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Abstract 
 
New equations for the motion of bodies are derived. The previsions of the theory are: a) if the 
galaxy is a spiral, the plane galaxy is moving in direction of the CMB, like our Milk Way galaxy. 
b) dark matter calculated  from rotation curves in spiral galaxies is less than the actual theory and 
can be zero. This theory use some equations of Special relativity and the concept of non-
instantaneous force.    
 
1. Introduction 
 
  In table 1 we have a comparative between the equations of special relativity (SR) and this theory 
that we call New Newtonian Theory (NNT). 
  Equations (1) to (4), (25) and (53) are the same than SR. Coulomb (47) and gravitational forces 
are different than SR. 
  All equations are derived and explaineds in next next sections. Equations (1) to (4) was derived 
by Lewis (who received 35 nominations for the Nobel prize in chemistry) [1] using Newtonian 
concepts. Equations (25), (47) and (53) are derived in this paper. 
  So, NNT is a theory that uses Newtonian concepts, a preferred frame (CMB) and non-
instantaneous force.    
 
Experiment Special Relat. New Newton. Th. Equ. Sect. 
Mass variation γ0mm =  same        (1) 4 
Kinetic energy ( )12

0 −= γcmk  same (2) 4 

Relation mass-energy 2mcE =  same (3) 4 
Force  

2
).(

cdt
dm vFvvF +=

same (4) 5 

Time dilation γ0tt Δ=Δ  same (25) 8.2 

Transv. Doppler eff. γ/off =  same (53) 10 
Transformations:  
position, veloc., time 

Lorentz Galilean xx 7, 8, 
9.2 

Coulomb force transf. γyy FF ='  different (47) 7, 
9.2.3 

Force propagation xxx non-instantaneous xx 7, 8 
Michelson-Morley 0=δ  open question xx 11 
 
Table 1 - Comparison between equations of special relativity and new Newtonian theory. 
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2. Previsions of the theory 
 
 The previsions of NNT are: 
a) If the galaxy is a spiral, the plane galaxy is moving in direction of the CMB, like our Milk Way 
galaxy. From [2] we have: “It is in a direction aligned with the flattened disk of our galaxy and…” 
  Let us suppose particle M with velocity V  in relation to CMB. Particle at position 1 has 
velocity  in relation to 

m
u M and tangential to a circle of radius r , uV > , Vc >> and mM >> . 

For others positions of the circle from 2 to 6 with same velocity u  and radius r  we have Fig.1. 
  The gravitational forces in  from positions 1 to 6 are: m 654321 FFFFFF <<<<< . The 
equations of forces are in sections (5), (7) and (8). 
  So, the movement is a spiral, see Fig. 2. 
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Fig. 1 – Particle M with velocity V  in relation to CMB and particle  with rotational velocity  
in relation to 
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Fig. 2 – Rotation velocity  in spiral galaxy.  ab uu >
 
b) Dark matter calculated from rotation curves of spiral galaxy. 
  From sections (7) and (8) we have , see Fig. 2, where u  is the rotational velocity in 
relation to M and from section 7 we have 

ab uu >
uVv += .   

  An observer measures  and . From Fig. 2 we have ayu byu aay uu ≅  and . So, 

dark matter is smaller than the actual theory or can be zero. 

222
bxbby uuu −=
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3. Postulates and work assumptions 
 
a) The velocity of light is a constant  with respect to the preferred frame, independent of the 
direction of propagation, and of the velocity of the emitter. 

c

b) An observer in motion with respect to the preferred frame  will measure a different velocity of 
light, according to Galilean velocity addition. 
c) The preferred frame is the cosmic microwave background (CMB), and the velocity of the earth 
with respect to the CMB is approximately 390 km/s (0.0013c).  
d) According to Zeldovich, at every point in the Universe, there is an observer in relation to which 
microwave radiation appears to be isotropic. 
e) A Coulomb force is generated by an electric wave. A gravitational force is generated by a 
gravitational wave. The electric and gravitational waves have constant velocities c  with respect to 
the preferred frame, independent of the direction of propagation, and of the velocity of the emitter. 
 
