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INTRODUCTION 

 

 

 

This collection of papers brings together several articles regarding primes, submitted by 

the author to the preprint scientific database Vixra. Apparently heterogeneous, these articles 

have, objectively speaking, a thing in common: they are all directed toward the same goal – 

discovery of new ordered patterns in the “undisciplined” set of the prime numbers, using the 

same means – the old and reliable integer numbers. Subjectively speaking, these papers have, of 

course, another thing in common: the patterns coming from the very mathematical thoughts and 

obsessions of the author himself: such “mathematical thoughts and obsessions” are: trying to find 

correspondends of the patterns found in sequences of Fermat pseudoprimes (a little more 

“disciplined” class of numbers than the class of primes) in sequences of prime numbers; trying to 

find chains of consecutive or exclusive primes defined by a recurrent formula; trying to show the 

importance of classification of primes in eight essential subsets (the sequences of the form 30*k 

+ d, where d has the values 1, 7, 11, 13, 17, 19, 23, 29) etc. 

This collection of articles seeks to expand the knowledge on some well known classes of 

primes, like for instance Sophie Germain primes, but also to define new interesting classes of 

primes, like for instance ACPOW chains of primes. 

At least in one article, namely “On an iterative operation on positive composite integers 

which probably always conducts to a prime”, the author rediscovered a notion already known; in 

the referred case is about the sequence of primes reached by the operation of iterative 

replacement of a number by the concatenation of its prime factors (see  the sequence A037272 in 

OEIS). We chose to still keep the article in this collection of papers because it treats, beside the 

primes, some issues about Fermat pseudoprimes. 
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SUMMARY 
 

 

 

1. On a new type of recurrent sequences of primes - ACPOW chains 
2. Few recurrent series based on the difference between succesive primes 

3. A possible unimportant but sure interesting conjecture about primes 

4.  A formula based on twin primes that generates chains of primes in arithmetic 

progression 

5.  On an iterative operation on positive composite integers which probably always 

conducts to a prime 

6.  Four conjectures about three subsets of pairs of twin primes 

7.  Twenty-four conjectures about “the eight essential subsets of primes” 
8.  Three conjectures about an infinity of subsets of integers, each with possible infinite 

terms primes or squares of primes  

9.  Pairs of primes or pseudoprimes that generate an infinity of primes or pseudoprimes 

via a certain recurrence relation 

10.  Three conjectures about semiprimes inspired by a recurrent formula involving 2-

Poulet numbers 
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1. On a new type of recurrent sequences of primes - ACPOW chains  
 

 

Abstract. An interesting type of recurrent sequences of primes which could eventually 

lead to longer chains of successive primes than known Cunningham chains or CPAP’s . 

Few conjectures including a stronger version of Legendre’s conjecture and one regarding 

the Fermat primes. A classification of the set of primes. 

 

 

I was studying the numbers of the form b = 9 + 6*(10*a + 1), where 10*a + 1 prime, when I 

noticed that, for many of these numbers b and for many consecutive values of c, the number b – 

2^c is a prime. 

 

For instance, for a = 1 we get b = 75 and 75 – 2 = 73 (prime), 75 – 2^2 = 71 (prime), 75 – 2^3 = 

67 (prime), 75 – 2^4 = 59 (prime), 75 – 2^5 = 43 (prime), 75 – 2^6 = 11 (prime), 75 – 2^7 = -53 

(prime in absolute value), 75 – 2^8 = -181 (prime in absolute value). 

 

This is how I discovered the potential of the recurrent sequences of primes of the type p0 + 2^x = 

p1, p1 + 2^(x – 1) = p2 ,..., px-1 + 2 = px, where p0, p1, ..., px are integers, primes in absolute value. 

 

Descending ACPOW chains 

 

I so define a descending proper ACPOW chain of primes the recurrent sequence of primes that I 

expose it above.  

 

Note: I name these chains of primes ACPOW-k chains, abbreviation from chains of k primes 

obtained “adding consecutive powers”. 

 

Example: the sequence -181, -53, 11, 43, 59, 67, 71, 73 is a descending ACPOW-8 chain of 

primes (in absolute value), because -181 + 2^7 = -53, -53 + 2^6 = 11, 11 + 2^5 = 43, 43 + 2^4 = 

59, 59 + 2^3 = 67, 67 + 2^2 = 71, 71 + 2 = 73. It can be seen that the numbers of the terms from 

the sequence is equal to the power of 2 which we add to the first term plus 1.  

 

I also define a descending improper ACPOW chain of primes the recurrent sequence of primes of 

the type p0 + 2^x = p1, p1 + 2^(x – 1) = p2 ,..., px-y + 2^y = px-y+1, where 0 < y < x.  

 

Example: the sequence -1433, -409, 103, 359, 487 is a descending improper ACPOW-5 chain of 

primes (in absolute value), because -1433 + 2^10 = -409, -409 + 2^9 = 103, 103 + 2^8 = 359, 

359 + 2^7 = 487.  

 

Note: I name these chains “improper” because the last term is not equal to antepenultimate one 

plus 2, but plus a power of 2 bigger than 1 (indeed, in the example above, 487 + 2^6 is no longer 

prime). 

 

I list below few of these chains that I discovered, with a minimum lengh 5 and maximum length 

8 (because of the special nature of the number 1, I listed also the chains that include it): 

 

Descending proper ACPOW chains: 

: 1423, 1439, 1447, 1451, 1453; 

: -181, -53, 11, 43, 59, 67, 71, 73. 
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Descending improper ACPOW chains: 

: -769, -257, -1, 127, 191, 223, 239; 

: -829, -317, -61, 67, 131, 163, 179; 

: -1433, -409, 103, 359, 487. 

 

Note: It can be seen the chains I exposed can’t be extended neither before the first term nor 

further than the last one, so they are “complete” (in the same manner a Cunningham chain is 

“complete”); a descending proper ACPOW chain is complete “to the right” by definition. 

 

Comment: I generalize these chains to the sequences as the ones I described above but allowing 

beside the powers of 2 the adding with the powers of any even number, in both proper/improper 

versions. 

 

We note these chains with the abbreviation ACPOW(m)-k, meaning “a chain of k primes 

obtained adding consecutive powers of m”. With this notation, an ACPOW-k is equivalent to an 

ACPOW(2)-k. 

 

Example: The sequence 11, 1307, 1523, 1559 would be a descending improper ACPOW(6)-4 

chain, cause 11 + 6^4 = 1307, 1307 + 6^3 = 1523, 1523 + 6^2 = 1559 (and 1559 + 6 is no longer 

a prime, neither 11 – 6^5 is not a prime in absolute value). 

 

Ascending ACPOW chains 

 

I define an ascending proper ACPOW chain of primes the recurrent sequence of primes of the 

type p0 + 2 = p1, p1 + 2^2 = p2 ,..., px-1 + 2^x = px. 

 

Note: An ascending proper ACPOW chain is complete (in the sence a Cunningham chain is 

“complete”) “to the left” by definition. 

 

It can be seen that an ascending proper ACPOW-k chain with k > 3 can start only with a prime 

having last digit 7 (if would be 3, the second term would be divizible by 5, it would be 9 the third 

term would be divisible by 5, if would be 1 the forth term would be divisible by 5). If the first 

term is 7, the last digit of the next terms would be 9, 3, 1 and then again 7, 9, 3, 1 repeatedly. 

 

Example: the sequence 17, 19, 23, 31, 47, 79 is an ascending proper ACPOW-6 chain. It can be 

seen that the numbers of the terms from the sequence is equal to the power of 2 which we add to 

the last term plus 1.  

 

I also define an ascending improper ACPOW chain of primes the recurrent sequence of primes 

of the type p0 + 2^x = p1, p1 + 2^(x + 1) = p2 ,..., py-1 + 2^(x + y – 1) = py.  

 

Note: I named these chains “improper” because the second term is not equal to first one plus 2, 

but plus a power of 2 bigger than 1. Such a chain is complete to the left if p0 – 2^(x – 1) is not a 

prime.  

 

It can easily be proved that there are just the following posibilities for an ascending improper 

ACPOW chain to have the length bigger than 3: 
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: If the first term has the last digit 1, then the power of 2 added to it must be of the form 4*i; also 

first term can be only of the form 30*j + 1 (example of such a chain of length 4: 151, 167, 199, 

263); 

: If the first term has the last digit 3, then the power of 2 added to it must be of the form 4*i + 3; 

also first term can be only of the form 30*j + 23 (example of such a chain of length 7: 173, 181, 

197, 229, 293, 421, 677); 

: If the first term has the last digit 7, then the power of 2 added to it must be of the form 4*i + 1; 

also first term can be only of the form 30*j + 17 (example of such a chain of length 5: 617, 1129, 

2153, 4201, 8297); 

: If the first term has the last digit 9, then the power of 2 added to it must be of the form 4*i + 2; 

also first term can be only of the form 30*j + 19. 

 

Comments:  

: I also generalize these chains in the same manner: the sequence 11, 17, 53, 269 is an ascending 

proper ACPOW(6)-4 chain, because 11 + 6 = 17, 17 + 6^2 = 53, 53 + 6^3 = 269; 

I used the terms “proper” and “ascending” to exhaustively define the concept, but it would be 

better that those two terms to be implied and only the terms “improper” and “descending” to be 

mentioned. 

 

Another generalization of ACPOW chains 

 

Note: I define further more ACPOW chains only for “proper” and “ascending” sences, the 

implied ones. 

 

I define an ACPOW(2,n)-k chain of primes the recurrent sequence of k primes: p0, p1 = p0 + 2^n, 

p2 = p1 + 2^(2*n),..., px = px-1 + 2^(x*n). 

 

I define an ACPOW(m,n)-k chain of primes the recurrent sequence of k primes: p0, p1 = p0 + 

m^n, p2 = p1 + m^(2*n),..., px = px-1 + m^(x*n). 

 

Note: With this notation, an ACPOW-k is equivalent to an ACPOW(2,1)-k. 

 

Examples of ACPOW(2,n)-k chains: 

 

ACPOW(2,3)-4: 29, 37, 101, 613,  

where 29 + 2^3 = 37, 37 + 2^(3*2) = 101, 101 + 2^(3*3) = 613; 

ACPOW(2,3)-4: 59, 67, 131, 643. 

 

Quasi-ACPOW chains or QACPOW chains 

 

I define a quasi-ACPOW chain of primes or a QACPOW a proper or improper, ascending or 

descending ACPOW chain but with the difference that the terms of the series are not necessary 

primes but primes or squares of primes. 

