn
(xnxn−1 · · ·x300) = ((xn · · ·x300)B′(xnxn−1 · · ·x301)(xnxn−1 · · ·x310)),

ρπn
(xnxn−1 · · ·x301) = (C′(xn · · ·x301)(xnxn−1 · · ·x311)(xnxn−1 · · ·x300)),

ρπn
(xnxn−1 · · ·x311) = ((xn · · ·x311)D′(xnxn−1 · · ·x310)(xnxn−1 · · ·x301)),

where xi = 1 − xi.

By using the method of researching regions of embedding from rotation system in [19], the

following four kinds of facial cycles on S′ or S′′

((00xn−2 · · ·x310), (00xn−2 · · ·x300), (01xn−2 · · ·x300), (01xn−2 · · ·x310));

((11xn−2 · · ·x310), (11xn−2 · · ·x300), (10xn−2 · · ·x300), (10xn−2 · · ·x310));

((00xn−2 · · ·x311), (00xn−2 · · ·x301), (01xn−2 · · ·x301), (01xn−2 · · ·x311));

((11xn−2 · · ·x311), (11xn−2 · · ·x301), (10xn−2 · · ·x301), (10xn−2 · · ·x311));

are replaced in πn by the following eight facial 4-cycles:

((00xn−2 · · ·x310), (00xn−2 · · ·x300), (10xn−2 · · ·x300), (10xn−2 · · ·x310));
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((00xn−2 · · ·x300), (01xn−2 · · ·x300), (11xn−2 · · ·x300), (10xn−2 · · ·x300));

((01xn−2 · · ·x300), (01xn−2 · · ·x310), (11xn−2 · · ·x310), (11xn−2 · · ·x300));

((01xn−2 · · ·x310), (00xn−2 · · ·x310), (10xn−2 · · ·x310), (11xn−2 · · ·x310));

((00xn−2 · · ·x311), (00xn−2 · · ·x301), (10xn−2 · · ·x301), (10xn−2 · · ·x311));

((00xn−2 · · ·x301), (01xn−2 · · ·x301), (11xn−2 · · ·x301), (10xn−2 · · ·x301));

((01xn−2 · · ·x301), (01xn−2 · · ·x311), (11xn−2 · · ·x311), (11xn−2 · · ·x301));

((01xn−2 · · ·x311), (00xn−2 · · ·x311), (10xn−2 · · ·x311), (11xn−2 · · ·x311))

and the other regions are not changed. As a result, each region of πn is a 4-cycle. By the Euler’s

formula, the genus of embedding πn of Qn is exactly 2((n−5)2n−4+1)+2n−3−1 = (n−4)2n−3+1.

Further more, it could be found that the following three kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xnxn−1 · · ·x300), (xnxn−1 · · ·x310)) and

((xn · · ·x301), (xn · · ·x311), (xnxn−1 · · ·x311), (xnxn−1 · · ·x301))

for xi ∈ {0, 1} and 3 ≤ i ≤ n are facial 4-cycles on πn. 2
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Lemma 2.5([26])

(1) FQn is a bipartite graph if and only if n is odd.

(2) If n is even, then the length of any shortest odd cycle in FQn is n + 1.

Theorem 2.6 The genus of FQn(n ≥ 3) is given as γ(FQn) = (n − 3)2n−3 + 1 for n is odd

and (n − 3)2n−3 + 1 ≤ γ(FQn) ≤ (n − 2)2n−3 + 1 for n is even.

Proof FQn is embedded on the surface of genus γ(FQn) with m vertices, q edges and r

regions, where m = 2n and q = (n + 1)2n−1. From Lemma 2.5, the girth of FQn is 4 for n ≥ 3.

By Euler’s formula, 4r ≤ 2q, m − q + r = 2 − 2γ(FQn) ≤ m − q
2 , so 2γ(FQn) − 2 ≥ q

2 − m.

That implies γ(FQn) ≥ (n − 3)2n−3 + 1.

To finish the proving, we only need to give an embedding of FQn such that the genus of

embedded surface is (n− 3)2n−3 +1 if n is odd, and is (n− 2)2n−3 +1 if n is even, respectively.

First, Qn is embedded on the surface with rotation system σ which is the same as the

embedding πn in Lemma 2.4, then we have the following rotations:
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ρσ(xn · · ·x310) = (A(xn · · ·x311)(xn · · ·x300)),

ρσ(xn · · ·x300) = (B(xn · · ·x310)(xn · · ·x301)),

ρσ(xn · · ·x301) = (C(xn · · ·x300)(xn · · ·x311)),

ρσ(xn · · ·x311) = (D(xn · · ·x301)(xn · · ·x310)).

(2.1)

Or

ρσ(xn · · ·x310) = (A(xn · · ·x300)(xn · · ·x311)),

ρσ(xn · · ·x300) = (B(xn · · ·x301)(xn · · ·x310)),

ρσ(xn · · ·x301) = (C(xn · · ·x311)(xn · · ·x300)),

ρσ(xn · · ·x311) = (D(xn · · ·x310)(xn · · ·x301)),

(2.2)

where A, B, C, D are the ordered sequences of vertices which is incident with (xn · · ·x310),

(xn · · ·x300), (xn · · ·x301), (xn · · ·x311), respectively.