4. Mass variation, kinetic energy and mass-energy relation 
 
  Using the concepts of  Newtonian physics, Lewis (who received 35 nominations for the Nobel 
prize in chemistry) [1] derived the equations for mass variation, kinetic energy and mass-energy.  
  Equations (1), (2) and (3) are, respectively, equations  (15), (16) and (18) in [1].  
  The following is from [1]: “Recent publications of Einstein and Comstock on the relation of mass 
to energy has emboldened me to publish certain views which I have entertained on the subject and 
which a fews years ago appeared purely speculative, but which have been so far corroborated by 
recent advances in experimental and theoretical physics… In the following pages I shall attempt to 
show that we may construct a simples system of mechanics which is consistent with all known 
experimental facts, and which rests upon the assumption of the truth of the three great conservation 
laws, namely, the law of conservation of energy, the law of conservation of mass, and the law of 
conservation of momentum”. 
 
5. Force 
 
    From equations (1), (2) and (3), we derive the equation of force: 
 

2
).()(

cdt
dm

dt
md vFvvvF +== ,                                                             (4) 

 

2

2

c
Fv

dt
dvmF xxx

x += ,                                                                             (5) 

2

2

c
Fv

dt
dv

mF yyy
y += , 

 
  Substituting (1), we have: 
 

dt
dvmF x

xox 2γγ=                                                                                   (6) 

dt
dv

mF y
yoy 2γγ= ,                                             
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  Where , are respectively the particle mass, velocity of the particle in relation to the preferred 
frame, 

m v
cv=β , 211 βγ −= , 211 xx βγ −= and 211 yy βγ −= ,  is the particle rest 

mass in relation to the preferred frame. 
0m

  The earth has velocity cV 0013.0=  in relation to the preferred frame, the mass of the electron 
measured in earth is 31' 101093897.9 −= xmo  Kg and 22' /1 cVmm oo −= = 

Kg.  31101093973.9 −= x
 
6. Inertial and non-inertial frames 
 
From (1) to (6), Galilean transformations, non-instantaneous force, preferred frame  (cosmic 
microwave- background) and frame , we can obtain the equations for the motions of bodies. 

S
'S

    
7.  Inertial frames and non-instantaneous force 
 
  Suppose two inertial frames (  and ), one particle without acceleration (charge Q , mass S 'S M )  
and one particle with acceleration (charge , mass ). q m
  S  is the preferred frame (CMB) and  has constant velocity V  in relation to  and parallel to 
the 

'S S
x  axis. The velocity of  is v in relation to . q S

  Charge  is at rest in  (it is an approach for Q 'S mM >>  and  or  andqQ ≥ qQ >> mM ≥  ); 
the frames and particles are illustrated in Figure 3. 
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Figure 3 – Inertial frames S ,  and particles . 'S Qq,
 
  At time , charge  emits an electric wave front that reaches charge  at time .  At time , 

charge Q  emits an electric wave front that reaches charge  at time , and so forth. The electric 
wave has velocity c  in relation to . 

0t Q q 1t 1t
q 2t

S
  For constant 0>V , from Galilean transformations, we have: 
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'xVtx +=                                                                                             
'yy =                                                                                                           (7) 

 'tt =     (see discussion of time dilation in Section 8.2, Equation (25)), 
 

'xtVRx +Δ= ,                                                                                    (8)                                                                   
 
where tΔ  is the time interval in which the force travels distance  and R tcR Δ= , 
 

'yyRy ==                                                                                        (9) 

'' xBRx
c
RVRx +=+= , 

 
and 
 

2

222

1
)1('''

B
ByxBx

R
−

−+±
= ,                                                           (10)                                    

 
  where . cVB /=
 
  The non-instantaneous Coulomb force in  is: q
 

34 R
RqQF x

o
x πε
=                                                                                      (11) 

34 R

RqQF y

o
y πε
= .                                                                                      

 
Equating (6) and (11) yields the folowing differential equations: 
 

3
2

0 4 R
RqQ

dt
dv

m x

o

x
x πε

γγ =                                                                        (12)       

3
2

0 4 R

RqQ
dt

dv
m y

o

y
y πε

γγ =                                                                   

 
  Multiplying and dividing the first term of (12) for , and from 'dx 'xx dvdv = , we have: 
 

∫∫ ±= '
4 3

''2
0 dx

R
RqQdvvm x

o
xxx πε

γγ                                                        (13) 
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∫∫ ±= '
4 3

''2
0 dy

R

RqQdvvm y

o
yyy πε

γγ ,                                                         

where (+) is a repulsive force and (-) is an attractive force.  