 

Examples:  

: 107, 109, 113, 11^2, 137, 13^2, 233, 19^2, 617, 1129, 2153, 4201, 8297 is a QACPOW-13 

(because: 107 + 2 = 109; 109 + 2^2 = 113; 113 + 2^3 = 121; 121 + 2^4 = 137; 137 + 2^5 = 169; 

169 + 2^6 = 233; 233 + 2^7 = 361; 361 + 2^8 = 617; 617 + 2^9 = 1129; 1129 + 2^10 = 2153; 

2153 + 2^11 = 4201; 4201 + 2^12 = 8297); 

 



 6 

: 167, 13^2, 173, 181, 197, 229, 293, 421, 677 is QACPOW-9; 

: 227, 229, 233, 241, 257, 17^2, 353 is a QACPOW-7. 

 

Observations about QACPOW chains and the difference between squares of consecutive primes:  

 

: 5^2, 41, 7^2 

is a descending QACPOW because 25 + 2^4 = 41, 41 + 2^3 = 49 

(incomplete chain, because -199, -71, -7, 5^2, 41, 7^2, 53 is the complete improper chain); 

 

: 7^2, 131, 11^2 

is a descending QACPOW(2,3) because 49 + 2^(3*2) = 113, 113 + 2^3 = 121 

(incomplete chain, because -463, 7^2, 131, 11^2 is the complete improper chain); 

 

: 11^2, 41, 13^2 

is an ascending QACPOW because 121 + 2^4 = 137, 137 + 2^5 = 169 

(incomplete chain, because 107, 109, 113, 11^2, 137, 13^2, 233, 19^2, 617, 1129, 2153, 4201, 

8297 is the complete proper chain). 

 

Conjecture 1: Between any two squares of consecutive odd primes p1^2 and p2^2 there are at 

least p2 – p1 prime numbers that can be written as p1^2 + sum 2^x, where x from i to j, j ≥ i ≥ 1, 

where x, i, j positive integers. 

 

Check for few first primes: 

 

3^2 + 2 = 11 prime; 

3^2 + 2 + 2^2 + 2^3 = 23 prime; 

3^2 + 2^2 = 13 prime; 

3^2 + 2^3 = 17 prime. 

 

Note: between 3^2 and 5^2 there are 4 such primes. 

 

5^2 + 2 + 2^2 = 31 prime; 

5^2 + 2^2 = 29 prime; 

5^2 + 2^2 + 2^3 = 37 prime; 

5^2 + 2^4 = 41 prime. 

 

Note: between 5^2 and 7^2 there are 4 such primes. 

 

7^2 + 2 + 2^2 + 2^3 + 2^4 = 79 prime; 

7^2 + 2^2 = 53 prime; 

7^2 + 2^2 + 2^3 = 61 prime; 

7^2 + 2^2 + 2^3 + 2^4 + 2^5 = 109 prime; 

7^2 + 2^3 + 2^4 = 73 prime; 

7^2 + 2^4 + 2^5 = 97 prime; 

7^2 + 2^6 = 113 prime. 

 

Note: between 7^2 and 11^2 there are 7 such primes. 

 

11^2 + 2 + 2^2 = 127 prime; 

11^2 + 2 + 2^2 + 2^3 + 2^4 = 151 prime; 
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11^2 + 2^2 + 2^3 + 2^4 = 149 prime; 

11^2 + 2^4 = 137 prime. 

 

Note: between 11^2 and 13^2 there are 4 such primes. 

 

23^2 + 2^2 + 2^3 = 541 prime; 

23^2 + 2^2 + 2^3 + 2^4 = 557 prime; 

23^2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 = 653 prime; 

23^2 + 2^4 + 2^5 = 577 prime; 

23^2 + 2^4 + 2^5 + 2^6 = 641 prime; 

23^2 + 2^6 = 593 prime. 

 

Note: between 23^2 and 29^2 there are 6 such primes. 

 

Comment: it’s obviously that between two squares of consecutive primes, p1^2 and p2^2, there is 

not necessarily a prime of the form p1^2 + 2 + 2^2 +...+ 2^h. Example: none of the numbers y = 

23^2 + sum 2^x, where y < 29^2 (i.e. 531, 535, 543, 559, 591, 655, 783) is prime. 

 

Conjecture 2: Between any two squares of odd primes p^2 and q^2, where p < q, there are at 

least (q – p)/2 + 4 prime numbers that can be written as p^2 + sum 2^x, where x from i to j, j ≥ i 

≥ 1, where x, i, j positive integers. 

 

Notes:  

: between 3^2 and 5^2 there are 4 such primes (i.e. 11, 13, 17, 23); 

: between 3^2 and 7^2 there are 6 such primes (i.e. 11, 13, 17, 23, 37, 41); 

: between 3^2 and 11^2 there are 8 such primes (i.e. 11, 13, 17, 23, 37, 41, 71, 73); 

: between 3^2 and 13^2 there are 9 such primes (i.e. 11, 13, 17, 23, 37, 41, 71, 73, 137); 

: between 3^2 and 17^2 there are 12 such primes (i.e. 11, 13, 17, 23, 37, 41, 71, 73, 137, 233, 

257, 263); 

: between 3^2 and 19^2 there are 12 such primes (i.e. 11, 13, 17, 23, 37, 41, 71, 73, 137, 233, 

257, 263). 

 

Conjecture 3: Between any two squares of consecutive numbers a^2 and (a + 1)^2 there are at 

least 2 prime numbers that can be written as a^2 + sum 2^x, where x from i to j, j ≥ i ≥ 1, where 

x, i, j positive integers, if a is odd or can be written as (a + 1)^2 – sum 2^x, where x from i to j, j 

≥ i ≥ 1, where x, i, j positive integers, if a is even. 

Comment: this is a stronger version of Legendre’s conjecture. 

 

Check for few first consecutive numbers and few randomly chosen ones: 

 

3^2 - 2 = 7 prime; 

3^2 – 2^2 = 5 prime. 

 

Note: between 2^2 and 3^2 there are 2 such primes. 

 

3^2 + 2 = 11 prime; 

3^2 + 2^2 = 13 prime. 

 

Note: between 3^2 and 4^2 there are 2 such primes. 
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5^2 - 2 = 23 prime; 

5^2 – (2 + 2^2) = 19 prime. 

 

Note: between 4^2 and 5^2 there are 2 such primes. 

 

5^2 + 2 + 2^2 = 31 prime; 

5^2 + 2^2 = 29 prime. 

 

Note: between 5^2 and 6^2 there are 2 such primes. 

 

7^2 - 2 = 47 prime; 

7^2 – (2 + 2^2) = 43 prime. 

 

Note: between 6^2 and 7^2 there are 2 such primes. 

 

23^2 + 2^2 + 2^3 = 541 prime; 

23^2 + 2^2 + 2^3 + 2^4 = 557 prime. 

 

Note: between 23^2 and 24^2 there are 2 such primes. 

 

561^2 + 2 = 314723 prime; 

561^2 + 2 + 2^2 +...+ 2^9 = 315743 prime. 

561^2 + 2^3 + 2^4 + 2^5 = 314777 prime. 

561^2 + 2^7 + 2^8 + 2^9 = 315617 prime. 

 

Note: between 561^2 and 562^2 there are 4 such primes. 

 

Comment: we could introduce the notion “general”, and note the new series with 

GACPOW(m,f(x)), for the series such that were already defined but where the exponents of 2 (or 

of a number m) are not the consecutive numbers 1, 2, 3, (...) neither the consecutive products  

1*n, 2*n, 3*n, (...), but consecutive values of a bijective function f(x), where x and f(x) are 

positive integers. 

 

ACPOW pairs of primes 

 

I name an ACPOW pair of primes two primes of the form:  

[p + 2^m – 2, p + 2^n – 2], where p prime and n > m > 0. 

 

Observations:  

 

: for p = 3 the pair becomes [2^m + 1, 2^n + 1] so the only terms of the pair can be only Fermat 

primes; as the only known Fermat primes are 3, 5, 17, 257, 65537, we have the only known 

ACPOW pairs of primes having the first term 3: [3,5], [3,17], [3,257], [3,65537]; of course, 

[5,17], [5,257], [5,65537], [17,257], [17,65537], [257,65537] are also ACPOW pairs of primes; 

 

: for p = 5 the pair becomes [2^m + 3, 2^n + 3] and the first few ACPOW pairs of primes having 

the first term 5, generated for p = 5, are: [5,7], [5,11], [5,19], [5,67], [5,131], [5,4099]; 
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: for p = 7 the pair becomes [2^m + 5, 2^n + 5] and the first few ACPOW pairs of primes having 

the first term 7, generated for p = 7, are: [7,13], [7,37], [7,2053], [7,140737488355333], 

[7,9007199254740997]; 

 

: for p = 11 the pair becomes [2^m + 9, 2^n + 9] and the first few ACPOW pairs of primes 

having the first term 11, generated for p = 11, are: [11,13], [11,17], [11,41], [11,73], [11,137], 

[11,521], [11,1033], [11,262153], [11,8388617]; 

 

: for p = 13 the pair becomes [2^m + 11, 2^n + 11] and the first few ACPOW pairs of primes 

having the first term 13, generated for p = 13, are: [13,19], [13,43], [13,139], [13,523], 

[13,32779], [13,8388619]. 

 

: for p = 17 the pair becomes [2^m + 15, 2^n + 15] and the first few ACPOW pairs of primes 

having the first term 17, generated for p = 17, are: [17,19], [17,23], [17,31], [17,47], [17,79], 

[17,271], [17,1039], [17,2063], [17,4111]. 

 

Properties of ACPOW pairs of primes: 

 

(1) First we notice that these pairs seems to be relatively rare for a given p as the value of n is 

growing (especially for p = 7, from the cases that I considered).  

 

(2) The series of twin primes and the series of cousin primes are subsets of the series of 

ACPOW pairs of primes. 

 

(3) At the numbers of the form N = 2^k + 9 we noticed something interesting: for k of the 

form k = 24*h – 1, N has frequently only few prime factors: 

 

N = 2^191 + 9 (where 191 = 8*24 – 1) has just 3 prime factors; 

N = 2^215 + 9 (where 215 = 9*24 – 1) has just 3 prime factors; 

N = 2^239 + 9 (where 239 = 10*24 – 1) has just 3 prime factors; 

N = 2^263 + 9 (where 263 = 11*24 – 1) is a prime number with 80 digits! 

 

(4) If [q,r] and [q + 2,r + 2] are both ACPOW pairs of primes, then we have some interesting 

values for the numbers r – q – 2, but we didn’t gather enough data to jump with conclusions. 