According to ρσ of formulae (2.1) and (2.2) respectively and the fact that graph FQn is

obtained from Qn by adding complementary edges, the rotation system, denoted by θ, of FQn

is gotten from rotation system σ as followings:

ρθ(xn · · ·x310) = (A(xn · · ·x311)(xn · · ·x301)(xn · · ·x300)),

ρθ(xn · · ·x300) = (B(xn · · ·x310)(xn · · ·x311)(xn · · ·x301)),

ρθ(xn · · ·x301) = (C(xn · · ·x300)(xn · · ·x310)(xn · · ·x311)),

ρθ(xn · · ·x311) = (D(xn · · ·x301)(xn · · ·x300)(xn · · ·x310)).

(2.3)

Or

ρθ(xn · · ·x310) = (A(xn · · ·x300)(xn · · ·x301)(xn · · ·x311)),

ρθ(xn · · ·x300) = (B(xn · · ·x301)(xn · · ·x311)(xn · · ·x310)),

ρθ(xn · · ·x301) = (C(xn · · ·x311)(xn · · ·x310)(xn · · ·x300)),

ρθ(xn · · ·x311) = (D(xn · · ·x310)(xn · · ·x300)(xn · · ·x301)),

(2.4)

where xi = 1 − xi.

If n is odd, by the embedding σ of Qn, the two kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x311), (xn · · ·x301), (xn · · ·x300))
(2.5)

are facial cycles of this embedding of Qn on the clockwise direction (or counter-clockwise di-

rection). From the definition of θ of FQn, the following four kinds of complementary edges are
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added in the facial cycles (2.5) shown in (a)(b) of Fig.3.

((xn · · ·x310), (xn · · ·x301)); (xn · · ·x300), xn · · ·x311));

((xn · · ·x301), (xn · · ·x310)); (xn · · ·x311), xn · · ·x300)).
(2.6)

xn · · ·x301 xn · · ·x301

xn · · ·x311 xn · · ·x311

xn · · ·x300

xn · · ·x310

xn · · ·x300

xn · · ·x310

(a)

xn · · ·x301 xn · · ·x301

xn · · ·x300 xn · · ·x300

xn · · ·x311

xn · · ·x310

xn · · ·x300

xn · · ·x310

(b)

xn · · ·x301 xn · · ·x301

xn · · ·x300 xn · · ·x311

xn · · ·x311

xn · · ·x310

xn · · ·x300

xn · · ·x310

(c)

xn · · ·x301 xn · · ·x301

xn · · ·x311 xn · · ·x300

xn · · ·x300

xn · · ·x310

xn · · ·x311

xn · · ·x310

(d)

Fig.3 Two kinds of embedding depending on n being odd or even
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As a result, the regions (2.5) of σ are replaced by the following four kinds of 4-regions in

θ of FQn:

((xn · · ·x311), (xn · · ·x310), (xn · · ·x301), (xn · · ·x300));

((xn · · ·x301), (xn · · ·x311), (xn · · ·x300), (xn · · ·x310));

((xn · · ·x300), (xn · · ·x301), (xn · · ·x310), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x311), (xn · · ·x301)).

(2.7)

The other regions are not changed, thus all regions of embedding θ of FQn are all 4-cycles,

and the number of regions is 2n−2(n + 1). Recalled that FQn have 2n vertices, 2n−1(n + 1)

edges. By Euler’s formula, the total genus of θ of FQn for n being odd is (n − 3)2n−3 + 1.

If n is even, by the embedding σ of Qn, the two kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311))
(2.8)

are facial cycles of this embedding of Qn on the clockwise direction (or counter-clockwise direc-

tion). From the definition of θ of FQn, By adding four kinds of complementary edges of (2.6)

in facial cycles (2.8) shown in (c) and (d) of Fig.3, the regions in (2.8) of σ are replaced by the

following two kinds of 8-cycles in θ of FQn:

((xn · · ·x310), (xn · · ·x311), (xn · · ·x300), (xn · · ·x310),

(xn · · ·x301), (xn · · ·x300), (xn · · ·x311), (xn · · ·x301));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x311), (xn · · ·x310),

(xn · · ·x301), (xn · · ·x311), (xn · · ·x300), (xn · · ·x301)).

As a result, the number of regions in θ is less 2n−1 than regions in σ. By Euler’s formula

2n − 2n−1(n + 1) + (2n−2n − 2n−1) = 2 − 2h, the genus h of embedding θ of FQn for n being

even is (n − 2)2n−3 + 1. 2
From Lemmas 2.2 and 2.3, the following theorem is immediately obtained.

Theorem 2.7 The maximum genus of FQn is given by γM (FQn) = (n − 1)2n−2 for n ≥ 3.

Furthermore, γ(FQ2) = 0, γM (FQ2) = 1.
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