  The differential  equation is second-order and requires two integrations.  

  In the first integration, we have: 

)'(' xfvx =                                                                                        (14) 

)'(' yfvy = .   

  In the second integration, we have: 

( )tfx ='                                                                                             (15) 

( )tfyy ==' . 
 
7.1 -  Gravitational force 

  The non-instantaneous gravitational force in , from (12) substituting q oqQ πε4  for GmM  

where γomm = , VoMM γ= , 2211 cv−=γ  and  2211 cVV −=γ  is: 

300
2

0 R
R

MGm
dt

dv
m x

V
x

x γγγγ =                                                       (16) 

and                                                  

30
2

R
R

GM
dt

dv x
V

x
x γγ =                                                                    (17) 

where 2211 cVV −=γ .  
 
   For 0=V , we have an instantaneous force ( rR = ). From (9) and (10), we have: 
 

'xxRx ==                                                             

2'2' yxR +=                                                                              (18) 

30
2

R
R

GM
dt

dv xx
x =γ . 
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8.  Non-inertial frame and non-instantaneous forces 
 
 a) We have one preferred frame ( ) and one non-inertial frame ( ). Particle Q  is at rest in , 
and  is accelerating in relation to . 

S 'S 'S
q 'S

 b) Let us suppose the particular case of repulsive forces between two equal particles (same mass 
and same charge q ). We can make a mathematical construct with: two inertial frames ( 'm ,SS ) 

and two particles with acceleration between them. The particles have velocity equal in modulus 
but with inverse  directions. 

q
y

  Thus, cases a) and b) are similar and mathematically equal; the calculated values of tFvR ,,,  and 
others are the same when calculated in relation to .  S
  The velocity of 'S  in relation to S  is constant, and 0>V . We consider only the Coulomb force. 
(Fig. 4). 
 

v1

2v

 
 
Figure 4 – Non inertial frame - Mathematical construct using two inertial frames ( , ) and two 
particles with acceleration between them. The particles have velocity equal in modulus but with 
inverse y directions. For  to , the particles haves no acceleration; for , the particles 
accelerate in relation to  and . 

S 'S
q

ot 1t 1tt >
S 'S

 
8.1  From  to  - First sequence ot 1t
 
  In this time interval, the particles have no acceleration, and the trajectories are parallel.  
This is an approach, see Fig. 5. 
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Figure 5 – Trajectories of  the two particles . In the time interval time  to , the trajectories 
are  approximately parallel. 

q ot 1t

 
  The initial velocity of the particles q areV , which is parallel to x , 'x . 
  From Galilean transformations, we have: 
 

Vtx =                                                                                             
'yy =                                                                                               (19) 

'tt =          (see discussion of time dilation in Section 8.2, Equation (25)). 
   
From Fig. 4, we have: 
 

tcR Δ= ,                                                                                            (20) 
 
where  is the time interval in which the force travels distance . ottt −=Δ 1 R
 

tVRx Δ=                                                                                           (21) 
'yyRy == , 

 

2

'

1 B
yR
−

=                                                                                     (22) 

 

2

'
1

1 1 B

y
R

−
= , 

 
and 
 

11 BRRx =                                                                                        (23)                                                             

 . 11 yRy =

 
8.2  Time dilation 
 
  From (22) and dividing both terms by , we have: c
 

2

'
11

1
1

Bc
y

c
R

−
=                                                                            (24) 
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and 
 

21
1

1 B

t
tt

c
R a

o −
=−= .                                                                  (25) 

 
  Equation (25) expresses time dilation, where cyta

'
1=  (for 0=V ). The equation is only 

applicable to the first sequence. For the others sequences, the time dilation differs from equation 
(25). This subject should be further explored. Thus, time dilation in new Newtonian physics is due 
to the variation of forces (inside the atom) in relation to the velocity of the atom ( v ). For the 
example above, we have 2

1 1 β−=− ao ttt  and cv=β . 
 