 

(5) If [q,r] is an ACPOW pair of primes, and both q and r have the last digit 7, the numbers 

q*r – q - 1 and q*r – r – 1 are often primes or products of few primes; we name these numbers 

the pair affiliated to an ACPOW pair of such primes (having the last digit 7). 

 

: for [17,257] the affiliated pair is [4111,19*229]; 

: for [17,65537] is [19*229*241,1114111]; 

: for [257,65537] is [3079*5449,16842751]; 

: for [7,67] is [401,461]; 

: for [7,37] is [13*17,251]; 

: for [7,9007199254740997] is  

      [11*13*17*22230849662051,23*2741321512312477]; 

: for [17,137] is [7*313,2311]; 

: for [17, 8388617] is [659*203669,7*61*333973]. 
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Conjecture 4: I conjecture (against the heuristic arguments of Hardy and Wright) that are 

infinite many Fermat primes, that they are all, beside the first two terms, 3 and 5, of the form 

10*k + 7, and that the all terms Fn, beginning with the term F4 = 257, satisfy the relations: 

(1) one of the numbers 17*Fn – 18 and 17*Fn – Fn – 1 is a prime number having the last 

four digits 4111; 

(2) the other one of the numbers 17*Fn – 18 and 17*Fn – Fn – 1 is a product of primes as 

it follows: 19*229 for n = 4, 19*229*241 for n = 5, 19*229*241*p, where p prime, 

for n = 6 and so on (for Fn corresponds a number of n - 2 primes). 

 

ACPOW chains of the second kind 

 

I define ACPOW chains of the second kind the recurrent sequences of primes of the type pn = pn-1 

+ 2^k, where k has the smaller value for that pn-1 + 2^k is a prime. 

 

Examples:  

 

: 3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 79, 83, 211 (...); 

 

: 29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103 (...); 

 

: 53, 61, 317 (...); 

 

: 127, 131, 139, 1163 (...); 

 

: 137, 139, 1163 (...). 

 

We clasify the set of prime numbers in the following manner:  

: a prime is of class ACPOW I if can be written as pn = pn-1 + 2^k, where pn = 3; 

: a prime is of class ACPOW II if can be written as pn = pn-1 + 2^k, where pn is the first prime 

that doesn’t belong to the first class; 

: a prime is of class ACPOW III if can be written as pn = pn-1 + 2^k, where pn is the first prime 

that doesn’t belong to the first and the second class, 

and so on.  

 

Comment: the clasification is not exclusive: a prime can belong to more than one class. 

 

Note: to the end of the article an addenda will cover the division into classes of the first few 

primes from the first few classes.  

 

We name the ACPOW problems the following two questions: 

: is there or not an infinite number of such classes? 

: is there such a class with a finite number of terms? 

 

Conclusion: we end here for now this analysis, hoping the we highlighted some of the possible 

applications of ACPOW chains of primes and ACPOW pairs of primes. 
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ADDENDA 

 

Primes from class ACPOW I 

 

3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 79, 83, 211, 227, 229, 233, 241, 257, 769, 773 (...).  

 

Note: we didn’t find a prime of the form 773 + 2^n for n from 1 to 100 (773 + 2^100 is a number 

with 31 digits). 

 

Primes from class ACPOW II 

 

29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103, 107, 109, 113, 241, 257 (...). 

 

Note: we can see that from the number 241 class ACPOW II has the same terms with class 

ACPOW I. 

 

Primes from class ACPOW III 

 

53, 61, 317, 349, 353, 134218081 (...). 

 

Primes from class ACPOW IV 

 

127, 131, 139, 1163, 1171, 1187, 1699, 263843 (...). 

 

Primes from class ACPOW V 

 

137, 139, 1163 (...). 

 

Note: we can see that from the number 139 class ACPOW V has the same terms with class 

ACPOW IV. 

 

Primes from class ACPOW VI 

 

149, 151, 167, 199, 263, 271, 1048847 (...). 

 

Primes from class ACPOW VII 

 

157, 173, 181, 197, 199, 263 (...). 

 

Note: we can see that from the number 199 class ACPOW VII has the same terms with class 

ACPOW VI. 

 

Primes from class ACPOW VIII 

 

163, 167, 199, 263 (...). 

 

Note: we can see that from the number 199 class ACPOW VIII has the same terms with class 

ACPOW VI. 

 

Primes from class ACPOW IX 
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179, 181, 197 (...). 

 

Note: we can see that from the number 181 class ACPOW IX has the same terms with class 

ACPOW VII. 

 

Primes from class ACPOW X 

 

191, 193, 197, 199, 263 (...). 

 

Note: we can see that from the number 199 class ACPOW X has the same terms with class 

ACPOW VI. 

 

Primes from class ACPOW XI 

 

223, 227, 229 (...). 

 

Note: we can see that from the number 227 class ACPOW XI has the same terms with class 

ACPOW I. 

 

Primes from class ACPOW XII 

 

239, 241, 257 (...). 

 

Note: we can see that from the number 241 class ACPOW XII has the same terms with class 

ACPOW I. 

 

Primes from class ACPOW XIII 

 

251, 283, 347, 349, 353, 134218081 (...). 

 

Note: we can see that from the number 353 class ACPOW XIII has the same terms with class 

ACPOW III. 

 

Primes from class ACPOW XIV 

 

269, 271, 1048847 (...). 

 

Note: we can see that from the number 271 class ACPOW XIV has the same terms with class 

ACPOW VI. 

 

Primes from class ACPOW XV 

 

277, 281, 283, 347 (...). 

 

Note: we can see that from the number 283 class ACPOW XV has the same terms with class 

ACPOW XIII. 
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Primes from class ACPOW XVI 

 

293, 421, 677, 709, 773 (...). 

 

Note: we can see that from the number 773 class ACPOW XVI has the same terms with class 

ACPOW I. 

 

Primes from class ACPOW XVII 

 

307, 311, 313, 317, 349, 353, 134218081  (...). 

 

Note: we can see that from the number 353 class ACPOW XVII has the same terms with class 

ACPOW III. 

 

Primes from class ACPOW XVIII 

 

331, 347, 349 (...). 

 

Note: we can see that from the number 349 class ACPOW XVIII has the same terms with class 

ACPOW XIII. 

 

Primes from class ACPOW XIX 

 

337, 353, 134218081 (...). 

 

Note: we can see that from the number 349 class ACPOW XVIII has the same terms with class 

ACPOW XIII. 

 

 

Observations:  

: the classes I, II, XI, XII, XVI are converging to the same terms, also the classes III, XIII, XV, 

XVII and XIX, the classes IV and V, the classes VI, VII, VIII, IX, X and XIV; 

: some primes seems to highlight as convergence primes for classes ACPOW: five classes 

converge to the prime 353, four to the prime 199, three to the prime 241, two to the primes 139, 

181, 227, 271, 283, 349, 773. 
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2. Few recurrent series based on the difference between succesive primes 
 

 

Abstract. Despite the development of computer systems, the chains of succesive primes 

obtained through an iterative formula yet have short lenghts; for instance, the largest 

known chain of primes in arithmetic progression is an AP-26. We present here few 

formulas that might lead to interesting chains of primes. 

 

 

I. 

 

I.1.  
I was studying twin primes when I noticed that the greater prime (q) from the pair can be 

obtained from the lesser one (p) through the formula q = p*(d/2) + d/2 + 1, where d is the 

difference between the two primes, namely 2 (the formula is obviously equivalent to q = p*1 + 1 

+ 1 = p + 2). I applied this formula to the following recurrence relation and I observed that it 

produces interesting results (i.e. many succesive primes): 

 

Let be A(n+1) = A(n)*(d/2) + d/2 + 1, where A(0) is any chosen prime and d is the difference 

between A(m) and the next consecutive prime, if the process of iteration stops to the first 

composite term A(m) obtained. If the iteration is supposed to continue, the right definition is that 

d is the difference between A(m) and the smallest prime which is greater than A(m). 

 

I list below few such series and I stop the iteration at the first composite term obtained. 

 

We have for A(0) = 3: 

A(1) = 3*1 + 1 + 1 = 5 (because d = (5 - 3)/2 = 1); 

A(2) = 5*1 + 1 + 1 = 7 (because d = (7 - 5)/2 = 1);   

A(3) = 7*2 + 2 + 1 = 17 (because d = (11 - 7)/2 = 2);   

A(4) = 17*1 + 1 + 1 = 19 (because d = (19 - 17)/2 = 1); 

A(5) = 19*2 + 2 + 1 = 41 (because d = (23 - 19)/2 = 2);   

A(6) = 41*1 + 1 + 1 = 43 (because d = (43 - 41)/2 = 1);   

A(7) = 43*2 + 2 + 1 = 89 (because d = (47 - 43)/2 = 2);   

A(8) = 97*4 + 4 + 1 = 19^2 (because d = (97 - 89)/2 = 4).  

 

We choose another prime as a starting term, of course not one resulted from the above iterative 

process (5, 7, 17, 19, 41, 43, 89), that would conduct to same result because the sequence 

depends only by the last term obtained. 

 

We have for A(0) = 11: 

A(1) = 11*1 + 1 + 1 = 13; 

A(2) = 13*2 + 2 + 1 = 29;   

A(3) = 29*1 + 1 + 1 = 31;   

A(4) = 31*3 + 3 + 1 = 97; 

A(5) = 97*2 + 2 + 1 = 197;   

A(6) = 197*1 + 1 + 1 = 199;   

A(7) = 199*6 + 6 + 1 = 1201;   

A(8) = 1201*6 + 6 + 1 = 7213; 

A(9) = 7213*3 + 3 + 1 = 23*941.  

 



 15 

We have for A(0) = 23: 

A(1) = 23*3 + 3 + 1 = 73; 

A(2) = 73*3 + 3 + 1 = 223;   

A(3) = 223*2 + 2 + 1 = 449;   

A(4) = 449*4 + 4 + 1 = 1801; 

A(5) = 1801*5 + 5 + 1 = 9011; 

A(6) = 9011*1 + 1 + 1 = 9013;   

A(7) = 9013*8 + 8 + 1 = 37*1949.   

 

Note: We didn’t further obtained notable results (long chains of succesive primes) for starting 

terms 37, 47, 53, 59, 61 so it’s clear that the formula doesn’t conduct to such results if we choose 

randomly the starting prime. 

 

I.2. 

The starting term of the sequence is allowed to be a prime in absolute value; also the terms of the 

sequence. 