8.3   From  to  - Second sequence 1t 2t
 

'xVtx +=                                                                                             
'yy =                                                                                                (26) 

'tt =  
 
  From Fig. 4, we have: 
 

tcR Δ= ,                                                                                           (27) 
 

'xtVRx +Δ=                                                                                  (28)                                                                  
'yyRy == , 

 
where , and 12 ttt −=Δ
 

2

222

1
)1('''

B
ByxBx

R
−

−+±
= .                                                        (29)                                              

  From (29) and differential equation (13), in the first integration, we have: 

12
)'('

ttx xfv −=                                                                             (30) 

    ')'(
12

'
tty yfv −=

  In the second integration, we have: 

                                                                               (31) 
12

)(' ttx tfx −=

 ,    
12

)(' tty tfy −=
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  and, at time , we have:  2t

                                                     
12

)( 2
'
2 ttx tfx −=

          
12

)( 2
'
2 tty tfy −=

                                                                              (32) '
222 xVtx +=

                          '
22 yy =

   '
222 xBRRx +=

 .                   22 yRy =

 
8.4  From  to  - Third sequence 2t 3t
 

'xVtx +=                                                                                             
'yy =                                                                                                (33) 

'tt =  
   
From Fig. 4, we have: 
 

tcR Δ= ,                                                                                            (34) 
 
where , 23 ttt −=Δ
  

'2' xxtVRx −+Δ=                                                                           (35) 

112
)( y

c
RtfyR ttyy −−+= − . 

 
  For example, for  (Figure 6), we have:  1.2R
 

11.11.21.11.21.2 yyyyyRy −+=Δ+= ,                                          (36) 

 

where  

12

1.2
1.21.1

tt
y c

R
tfy

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . 
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Figure 6 -  Function ( )

12
1.21.2 tty cRtf

−
−  

 

( )
2

2

11
'2'2'

2
'
2

'2'22'
2

''
2

1

)()(22)1(22'
1212

B

ycRtfycRtfyyxxxxBBxBxBxBx

R
ttytty

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −−+⎟

⎠
⎞⎜

⎝
⎛ −−−−+−−−−+−±−

=
−−

   
(37) 

From (37) and differential equation (13), in the first integration, we have: 

 

23
)'('

ttx xfv −=                                                                                (38) 

23
)'('

tty yfv −= ,   

  In the second integration, we have: 

23
)(' ttx tfx −=                                                                                  (39) 

 , 
23

)(' tty tfy −=

  and, at time , we have:  3t

23
)( 3

'
3 ttx tfx −=   

23
)( 3

'
3 tty tfy −=         

                                                                                   (40) '
333 xVtx +=

'
33 yy =                         

  '
2

'
333 xxBRRx −+=
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1233 yyyRy −+= .    

8.5  From  to  - Fourth sequence 3t 4t
 

'
3

' xxtVRx −+Δ=                                                                         (41) 

123
)( ycRtfyR ttyy −−+= − , 

and, at time , we have:  4t

34
)( 4

'
4 ttx tfx −=   

34
)( 4

'
4 tty tfy −=         

                                                                                (42) '
444 xVtx +=

'
44 yy =                         

'
3

'
444 xxBRRx −+=  

1344 yyyRy −+= .     

The same calculations can be repeated for the following sequences.  
 

9. Coulomb force – comparative between SR and NNT 

  We compared the simple cases of Coulomb forces betweem SR and NNT. 

9.1  SR transformation of Coulomb force 

  Let us suppose two inertial frames , , two charged particles with velocityS 'S q V constant in 
relation to and at rest in relation to , whereS 'S x is parallel to , see Fig.7. 'x

  The SR transformation of forces for this simple case are: 

0' == xx FF                                                                                        (43) 

2
2

'
11

4
B

r
qqF

F
oV

y
y −==

πεγ
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Fig. 7 – SR force transformation. Two charges with velocityq V in frame and at rest in frame  S 'S
 
9.2 NNT  transformation of Coulomb force 
 
  In the NNT the Coulomb force is calculated in the preferred frame S and we use the Galilean 
transformations to calculate in another frame the position , velocity, etc. ),,( zyx
  The simplest cases are described below. 
 
9.2.1 – The more simple example: 0=V  
 
  Suppose particle at rest in CMB (Q 0=V ) and particle with rotational velocity in relation 
toQ . 

q v

  The force is instantaneous because Rr =  where r is the distance between the particles and R  is 
the distance travelled by the Coulomb wave. 
 

r =R

Q

q

V=0

v

 
 
Fig. 8 – Particle  at rest in CMB and with rotational velocity in relation toQ  Q q v
 

2
1

4 r
qQF

oπε
=                                                                              (44) 

 
9.2.2 -  0>V  
 
   Let us suppose with velocity 'S 0>V  and constant in relation to S , particleQ at rest in ,  
with rotational velocity in relation to  and

'S q
'v Q Vvv += ' , see Fig. 9. 
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Fig. 9 – Particle  at rest in frame , with velocity V in relation toQ 'S 'S S and particle with 
rotational velocity in relation toQ . 

q
'v

  
  The force in  is: q
 

2
1

4 R
qQF

oπε
=                                                                                      (45)    

 
where  comes from (10). R
 

2

222

1
)1('''

B
ByxBx

R
−

−+±
=                                                            (46) 

 
 
9.2.3 – Coulomb force between two frames 
 
  Let us suppose the case studied in the Section 9.1 and where  is the CMB. S
  From Fig. 10 and Section 8.1 for time we have: 1t
 

( 2
22 11

4
1

4
B

r
qq

R
qqF

oo

−==
πεπε

)                                               (47) 

 
21 BFFsinFy −== ϕ  

 
FBFFx == ϕcos  
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Fig. 10 – NNT Coulomb force – two particles with velocity q V  (at time ) in frame 1t S  and at 

rest in . 'S
 
  The forces are calculated in frame S and we transfom to the velocity, position, etc., see Sect. 
8. 

'S

   For NNT we have the forces , , and different from zero and for SR we have 

, see Sect. 9.1.  
xF '

xF yF '
yF

0' == xx FF
 
10. Doppler effect 
 
10.1 Transverse Doppler effect 
  
  From section 8.2 we have: “ time dilation in new Newtonian physics is due the variation of forces 
(inside the atom) in relation to the velocity of the atom”. 
  If the atom and observer are at rest in the preferred frame S (CMB), the internal Coulomb 
potential energy is: 
 

oo
o r

qQU 1
4πε

=                                                                               (48) 

 
where  is the distance between the nucleus and the electron (for example the hydrogen) and the 

emitted frequency is . 
or

of
  If the atom is at rest in 'S and 'S  is with velocityV  in relation to S , from (22) we have: 
 

211
4

BU
R

qQU o
o

−==
πε

                                                        (49) 

 
  And we have the frequency proportional to the Coulomb potential energy. Substituting U  by  
in (49) we have: 

f
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21 Bff o −=⊥                                                                            (50) 

 
where is the transverse Doppler effect measured by the observer at rest in⊥f S and perpendicular 

to the hydrogen velocity and is the observed frequency with the atom and observer at rest in of S . 
   The longitudinal Doppler effect in S is: 
 

B
Bf

B
f

f o
±

−
=

±
= ⊥

1
1

1

2

l
                                                                           (51) 

 
    The sign is positive (negative) when 'S  (source) is moving away from (towards) S . 

   If we have another frame "S with same velocity thatV 'S  we have the longitudinal frequency 
measured in "S : 
 

( ) ( ) 2
2

'' 11
1
11 BfB

B
BfBff oo −=±

±
−

=±=
ll

                (52) 

 
       The sign is negative (positive) when ''S  (observer) is moving away from (towards) S . 