 

We have for A(0) = -13: 

A(1) = (-13)*1 + 1 + 1 = -11; 

A(2) = (-11)*2 + 2 + 1 = -19; 

A(3) = (-19)*1 + 1 + 1 = -17; 

A(4) = (-17)*2 + 2 + 1 = -31; 

A(5) = (-31)*1 + 1 + 1 = -29; 

A(6) = (-29)*3 + 3 + 1 = -83; 

A(7) = (-83)*2 + 2 + 1 = -163; 

A(8) = (-163)*2 + 2 + 1 = -5*97. 

 

We have for A(0) = -23: 

A(1) = (-23)*2 + 2 + 1 = -43; 

A(2) = (-43)*1 + 1 + 1 = -41; 

A(3) = (-41)*2 + 2 + 1 = -79; 

A(4) = (-79)*3 + 3 + 1 = -233; 

A(5) = (-233)*2 + 2 + 1 = -463; 

A(6) = (-463)*1 + 1 + 1 = -461; 

A(7) = (-461)*2 + 2 + 1 = -919; 

A(8) = (-919)*4 + 4 + 1 = -3671; 

A(9) = (-3671)*2 + 2 + 1 = -97*227. 

 

I.3.  
The starting term of the sequence is a prime of the form 2*k*11 + 1. 

 

We have for A(0) = 67:  

A(1) = 67*2 + 2 + 1 = 137; 

A(2) = 137*1 + 1 + 1 = 139; 

A(3) = 139*5 + 5 + 1 = 701; 

A(4) = 701*4 + 4 + 1 = 53^2. 

 

We have for A(0) = 89: A(1) = 89*4 + 4 + 1 = 19^2. 

 

We have for A(0) = 199: A(1) = 199*6 + 6 + 1 = 1201. 
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We have for A(0) = 331: A(1) = 331*3 + 3 + 1 = 997. 

 

We have for A(0) = 353: A(1) = 353*3 + 3 + 1 = 1063. 

 

We have for A(0) = 397: A(1) = 397*2 + 2 + 1 = 797. 

 

We have for A(0) = 419: A(1) = 419*2 + 1 + 1 = 421. 

 

We have for A(0) = 463: A(1) = 463*2 + 2 + 1 = 929. 

 

We have for A(0) = 617: A(1) = 617*1 + 1 + 1 = 619. 

 

Note: This choice of starting term seems to conduct to interesting but not outstanding results.  

 

I.4. 

The starting term of the sequence is allowed to be a square of a prime. The starting value of d is 

now the difference between the starting term and the smaller prime bigger than this (i.e. d = 29 – 

25 = 4 for starting term 25) and after that d is the difference between A(m) and the next 

consecutive prime. 

 

We have for A(0) = 3^2 = 9: 

A(1) = 9*1 + 1 + 1 = 11 which is prime. 

 

We have for A(0) = 5^2 = 25: 

A(1) = 25*2 + 2 + 1 = 53 which is prime. 

 

We have for A(0) = 7^2 = 49: 

A(1) = 49*2 + 2 + 1 = 101 which is prime. 

 

We have for A(0) = 11^2 = 121: 

A(1) = 121*3 + 3 + 1 = 367 which is prime; 

A(2) = 367*3 + 3 + 1 = 1105 which is Fermat pseudoprime to base 2. 

 

We have for A(0) = 13^2 = 169: 

A(1) = 169*2 + 2 + 1 = 341 which is Fermat pseudoprime to base 2. 

Note: We didn’t observed further a notable pattern. 

 

I.5.  
The starting term of the series is a prime but the value of d is now the difference between A(m) 

and the second consecutive prime (e.g. d = 7 – 3 = 4; d = 11 - 5 = 6; d = 13 – 7 = 6 and so on). 

 

We have for A(0) = 3: 

A(1) = 3*2 + 2 + 1 = 9 = 3^2. 

 

We have for A(0) = 5: 

A(1) = 5*3 + 3 + 1 = 19; 

A(2) = 19*5 + 5 + 1 = 121 = 11^2. 

 

We have for A(0) = 7: 
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A(1) = 7*3 + 3 + 1 = 25 = 5^2. 

 

We have for A(0) = 11: 

A(1) = 11*3 + 3 + 1 = 37. 

 

We have for A(0) = 13: 

A(1) = 13*3 + 3 + 1 = 43. 

Note: We didn’t observed further a notable pattern. 

 

I.6.  
The starting term of the series is a prime but the value of d is now the difference between A(m) 

and the third consecutive prime (e.g. d = 11 – 3 = 8; d = 13 - 5 = 8; d = 17 – 7 = 10 and so on). 

 

We have for A(0) = 3: A(1) = 3*4 + 4 + 1 = 17. 

 

We have for A(0) = 5: A(1) = 5*4 + 4 + 1 = 5^2. 

 

We have for A(0) = 7: A(1) = 7*5 + 5 + 1 = 41. 

 

We have for A(0) = 11: A(1) = 11*4 + 4 + 1 = 7^2. 

 

We have for A(0) = 13: A(1) = 13*5 + 5 + 1 = 71. 

 

We have for A(0) = 17: A(1) = 17*6 + 6 + 1 = 109. 

 

We have for A(0) = 19: A(1) = 19*6 + 6 + 1 = 11^2. 

 

We have for A(0) = 23: A(1) = 23*7 + 7 + 1 = 13^2. 

 

We have for A(0) = 29: A(1) = 29*6 + 6 + 1 = 181. 

 

We have for A(0) = 31: A(1) = 31*6 + 6 + 1 = 193. 

 

We have for A(0) = 37: A(1) = 37*5 + 5 + 1 = 191. 

 

We have for A(0) = 41: A(1) = 41*6 + 6 + 1 = 11*23. 

 

We have for A(0) = 43: A(1) = 43*8 + 8 + 1 = 353. 

 

We have for A(0) = 47: A(1) = 43*7 + 7 + 1 = 337. 

 

We have for A(0) = 53: A(1) = 53*7 + 7 + 1 = 379. 

 

We have for A(0) = 59: A(1) = 59*6 + 6 + 1 = 19^2. 

 

We have for A(0) = 61: A(1) = 61*6 + 6 + 1 = 373. 

 

We have for A(0) = 67: A(1) = 67*6 + 6 + 1 = 409. 

 

We have for A(0) = 71: A(1) = 71*6 + 6 + 1 = 433. 
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We have for A(0) = 73:  

A(1) = 73*7 + 7 + 1 = 593;   

A(2) = 593*7 + 7 + 1 = 4159; 

A(3) = 4159*26 + 27 + 1 = 108161; 

A(4) = 108161*15 + 15 + 1 = 1622431; 

A(5) = 1622431*20 + 20 + 1 = 32448641; 

A(6) = 32448641*19 + 19 + 1 = 21247*29017. 

 

Note: This formula seems also to conduct to interesting results. 

 

II. 

 

We define now another resembling series, based again on the differences between consecutive 

primes: 

 

Let be A(n+1) = (A(n)+ 1))*(d1/2) + d2/2) + 1, where A(0) is any chosen prime, d1 is the 

difference between A(m) and the next consecutive prime and d2 is the difference between A(m) 

and the second consecutive prime (the definition is made under the presumtion that process of 

iteration stops to the first composite term obtained). 

 

I list below few such series: 

 

We have for A(0) = 3:  

A(1) = 4*(1 + 2) + 1 = 13;  

A(2) = 14*(2 + 3) + 1 = 71; 

A(3) = 72*(1 + 4) + 1 = 19^2. 

 

We have for A(0) = 5:  

A(1) = 6*(1 + 3) + 1 = 5^2.  

 

We have for A(0) = 7:  

A(1) = 8*(2 + 3) + 1 = 41;  

A(2) = 42*(1 + 3) + 1 = 13^2. 

 

We have for A(0) = 11:  

A(1) = 12*(1 + 3) + 1 = 7^2.  

 

We have for A(0) = 23:  

A(1) = 24*(3 + 4) + 1 = 13^2.  

 

Note: This formula could also lead to interesting results, but these results still seem to depend on 

the choice of the starting term. 

 

Conclusion: I believe that especially the first formula is appealing because it is such easy to 

compute, though the longest chains of primes that I obtained so far using it are just 9 primes 

long: 11, 13, 29, 31, 97, 197, 199, 1201, 7213 (for starting term 11) and -23, -43, -41, -79, -233, -

463, -461, -919, -3671 (for starting term -23). But, on the other side, neither Cunningham chains 

or AP chains were much more longer before being largely computed. 
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3. A possible unimportant but sure interesting conjecture about primes 
 

 

Abstract. Studying, related to Fermat pseudoprimes, my main object of study, the 

concatenation and the primes of the form n*p – n + 1, where p is also prime, I found 

incidentally an interesting possible fact about primes. Because the proof or disproof of 

the conjecture, and also the consequences in the case that is true, are beyond me, I shall 

limit myself to enunciate the conjecture and give few examples. 

 

 

Conjecture: 

Every prime p that ends in a group of digits that form a prime can be written at least in one way 

as p = n*q – (n – 1)*r, where n is positive integer, n > 1, and q, r another primes that ends in the 

same group of digits. 

 

Examples: 

 

The numbers 11, 211, 311, 811, 911, 1511, 1811, 2011, 2111, 2311 are the first ten primes that 

end in the digits 11, that form a prime. 

These primes can be written as: 

 

: 11 = 3*211 – 2*311; 

: 211 = 7*811 – 6*911; 

: 311 = 6*811 – 5*911; 

: 811 = 4*211 – 3*11; 

: 911 = 3*311 – 2*11; 

: 1511 = 5*311 – 4*11; 

: 1811 = 9*211 – 8*11 = 6*311 – 5*11 = 2*911 – 1*11; 

: 2011 = 10*211 – 9*11 = 3*811 – 2*211; 

: 2111 = 7*311 – 6*11 = 2*1511 – 1*911 = 2*1811 – 1*1511; 

: 2311 = 3*911 – 2*211. 

 

The numbers 29, 229, 829, 929, 1129, 1229, 1429, 2029 are the first eight primes that end in the 

digits 29, that form a prime. 

These primes can be written as: 

 

: 29 = 9*829 – 8*929 = 3*829 – 2*1229 = 4*929 – 3*1229; 

: 229 = 7*829 – 6*929 = 6*1229 – 5*1429 = 3*1429 – 2*2029; 

: 829 = 4*229 – 3*29 = 3*1229 – 4*1429 = 2*1429 – 1*2029; 

: 929 = 3*1129 – 2*1229; 

: 1129 = 3*929 – 2*829; 

: 1229 = 6*229 – 5*29; 

: 1429 = 7*229 – 6*29; 

: 2029 = 10*229 – 9*29 = 4*1429 – 3*1229 = 3*1429 – 2*1129. 