   The situation of 'S and "S is the same because the atom and observer are at rest in relation to 
'S and "S . So, the frequency measured by the observer at rest in 'S  for any position (transverrsal, 

longitudinal, etc) from (52) is: 
 

2' 1 Bff oo −=                                                                               (53) 
 
 where  is the frequency measured by the observer and atom at rest in '

of 'S  (for any position of 

the observer in relation to atom) and is the frequency measured by the observer and atom at rest 
in 

of
S . 

 
10.2 Longitudinal Doppler effect 
 
  Let us suppose a distant star source with velocity away from CMB and emitts from hydrogen 
atom. The observer is at rest in earth and in direction of the star with velocity 

v
V towards from 

CMB. S , 'S and ''S are respectively the CMB, earth and star, see Fig. 11. 
 
S’ (earth)

fl (star
  measured)

fo’ (hydrogen
     at rest)

S” (star)

fl’ (star
  measured)

fo” (hydrogen
     at rest)

S (CMB)

(hydrogen
     at rest)

fo

V v

 
 
Fig. 11 –  Longitudinal Doppler effect. Star frequency measured by an observer at rest in earth.  
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   From (53) we have: 
 

2' 1 Bff oo −=                                                                                  (54) 
 

2'' 1 β−= oo ff                                                                                  (55) 
 
   Where , and  are the hydrogen frequency measured with the atom and observer at rest 

respectively in 
of '

of ''
of

S (CMB), 'S  (earth) and ''S  (star). The frequencies and  are the transverse 
Doppler effect. 

'
of ''

of

  The longitudinal star frequency at CMB is: 
 

β+
=

1

''
off

l
                                                                                           (56) 

 
  The longitudinal star frequency measured in earth is: 
 

( Bff += 1'
ll

)                                                                                      (57) 

  Substituting (54), (55) and (56) in (57) we have: 

2
''

1
1

1
1

B
Bff o −

+
+
−

=
β
β

l
                                                                    (58) 

   and are respectively the longitudinal star frequency measured in earth with observer at rest 
in earth and hydrogen frequency measured in earth with the atom and observer at rest in earth. 

'
l

f '
of

  For we have the same equation of SR longitudinal Doppler effect.  0=B
 
11.  Michelson-Morley experiment and new Newtonian physics 
 
  The Michelson-Morley experiment [3] involves one semi-transparent mirror (half-silvered) in 
which the incident ray is refracted, reflected and divided into two rays ( and ), as shown in 
Fig. 12. 

ar br dr

ar br

dr

glass

M

v
ϕ
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Figure 12 - Semitransparent mirror M with velocity V  as well as, incident ray ( ), the refracted-
reflected-refracted ray ( ) and refracted-refracted ray ( ). 

ar

dr br
 
   For complete calculations of the trajectory and displacement of the interference fringes, we must 
study the equations of refraction and reflection in vacuum and in glass. 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope.  
 
11.1  Reflection in vacuum 
 
 In the Supplement of the MM paper [3], the equations of ray reflections in a moving  
mirror are shown in relation to a preferred frame. The equations in relation to the CMB are the same. 
  From [3]:  
“Let  (Fig. 13) be a plane wave falling on the mirror at an incidence of . If the mirror is at 
rest, the wave front after reflection will be . Now suppose the mirror to move in a direction which 
makes an angle 

ab m o45
ae

ϕ  with its normal, with velocity V . Let c  be the velocity of light in the ether 
supposed stationary, and let ed  be the increase in the distance the light has to travel to reach d .” 
 

θ

a

b

de

m

vacuum

Vϕr̂

î

 
 
Fig. 13 – Reflection in vacuum. Incident and reflection plane waves 
 
  Michelson and Morley also demonstrated the following equation: 
 

c
V

ad
ae ϕθ cos21

2
45tan −==⎟

⎠
⎞

⎜
⎝
⎛ −o  .                                      (59) 

 
  Below, we have an equivalent and more general equation for any angle of incident rays. From 
Equations (5) and (6) in the work of Kohl [4], we have: 
 

i
iBB

Br ˆtanˆseccos2cos1
cos1ˆtan

22

22

ϕϕ
ϕ

±+
−

= ,                                 (60) 

 
where andî r̂ are respectively, the angles of incidence and reflection in relation to the normal of the 
mirror. Additionally, , where V  is the velocity of the mirror in relation to the CMB, and cVB /= ϕ  is 
the angle of V with respect to the normal of the mirror. 
    The sign is negative (positive) when the mirror is moving away from (towards) the incident ray. 
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11.2  Reflection in glass 
 
  For : 0=V
 

ccu 658.0
52.1

== ,                                                                         (61) 

 
 where u  is the velocity of light inside the glass in relation to the CMB and glass with 0=V .  
 