 

Observation: 

 

Seems that the conjecture above can be extended for primes that end in a group of digits that 

form not a prime but a square of prime. 
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Example: 

 

The numbers 3529, 6529, 10529, 21529, 27529, 30529, 33529, 36529 are eight from the first ten 

primes that end in the digits 529, that form a square of a prime. 

These primes can be written as: 

 

:  3529 = 4*21529 – 3*27529 = 5*27529 – 4*33529;  

:  6529 = 2*3529 – 1*529 = 5*30529 – 4*36529;  

: 10529 = 4*7529 – 3*6529; 

:  21529 = 7*3529 – 6*529 = 6*6529 – 5*3529; 

:  27529 = 9*3529 – 8*529 = 8*6529 – 7*3529;  

:  30529 = 10*3529 – 9*529 = 5*6529 – 4*529; 

:  33529 = 10*6529 – 9*3529 = 2*27529 – 1*21529; 

:  36529 = 6*6529 – 5*529 = 11*6529 – 10*3529. 

 

Note: Obviously, in this case is admitted for r from the expression p = n*q – (n – 1)*r to be not 

just a prime but the ending group of digits itself, that form a square of prime. 

 

Observation: 

 

The conjecture above can also be extended for Fermat pseudoprimes that end in a group of digits 

that form a prime. For instance, the number 1729 is the first absolute pseudoprime that ends in 

the digits 29, and can be written as 1729 = 2*1429 – 1*1129, where 1429 and 1129 are primes. 
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4. A formula based on twin primes that generates chains of primes in 

arithmetic progression 
 

 

Abstract. I was studying recurrences of the form P(n) = P(n – 1) + 2^k – 2, when 

incidentally I found a chain of 5 primes in arithmetic progression that satisfy this 

recurrence (8329, 8839, 9349, 9859, 10369). But, interesting, instead of find easily other 

chains of primes based on this recurrence, I obtained easily such chains (up to AP-6) 

defining in other way, based on twin primes, the relation between those 5 primes. 

 

 

The formula is: p + 2 + 30*m + p*30*n, where m and n are integers, m non-negative and n 

positive, and p is the smaller prime from a pair of twin primes; giving a constant value to m and 

consecutive values to n we obtain for the following pairs of twin primes: 

 

For (11, 13): we have p = 11. 

 

We take m = 1. The formula becomes 43 + 330*n. We obtain for n from 14 to 17 a chain of four 

primes in arithmetic progression (4663, 4993, 5323, 5653) and for n from 35 to 38 another such 

chain (11593, 11923, 12253, 12583). 

 

We take m = 2. The formula becomes 73 + 330*n. We obtain for n from 5 to 8 a chain of four 

primes in arithmetic progression (1723, 2053, 2383, 2713). 

 

We take m = 3. The formula becomes 103 + 330*n. We obtain for n from 3 to 6 a chain of four 

primes in arithmetic progression (1093, 1423, 1753, 2083). 

 

We take m = 4. The formula becomes 133 + 330*n. We obtain for n from 3 to 6 a chain of four 

primes in arithmetic progression (1123, 1453, 1783, 2113) and for n from 43 to 48 a chain of six 

primes in arithmetic progression (14323, 14653, 14983, 15313, 15643, 15973). 

 

We take m = 5. The formula becomes 163 + 330*n. We obtain for n from 36 to 39 a chain of 

four primes in arithmetic progression (12043, 12373, 12703, 13033). 

 

For (17, 19): we have p = 17. 

 

We take m = 0. The formula becomes 19 + 510*n. We obtain for n from 14 to 18 a chain of five 

primes in arithmetic progression (7159, 7669, 8179, 8689, 9199). 

 

We take m = 1. The formula becomes 49 + 510*n. We obtain for n from 23 to 26 a chain of four 

primes in arithmetic progression (11779, 12289, 12799, 13309) and for n from 30 to 34 a chain 

of five primes in arithmetic progression (15349, 15859, 16369, 16879, 17389). 

 

We take m = 2. The formula becomes 79 + 510*n. We obtain for n from 10 to 14 a chain of five 

primes in arithmetic progression (5179, 5689, 6199, 6709, 7219). 

 

We take m = 3. The formula becomes 109 + 510*n. We obtain for n from 40 to 45 a chain of six 

primes in arithmetic progression (20509, 21019, 21529, 22039, 22549, 23059). 
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We take m = 5. The formula becomes 169 + 510*n. We obtain for n from 16 to 20 a chain of five 

primes in arithmetic progression (8329, 8839, 9349, 9859, 10369). 

 

For (29, 31): we have p = 29. 

 

We take m = 1. The formula becomes 61 + 870*n. We obtain for n from 30 to 34 a chain of five 

primes in arithmetic progression (26161, 27031, 27901, 28771, 29641). 

 

We take m = 2. The formula becomes 91 + 870*n. We obtain for n from 43 to 46 a chain of four 

primes in arithmetic progression (37501, 38371, 39241, 40111). 

 

We take m = 4. The formula becomes 151 + 870*n. We obtain for n from 42 to 45 a chain of 

four primes in arithmetic progression (36691, 37561, 38431, 39301). 

 

We take m = 5. The formula becomes 181 + 870*n. We obtain for n from 40 to 44 a chain of five 

primes in arithmetic progression (34981, 35851, 36721, 37591, 38461). 

 

For (41, 43): we have p = 41. 

 

We take m = 1. The formula becomes 73 + 1230*n. We obtain for n from 13 to 17 a chain of five 

primes in arithmetic progression (16063, 17293, 18523, 19753, 20983). 

We take m = 5. The formula becomes 193 + 1230*n. We obtain for n from 4 to 7 a chain of four 

primes in arithmetic progression (5113, 6343, 7573, 8803). 

 

For (59, 61): we have p = 59. 

 

We take m = 0. The formula becomes 61 + 1770*n. We obtain for n from 7 to 11 a chain of five 

primes in arithmetic progression (12451, 14221, 15991, 17761, 19531). 

 

We take m = 2. The formula becomes 121 + 1770*n. We obtain for n from 17 to 20 a chain of 

four primes in arithmetic progression (30211, 31981, 33751, 35521) and for n from 25 to 28 

another such chain (44371, 46141, 47911, 49681). 

 

We take m = 4. The formula becomes 181 + 1770*n. We obtain for n from 28 to 32 a chain of 

five primes in arithmetic progression (49741, 51511, 53281, 55051, 56821). 

 

 

Conclusion: we obtained two AP-6, eight AP-5, twelve AP-4 and many AP-3, considering just 

first five pairs of twin primes, beside of course the pairs (3,5) and (5,7), values for m up to 5 and 

values for n up to 50. 
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5. On an iterative operation on positive composite integers which probably 

always conducts to a prime 
 

 

Abstract. By playing with one of my favorite class of numbers, Poulet numbers, and one 

of my favorite operation, concatenation, I raised to myself few questions that seem 

interesting, worthy to share. I also conjectured that, reiterating a certain operation which 

will be defined, eventually for every Poulet number it will be find a corresponding prime. 

Then I extrapolated the conjecture for all composite positive integers.  

 

 

Conjecture 1:  

 

For any Poulet number P is defined the following operation which always, eventually, leads to a 

prime number:  

 

Let P be a Poulet number, P = p1*p2*...*pn, where p1 ≤ p2 ≤ p3 ≤ ... ≤ pn are the prime factors of P 

(not distinct, it can be seen from definition: for instance for the only two Poulet numbers non-

squarefree known, the squares of Wieferich primes, we have P = p1*p2, where p1 = p2; the reason 

for writing the number P in this way instead writing P = p1^2 it will be seen further).   

 

Then we consider the number Q1 = p1p2...pn, obtained by concatenation of the numbers that form 

the ordered set {p1, p2, p3, ...,pn}. 

 

(Example: P = 561 = 3*11*17; then Q1 = 31117) 

 

Then we have the following posibilities: Q is a prime or a composite number; if it is composite 

(it doesn’t matter if is squarefree or not) we reiterate the operation until is obtained a prime 

number. 

 

(Example: Q1 = 31117 = 29*29*37; then Q2 = 292937 = 457*641; Q3 = 457641 = 3*3*50849; 

Q4 = 3350849 = 131*25579; Q5 = 13125579 = 3*4375193; finally, the number Q6 = 34375193 is 

prime) 

 

Note:  

 

Our conjecture is that, reiterating the operation above, from every Poulet number is obtained, 

eventually, a prime. 

 

Verifying the conjecture for the first few Poulet numbers (beside 561 which was given above as 

an example): 

 

P = 341 = 11*31; 

: 1131 = 3*13*29; 

: 31329 = 3*3*59*59; 

: 335959 = 13*43*601; 

: 1343601 = 3*3*3*7*7109; 

: 33377109 = 3*607*18329; 

: 360718329 = 3*120239443; 

: 3120239443 = 523*5966041; 
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: 5235966041 = 419*12496339; 

: 41912496339 = 3*7*1995833159; 

: 371995833159 = 3*3*19*1459*1491031; 

: 331914591491031 = 3*3*709*145949*356399; 

: 33709145949356399 = 2011*16762379885309; 

: 201116762379885309 = 3*17*1357927*2904033817; 

: 31713579272904033817 = 13*337*7238890498266157; 

: 133377238890498266157 = 3*13*53*64526966081518271; 

: 3135364526966081518271 = 3037*1032388714839012683; 

: 30371032388714839012683 = 3*3*2879*16260571*72084117943; 

:  3328791626057172084117943 = 15765766319*211140490015097; 

: 15765766319211140490015097 = 575063*27415720224064390319; 

: 57506327415720224064390319 = 32869*1749561210128699506051 

: 328691749561210128699506051 = 23*61*1283*1597*30391*3762309931337; 

: 236112831597303913762309931337 =  

 3*509*13381*11555586205509014201651; 

: 35091338111555586205509014201651 is a prime number. 

 

P = 645 = 3*5*43; 

: 3543 = 3*1181; 

: 31181 is a prime number. 

 

P = 1105 = 5*13*17; 

: 51317 = 7*7331; 

: 77331 = 3*149*173; 

: 3149173 is a prime number.  

 

P = 1387 = 19*73; 

: 1973 is a prime number.  

 

P = 1729 = 7*13*19; 

: 71319 = 3*23773; 

: 323773 = 199*1627; 

: 1991627 = 11*331*547; 

: 11331547 = 29*390743; 

: 29390743 is a prime number.   