   For : 0>V
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CMB Vuu                                                                       (62) 

 
and                                                                                                     
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⎛
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c
uVu

c
uVuu yyxxCMB ,                           (63) 

 
where  is the velocity of light inside the glass in relation to the CMB, V is the velocity of 

glass in relation to the CMB and 
CMBu

( )221 cuV −  is the Fresnel drag.  
  In addition, 
 

Vuu −= CMBglass ,                                                                       (64) 

 
 where  is the velocity of light inside the glass in relation to glass. glassu
 

a

b

de

m

glass

Vϕ

î

r̂

 
 
Figure 14 – Reflection in glass. Incident plane wave and reflected non-plane wave. 
 
  As shown in Fig. 14, after reflection, we have a non-plane wave.   
  The equations of reflection in glass must be further developed. 
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11.3  Refraction in vacuum-glass for V = 0 
 
   From Snell’s law of refraction we have: 
 

00 sin52.1sinsin
∧∧∧

== ff
u
ci .                                                           (65) 

 
11.4  Refraction in vacuum-glass for V > 0 
 
  Additionally, 
 

∧∧

= f
u

ci
CMB

sinsin ,                                                                           (66) 

 
  where i , and  are the angles, respectively, of incidence, refraction for  and refraction 
for . The angles are in relation to the normal of the glass (Fig. 12). 

ˆ
0f̂ f̂ 0=V

0>V
 
11.5  The Michelson-Morley experiment 
 
  The Michelson-Morley experiment requires one semi-transparent mirror, 16 mirrors, a lens and a 
telescope. In Fig. 15, we substitute 2 mirrors for 15 mirrors. 
 

M

M1

M2

S

l

T
 

 
Figure 15 – Michelson-Morley experiment with one semi-transparent mirror, 2 mirrors, a lens and 
a telescope. 
 
  In Fig. 15, S, l, M, M1, M2 and T are, the light source, lens, semi-transparent mirror, mirror 1, 
mirror 2 and telescope, respectively. 
  For calculus simplification, we substitute for lens l the sun or star light, which has wave front that 
is practically planare when reaching the earth. The interchange between sun or star lights and 
laboratory sources in no way alters the results [5-7]. 
  For the telescope, we substitute screen B, as shown in Fig. 16. 
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Figure 16 – Michelson-Morley experiment with sun light and secreen B. Panel (a) shows the x-z 
plane, while (b) shows the x-y plane. 
 
   M3 is a mirror to capture sun or star light. 
   The displacement of interference fringes must be calculated using the equations above and 
further  development of the complete equations is needed. 
. 
Conclusion 
 
  New equations for the motions of bodies are derived for inertial and non-inertial frames using: 
a) some special relativity equations (but derived from Newtonian physics) 
b) non-instantaneous forces 
a) Galilean transformations and a preferred frame (the cosmic microwave background). 

   The previsions of the theory are: a) if the galaxy is a spiral, the plane galaxy is moving in 
direction of the CMB, like our Milk Way galaxy. b) dark matter calculated  from rotation curves in 
spiral galaxies is less than the actual theory and can be zero. 
  The same special relativity equations of mass variation, kinetic energy and mass-energy relations 
are derived by Lewis (who received 35 nominations for the Nobel prize in chemistry) using 
Newtonian concepts and the laws of conservation of mass, energy and momentum. 
  Time dilation and transverse Doppler effect are the same that the SR and are derived by our new 
Newtonian theory. 
  Coulomb and gravitational forces are different from the SR and are derived again, by our new 
Newtonian theory. 
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