 

P = 1905 = 3*5*127; 

: 35127 = 3*3*3*1301; 

: 3331301 is a prime number.   

 

P = 2047 = 23*89; 

: 2389 is a prime number.  

 

Verifying the conjecture for the two squares of Wieferich primes (because they represent a 

special case): 

 

P = 1194649 = 1093*1093; 

: 10931093 = 73*137*1093; 

: 731371093 = 17*223*192923; 
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:  17223192923 = 2089*8244707; 

: 20898244707 = 3*11483606643; 

: 311483606643 = 3*3*11*11*286027187; 

: 3311286027187 = 3*110370428675729; 

: 3110370428675729 = 21977*141528435577; 

: 21977141528435577 = 3*11*17351*38382455519; 

: 3111735138382455519 = 3*11*11*113899*164113*458599; 

: 31111113899164113458599 = 359*86660484398785831361; 

: 35986660484398785831361 = 162523*221425032053301907; 

: 162523221425032053301907 is a prime number. 

 

P = 1194649 = 3511*3511; 

: 35113511 = 73*137*3511;  

: 731373511 = 11*66488501; 

: 1166488501 = 53*2687*8191; 

: 5326878191 = 653*8157547; 

: 6538157547 = 3*67*32528147; 

: 36732528147 = 3*7*37*47274811; 

: 373747274811 = 3*3*41527474979; 

: 3341527474979 is a prime number. 

 

Note:  

 

The numbers P = 1387 = 19*73 and P = 2047 = 23*89 conducted to a prime from the first step: 

1973 and 2389 are both primes. These two 2-Poulet numbers have in common the fact that, in 

both cases, p2 = 4*p1 – 3; indeed, 73 = 19*4 – 3 and 89 = 4*23 – 3. Another such 2-Poulet 

number is P = 13747 = 59*233; 59233 is also a prime number. 

 

Conjecture 2:  

 

For any composite positive integer, the operation defined above, always, eventually, leads to a 

prime number; so, we have the function f defined on the set of composite positive integers with 

values in the set of prime numbers; the first five values of f are: 

: f(4) = 211; 

: f(6) = 23; 

: f(8) = 3331113965338635107; 

: f(9) = 311; 

: f(10) = 773. 
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6. Four conjectures about three subsets of pairs of twin primes  
 

 

Abstract. In this paper are stated four conjectures about three subsets of pairs of twin 

primes, i.e. the pairs of the form (p^2 + q – 1, p^2 + q + 1), where p and q are primes (not 

necessarily distinct), the pairs of the form (p + q – 1, p + q + 1), where p, q and q + 2 are 

all three primes and the pairs of the form (p^2 + q – 1, p^2 + q + 1), where p, q and q + 2 

are all three primes. 

 

 

Conjecture 1:  

Any pair of twin primes (a, b) greater than (29, 31) can be written as (a = p^2 + q – 1, b = p^2 + 

q + 1), where p and q are primes (not necessarily distinct). 

 

Verifying the conjecture: 

(for the first 5 such pairs of twin primes) 

 

For (a, b) = (29, 31), we have: 

a = 5^2 + 5 – 1 = 29; b = 5^2 + 5 + 1 = 31. 

For (a, b) = (41, 43), we have: 

a = 5^2 + 17 – 1 = 41; b = 5^2 + 17 + 1 = 43. 

For (a, b) = (59, 61), we have: 

a = 7^2 + 11 – 1 = 59; b = 7^2 + 11 + 1 = 61. 

For (a, b) = (71, 73), we have: 

a = 5^2 + 47 – 1 = 71; b = 2^2 + 47 + 1 = 73; 

a = 7^2 + 23 – 1 = 71; b = 7^2 + 23 + 1 = 73. 

For (a, b) = (101, 103), we have: 

a = 7^2 + 53 – 1 = 101; b = 7^2 + 53 + 1 = 103. 

 

Note:  

The conjecture can also be formulated in the following way: For any pair of twin primes (t, t + 

2), where t is greater than or equal to 29, there exist two primes a, b such that (t + 1) – a^2 = b.  

 

Verifying the conjecture: 

(for the following 5 pairs of twin primes) 

 

:  108 – 25 = 83; 108 – 49 = 59; 

: 138 – 25 = 113; 138 – 49 = 89; 138 – 121 = 17; 

: 150 – 49 = 101; 150 – 121 = 29; 

: 180 – 49 = 131; 180 – 121 = 59; 180 – 169 = 11; 

: 192 – 25 = 167; 192 – 121 = 71; 192 – 169 = 23. 

Note:  

The conjecture is also checked for the next twenty pairs of twin primes, with the lesser term 

equal to: 197, 227, 239, 269, 281, 311, 347, 419, 431, 462, 521, 569, 599, 617, 641, 659, 809, 

821, 827, 857. 

 

Conjecture 2:  

There exist an infinity of pairs of primes of the form (p^2 + q – 1, p^2 + q + 1), where p and q 

are primes (not necessarily distinct). 
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Note:  

This conjecture is equivalent with the Conjecture about the infinity of twin primes if the 

Conjecture 1 from above is true, in such case being representative for the entire set of the pairs of 

twin primes or may state something different (but still implying the infinity of the pairs of twin 

primes) if the Conjecture 1 is not true, in such case being representative for an infinite subset of 

the set of the pairs of twin primes. The two conjectures below also implies the infinity of the 

pairs of twin primes. 

 

Conjecture 3:  

There exist an infinity of pairs of primes (p, q), where p + 2 and q + 2 are also primes, such that 

p – q + 1 = t, where t is also prime. 

 

Examples: 

 : 227 – 197 + 1 = 31, so (p, q, t) = (227, 197, 31); 

 : 239 – 227 + 1 = 13, so (p, q, t) = (239, 227, 13). 

 

Note:  

The conjecture can also be formulated in the following way: There exist an infinity of pairs of 

primes (p, p + 2), such that p = t + q – 1, where t is prime and the numbers q and q + 2 are also 

primes. 

 

Conjecture 4:  

There exist an infinity of pairs of primes (p, q), where p + 2 and q + 2 are also primes, such that 

p – q + 1 = t^2, where t is also prime. 

 

Examples: 

 : 569 – 521 + 1 = 7^2, so (p, q, t) = (569, 521, 7); 

 : 851 – 857 + 1 = 5^2, so (p, q, t) = (851, 857, 5). 

 

Note:  

The conjecture can also be formulated in the following way: There exist an infinity of pairs of 

primes (p, p + 2), such that p = t^2 + q – 1, where t is prime and the numbers q and q + 2 are also 

primes. 
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7. Twenty-four conjectures about “the eight essential subsets of primes” 
 

 

Abstract. In this paper are made twenty-four conjectures about eight subsets of prime 

numbers, i.e. the primes of the form 30*k + 1, 30*k + 7, 30*k + 11, 30*k + 13, 30*k + 

17, 30*k + 19, 30*k + 23 respectively 30*k + 29. Because we strongly believe that this 

classification of primes can have many applications, we refered in the title of this paper 

to these subsets of primes as to “the eight essential subsets of primes”. The conjectures 

state that each from these eight sets of primes has an infinity of terms and also that each 

one of them can be entirely defined with a recurrent formula starting from just three 

given terms. 

 

 

I. 

 

Conjecture 1:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 31, a(2) = 61, a(3) = 151 [the first three terms of the sequence are the smallest 

three primes of the form 30*k + 1];  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

1, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 2:  

Any prime of the form 30*k + 1 is a term of the sequence a(n) as it is defined by 

Conjecture 1 [in other words, the sequence a(n) is the same with the sequence of the 

primes of the form 30*k + 1]. 

 

Verifying the conjecture 2:  

(for the primes of the form 30*k + 1 up to 421) 

 

 : a(4) = a(1) + a(3) – 1 = 181; 

: a(5) = a(2) + a(3) – 1 = 211; 

: a(6) = a(1) + a(5) – 1 = a(2) + a(4) – 1 = 241; 

: a(7) = a(1) + a(6) – 1 = a(2) + a(5) – 1 = 271; 

: a(8) = a(2) + a(7) – 1 = a(3) + a(4) – 1 = 331; 

: a(9) = a(3) + a(7) – 1 = a(5) + a(5) – 1 = 421. 

 

Conjecture 3:  

If the Conjecture 2 doesn’t hold, than is true at least that any prime of the form 30*k + 1 

is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 1;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

1, where 1 ≤ i ≤ j < n. 
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II. 

 

Conjecture 4:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 37, a(2) = 67, a(3) = 97;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

7, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 5:  

Any prime of the form 30*k + 7, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 4 [in other words, the sequence a(n) is the same with the sequence 

of the primes of the form 30*k + 7, for k > 0]. 

 

Verifying the conjecture 5:  

(for the primes of the form 30*k + 7 up to 367) 

 

 : a(4) = a(1) + a(3) – 7 = a(2) + a(2) – 7 = 127; 

: a(5) = a(1) + a(4) – 7 = a(2) + a(3) – 7 = 157; 

: a(6) = a(4) + a(5) – 7 = 277; 

: a(7) = a(1) + a(6) – 7 = a(5) + a(5) – 7 = 307; 

: a(8) = a(1) + a(7) – 7 = a(2) + a(6) – 7 = 337; 

: a(9) = a(1) + a(8) – 7 = a(2) + a(7) – 7 = 367. 

 

Conjecture 6:  

If the Conjecture 5 doesn’t hold, than is true at least that any prime of the form 30*k + 7, 

where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 7;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

7, where 1 ≤ i ≤ j < n. 

 

III. 

 

Conjecture 7:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 41, a(2) = 71, a(3) = 101;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

11, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 8:  

Any prime of the form 30*k + 11, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 7 [in other words, the sequence a(n) is the same with the sequence 

of the primes of the form 30*k + 11, for k > 0]. 

 

Verifying the conjecture 8:  

(for the primes of the form 30*k + 11 up to 367) 
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 : a(4) = a(1) + a(3) – 11 = a(2) + a(2) – 11 = 131; 

: a(5) = a(2) + a(4) – 11 = a(3) + a(3) – 11 = 191; 

: a(6) = a(2) + a(5) – 11 = a(4) + a(4)- 11 = 251; 

: a(7) = a(1) + a(6) – 11 = a(3) + a(5) – 11 = 281; 

: a(8) = a(1) + a(7) – 11 = a(2) + a(6) – 11 = 311; 

: a(9) = a(3) + a(8) – 1 = a(4) + a(7) – 1 = 401. 

 

Conjecture 9:  

If the Conjecture 8 doesn’t hold, than is true at least that any prime of the form 30*k + 

11, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 11;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

11, where 1 ≤ i ≤ j < n. 

 

IV. 

 

Conjecture 10:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 43, a(2) = 73, a(3) = 103;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

13, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 11:  

Any prime of the form 30*k + 13, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 10 [in other words, the sequence a(n) is the same with the 

sequence of the primes of the form 30*k + 13, for k > 0]. 

 

Conjecture 12:  

If the Conjecture 11 doesn’t hold, than is true at least that any prime of the form 30*k + 

13, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 13;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

13, where 1 ≤ i ≤ j < n. 

 

V. 

 

Conjecture 13:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 47, a(2) = 107, a(3) = 137;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

17, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 14:  

Any prime of the form 30*k + 17, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 13 [in other words, the sequence a(n) is the same with the 

sequence of the primes of the form 30*k + 17, for k > 0]. 
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Conjecture 15:  

If the Conjecture 14 doesn’t hold, than is true at least that any prime of the form 30*k + 

17, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 17;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

17, where 1 ≤ i ≤ j < n. 

 

VI. 

 

Conjecture 16:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 79, a(2) = 109, a(3) = 139;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

19, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 17:  

Any prime of the form 30*k + 19, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 16 [in other words, the sequence a(n) is the same with the 

sequence of the primes of the form 30*k + 19, for k > 0]. 

 

Conjecture 18:  

If the Conjecture 17 doesn’t hold, than is true at least that any prime of the form 30*k + 

19, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 19;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

19, where 1 ≤ i ≤ j < n. 

 

VII. 

 

Conjecture 19:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 53, a(2) = 83, a(3) = 113;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

23, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 20:  

Any prime of the form 30*k + 23, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 19 [in other words, the sequence a(n) is the same with the 

sequence of the primes of the form 30*k + 23, for k > 0]. 

 

Conjecture 21:  

If the Conjecture 20 doesn’t hold, than is true at least that any prime of the form 30*k + 

23, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 23;  



 32 

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

23, where 1 ≤ i ≤ j < n. 

 

VIII. 

 

Conjecture 22:  

The sequence a(n), as it will be defined below, has in infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = 59, a(2) = 89, a(3) = 149;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

29, where 1 ≤ i ≤ j < n (if such prime exists for any n, as the conjecture states). 

 

Conjecture 23:  

Any prime of the form 30*k + 29, where k > 0, is a term of the sequence a(n) as it is 

defined by Conjecture 22 [in other words, the sequence a(n) is the same with the 

sequence of the primes of the form 30*k + 29, for k > 0]. 

 

Conjecture 24:  

If the Conjecture 23 doesn’t hold, than is true at least that any prime of the form 30*k + 

29, where k > 0, is a term of a sequence a(n) that can be defined as follows: 

: a(1), a(2), a(3) are three distinct primes of the form 30*k + 29;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

29, where 1 ≤ i ≤ j < n. 
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8. Three conjectures about an infinity of subsets of integers, each with possible 

infinite terms primes or squares of primes  
 

 

Abstract. In my previous paper «Twenty-four conjectures about “the eight essential 

subsets of primes”» are made three conjectures about each one from the following eight 

subsets: the primes of the form 30*k + 1, 30*k + 7, 30*k + 11, 30*k + 13, 30*k + 17, 

30*k + 19, 30*k + 23 respectively 30*k + 29. The conjectures from that paper state that 

each from these eight sets of primes has an infinity of terms and also that each one of 

them can be entirely defined with a recurrent formula starting from just three given terms. 

In this paper are generalized the three conjectures for an infinity of subsets, each having 

possibly an infinity of terms which are primes or squares of primes, subsets of integers of 

the form 2*p(1)*p(2)*...*p(m)*k + d, where p(1), p(2), ..., p(m) are the first m odd 

primes, k is a non-null positive integer and d an odd positive integer satisfying certain 

conditions.  

 

 

Conjecture 1:  

The sequence a(n), as it will be defined below, has an infinity of terms that are primes or 

squares of primes. 

  

The sequence a(n), where n non-null positive integer, is defined in the following way:  

 

: a(1) = q1, a(2) = q2, a(3) = q3, where q1, q2 and q3 are the first three integers which are 

primes or squares of primes of the form 2*p1*p2*...*pm*k + d, where p1, p2, ..., pm are the 

first m odd primes, k is a non-null positive integer and d is equal to 1 or is equal to any 

odd positive integer which satisfies the following two conditions: d is co-prime to any of 

the primes p1, p2, ..., pm and d < 2*p1*p2*...*pm.  

 

: a(n) is the smallest prime or square of prime greater than a(n – 1) that can be written as 

a(n) =  a(i) + a(j) – d, where 1 ≤ i ≤ j < n (if such prime or square of prime exists for any 

n, as the conjecture states). 

 

Conjecture 2:  

Any prime or square of prime of the form 2*p1*p2*...*pm*k + d is a term of the sequence 

a(n) as it is defined by Conjecture 1 [in other words, the sequence a(n) is the same with 

the sequence of the integers which are primes or squares of primes of the form 

2*p1*p2*...*pm*k + d, where k > 0]. 

 

Conjecture 3:  

If the Conjecture 2 doesn’t hold, than is true at least that any prime or square of prime of 

the form 2*p1*p2*...*pm*k + d is a term of a sequence a(n) that can be defined as follows: 

 

: a(1), a(2), a(3) are three distinct integers which are primes or squares of primes of the 

form 2*p1*p2*...*pm*k + d, where k > 0;  

 

: a(n) is the smallest integer which is prime or square of prime greater than a(n – 1) that 

can be written as a(n) =  a(i) + a(j) – d, where 1 ≤ i ≤ j < n. 
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Verifying the Conjecture 2 for m = 1: 

(for first few terms) 

 

For m = 1 we have p1 = pm = 3 and only two possible values for d (because d must be 

odd, smaller than 2*3 = 6 and also co-prime with 3), i.e. d = 1 and d = 5. 

 

I. 

 

For d = 1 the first three integers which are primes or squares of primes of the form 6*k + 

1, where k > 0, are 7, 13 and 19: 

 

: Conjecture 1 states that there exist an infinity of integers of the form 6*k + 1 

which are primes or squares of primes; 

: Conjecture 2 states that any prime or square of prime of the form 6*k + 1 can be 

defined starting from the primes 7, 13 and 19 with the formula from Conjecture 1. The 

next six integers of this form which are primes or squares of primes are 5^2 = 1 + 19 – 1 

= 13 + 13 – 1; 31 = 13 + 19 – 1; 37 = 7 + 31 – 1; 43 = 7 + 37 – 1, 7^2 = 7 + 43 – 1 = 13 + 

37 – 1 = 19 + 31 - 1; 61 = 19 + 43 – 1 = 31 + 31 – 1.  

 

II. 

 

For d = 5 the first three integers which are primes or squares of primes of the form 6*k + 

5, where k > 0, are 11, 17 and 23: 

 

: Conjecture 1 states that there exist an infinity of integers of the form 6*k + 5 

which are primes or squares of primes; 

: Conjecture 2 states that any prime or square of prime of the form 6*k + 5 can be 

defined starting from the primes 11, 17 and 23 with the formula from Conjecture 1. The 

next six integers of this form which are primes or squares of primes are 29 = 17 + 17 – 5; 

41 = 23 + 23 – 5; 47 = 11 + 41 – 5 = 23 + 29 – 5; 53 = 11 + 47 – 5 = 17 + 41 – 5 = 29 + 

29 – 5; 59 = 11 + 53 – 5 = 17 + 47 – 5 = 23 + 41 – 5; 71 = 17 + 59 – 5 = 23 + 53 – 5 = 29 

+ 47 – 5. 

 

 

Verifying the Conjecture 2 for m = 2: 

 

For m = 2 we have p1 = 3 and p2 = pm = 5 and the subsets of integers of the form 30*k + 

1, 30*k + 7, 30*k + 11, 30*k + 13, 30*k + 17, 30*k + 19, 30*k + 23; for these eight 

subsets of integers we treated a more strict form of the three conjectures from above in 

the previous paper «Twenty-four conjectures about “the eight essential subsets of 

primes”». 

 

 

Verifying the Conjecture 2 for m = 3: 

(for d = 1, d = 11 and the first few terms) 

 

For m = 3 we have p1 = 3, p2 = 5 and p3 = pm = 7 and the subsets of primes of the form 

210*k + 1, 210*k + 11, 210*k + 13, 210*k + 17, 210*k + 19, 210*k + 23, 210*k + 29, 

210*k + 31, 210*k + 37, 210*k + 41, 210*k + 43, 210*k + 47, 210*k + 53, 210*k + 59, 

210*k + 61, 210*k + 67, 210*k + 71, 210*k + 73, 210*k + 79, 210*k + 83, 210*k + 89, 
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210*k + 97, 210*k + 101, 210*k + 103, 210*k + 107, 210*k + 109, 210*k + 13, 210*k + 

121, 210*k + 127, 210*k + 131, 210*k + 137, 210*k + 139, 210*k + 143, 210*k + 149, 

210*k + 151, 210*k + 157, 210*k + 163, 210*k + 167, 210*k + 169, 210*k + 173, 210*k 

+ 179, 210*k + 181, 210*k + 187, 210*k + 191, 210*k + 193, 210*k + 197, 210*k + 199, 

210*k + 209. 

 

: Conjecture 1 states that there exist an infinity of integers of each of these forms which 

are primes or squares of primes. 

 

: Conjecture 2 states that any prime or square of prime of this form can be defined with 

the formula from Conjecture 1 starting from the three integers which are primes or 

squares of primes of the respective form, considering k > 0. 

 

: The first three integers which are primes or squares of primes of the form 210*k 

+ 1, where k > 0, are 211, 421 and 631; the following next six integers which are 

primes or squares of primes of this form are 29^2 = 21 + 631 – 1 = 421 + 421 – 1; 

1051 = 421 + 631 – 1 = 211 + 29^2 – 1; 1471 = 421 + 1051 – 1; 41^2 = 211 + 

1471 – 1 = 631 + 1051 – 1; 2311 = 631 + 41^2 – 1; 2521 = 211 + 2311 – 1 = 1051 

+ 1471 – 1.  

 

: The first three integers which are primes or squares of primes of the form 210*k 

+ 11, where k > 0, are 431, 641 and 1061; the following next six integers which 

are primes or squares of primes of this form are 1481 = 431 + 1061 – 11; 1901 = 

431 + 1481 – 11; 2111 = 641 + 1481 – 11; 2531 = 431 + 2111 – 11; 2741 = 641 + 

2111 – 11; 3371 = 641 + 2741 – 11. 
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9. Pairs of primes or pseudoprimes that generate an infinity of primes or 

pseudoprimes via a certain recurrence relation 
 

 

Abstract. In this paper are made five conjectures about a type of pairs of primes 

respectively Fermat pseudoprimes which have the property to generate an infinity of 

primes respectively Fermat pseudoprimes via a recurrence formula that will be defined in 

this paper; we name the pairs with this property Coman pairs of primes respectively 

Coman pairs of pseudoprimes. Because it is easy to show that two given primes 

respectively pseudoprimes do not form such a pair and it is very difficult to prove that 

they form such a pair, the correct expression about two odd primes (or pseudoprimes) p, 

q, where p = 30*k + d and q = 30*h + d, where k, h are non-null positive integers and d 

has the values 1, 7, 11, 13, 17, 19, 23, 29, is that the pair (p,q) is not a Coman pair 

respectively that the pair (p,q) is a possible Coman pair of primes (or pseudoprimes). 

 

 

Definition 1:  

We call the pair of odd primes (p, q), where p = 30*k + d and q = 30*h + d, where k, h 

are non-null positive integers and d has the values 1, 7, 11, 13, 17, 19, 23, 29, a 

[possible] Coman pair of primes if the sequence a(n), as it will be defined below, has 

[possibly] an infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = p, a(2) = q; 

: a(3) is the smallest number, different from p and q, which is prime from the following 

three ones: p + q – d, 2*p – d and 2*q - d;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

d, where 1 ≤ i ≤ j < n. 

 

Note: the definition implies that the one from the numbers p + q – d, 2*p – d and 2*q - d 

is prime and that for any n, n ≥ 4, there exist i, j, where 1 ≤ i ≤ j < n, such that a(n) =  a(i) 

+ a(j) – d, where a(n), a(i) and a(j) are all three primes.  

 

Examples:  

 

The pair of primes (37, 67) is a possible Coman pair of primes because: 

: a(3) = 37 + 67 – 7 = 97 is prime; 

: a(4) = 37 + 97 – 7 = 67 + 67 = 127 is prime; 

: a(5) = 37 + 127 – 7 = 67 + 97 – 7 = 157 is prime; 

: a(6) = 127 + 157 – 7 = 277 is prime. 

: a(7) = 37 + 277 – 7 = 157 + 157 – 7 = 307 is prime. 

 (...) 

 

The pair of primes (97, 127) is not a possible Coman pair of primes because 2*97 – 7 = 

187 is not prime, 2*127 – 7 = 247 is not prime and also 97 + 127 – 7 = 217 is not prime. 

 

Definition 2:  

We call a Coman pair of primes a Coman strict pair of primes if a(3) = p + q – d and i ≠ 

j, in other words a(i) ≠ a(j).  
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Examples:  

 

The pair of primes (37, 67) is a possible Coman strict pair of primes because: 

: a(3) = 37 + 67 – 7 = 97 is prime; 

: a(4) = 37 + 97 – 7 = 127 is prime; 

: a(5) = 37 + 127 – 7 = 67 + 97 – 7 = 157 is prime; 

 : a(6) = 127 + 157 – 7 = 277 is prime; 

: a(7) = 37 + 277 – 7 is prime. 

(...) 

 

The pair of primes (37, 157) is not a possible Coman strict pair of primes because 37 + 

157 – 7 = 187 is not prime, but is a possible Coman pair of primes, because a(3) = 37 + 

37 – 7 = 67 is prime, a(4) = 67 + 67 – 7 = 127 is prime (...).  

 

Definition 3:  

We call the pair of odd primes (p, q) a [possible] generalized Coman pair of primes to 

base b, where b is a non-null integer, if the sequence a(n), as it will be defined below, has 

[possibly] an infinity of terms that are prime numbers. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = p, a(2) = q; 

: a(3) is the smallest number, different from p and q, which is prime from the following 

three ones: p + q – b, 2*p – b and 2*q - b;  

: a(n) is the smallest prime greater than a(n – 1) that can be written as a(n) =  a(i) + a(j) – 

b, where 1 ≤ i ≤ j < n. 

 

Note: the definition implies that the one from the numbers p + q – b, 2*p – b and 2*q - b 

is prime and that for any n, n ≥ 4, there exist i, j, where 1 ≤ i ≤ j < n, such that a(n) =  a(i) 

+ a(j) – b, where a(n), a(i) and a(j) are all three primes. 

 

Examples:  

 

The pair of primes (7, 13) is a possible generalized Coman pair of primes to base 1 

because: 

: a(3) = 7 + 13 – 1 = 19 is prime; 

: a(4) = 13 + 19 – 1 = 31 is prime; 

: a(5) = 7 + 31 – 1 = 19 + 19 – 1 = 37 is prime; 

 : a(6) = 7 + 37 – 1 = 13 + 31 – 1 = 43 is prime; 

: a(7) = 19 + 43 – 1 = 31 + 31 – 1 = 61 is prime. 

(...) 

 

The pair of primes (11, 17) is a possible generalized Coman pair of primes to base -1 

because: 

: a(3) = 11 + 11 + 1 = 23 is prime; 

: a(4) = 11 + 17 + 1 = 29 is prime; 

: a(5) = 11 + 29 + 1 = 41 is prime; 

: a(6) = 17 + 29 + 1 = 47 is prime; 

 : a(7) = 11 + 41 + 1 = 53 is prime; 

: a(8) = 11 + 47 + 1 = 59 is prime. 

(...) 
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Definition 4:  

We call a generalized Coman pair of primes a generalized Coman strict pair of primes if 

a(3) = p + q – b and i ≠ j, in other words a(i) ≠ a(j).  

 

Note that the term a(n) = 23 is not a term of the generalized Coman strict pair of primes 

(11, 17), but is a term of the generalized Coman pair of primes (11, 17). 

 

Definition 5:  

We call the pair (p, q) of odd Fermat pseudoprimes to the same base b, where p = 30*k + 

d and q = 30*h + d, where k, h are non-null positive integers and d has the values 1, 7, 

11, 13, 17, 19, 23, 29, a [possible] Coman pair of pseudoprimes if the sequence a(n), as it 

will be defined below, has [possibly] an infinity of terms that are pseudoprimes to the 

same base b. 

 

The sequence a(n), where n non-null positive integer, is defined in the following way:  

: a(1) = p, a(2) = q; 

: a(3) is the smallest number, different from p and q, which is prime or Fermat 

pseudoprime to base b from the following three ones: p + q – d, 2*p – d and 2*q - d; 

: a(n) is the smallest number which is prime or pseudoprime to base b greater than a(n – 

1) that can be written as a(n) =  a(i) + a(j) – d, where 1 ≤ i ≤ j < n. 

 

Note: the definition implies that one from the numbers p + q – d, 2*p – d and 2*q - d is a 

prime or a pseudoprime to base b and that for any n, n ≥ 4, there exist i, j, where 1 ≤ i ≤ j 

< n, such that a(n) =  a(i) + a(j) – d, where a(n), a(i) and a(j) are primes or pseudoprimes 

to base b, and, finally, that there is an infinite subset of the set a(n), namely a(m), whose 

terms are all of them pseudoprimes to base b.  

 

Examples:  

 

The pair of Fermat pseudoprimes to base 2 (2701, 2821), where 2701 = 30*90 + 1 and 

2821 = 30*94 + 1, is a possible Coman pair of pseudoprimes because: 

: a(3) = 2701 + 2821 – 1 = 5521 is prime; 

: a(4) = 2821 + 2821 – 1 = 5641 is prime; 

: a(5) = 2701 + 5521 – 1 = 8221 is prime; 

: a(6) = 5521 + 8221 – 1 = 13741 is Fermat pseudoprime to base 2. 

(...) 

 

Conjecture 1:  

There is an infinity of Coman pairs of primes. 

 

Conjecture 2:  

There is an infinity of Coman strict pairs of primes. 

 

Conjecture 3:  

There is an infinity of generalized Coman pairs of primes to any base b, where b is non-

null integer. 

 

Conjecture 4:  

There is an infinity of generalized Coman strict pairs of primes to any base b, where b is 

non-null integer. 
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Conjecture 5:  

There exist pairs of Poulet numbers which are Coman pairs of pseudoprimes. 

 

References: 

 

1. Coman, Marius, Twenty-four conjectures about “the eight essential subsets of 

primes”, Vixra; 

2. Coman, Marius, Three conjectures about an infinity of subsets of integers, each with 

possible infinite terms primes or squares of primes, Vixra. 
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10. Three conjectures about semiprimes inspired by a recurrent formula 

involving 2-Poulet numbers 
 

 

Abstract. Studying the relation between the two prime factors of a 2-Poulet number I 

found an interesting recurrent formula involving these numbers that seems to lead often 

to a value which is semiprime; based on this observation I made three conjectures about 

semiprimes. 

 

 

Observation 1 

  

We take a pair of 2-Poulet numbers which have a common prime factor, as for instance the pair 

[P1 = 341 = 11*31, P2 = 4681 = 31*151] or the pair [P1 = 1387 = 19*73, P2 = 2701 = 37*73] and 

apply on it the recurrent formula Pn = Pn-2 + gcd((Pn-2 – 1), (Pn-1 – 1)).  

 

In the case [P1, P2] = [341, 4681] we have: 

 

 : P3 = 341 + gcd(340, 4680) = 361; 

 : P4 = 4681 + gcd(4680, 360) = 5041; 

 : P5 = 361 + gcd(360, 5040) = 721; 

 : P6 = 5041 + gcd(5040, 720) = 5761; 

: P7 = 721 + gcd(720, 5760) = 1441; 

: P8 = 5761 + gcd(5760, 1440) = 7201; 

: P9 = 1441 + gcd(1440, 7200) = 2881; 

: P10 = 7201 + gcd(7200, 2880) = 8641; 

: P11 = 2881 + gcd(2880, 8640) = 5761; 

: P12 = 8641 + gcd(8640, 5760) = 11521; 

: P13 = 5760 + gcd(5760, 11520) = 11521. 

 

Starting from P14, we will have P14 = P15 = 2*(P12 – 1) + 1, P16 = P17 = 2*(P14 – 1) + 1 and 

so on. 

 

In the case [P1, P2] = [1387, 2701] we have: 

 

 : P3 = 1387 + gcd(340, 4680) = 1405; 

 : P4 = 2701 + gcd(4680, 360) = 2809; 

 : P5 = 1405 + gcd(360, 5040) = 2809; 

  

Starting from P6, we will have P6 = P7 = 2*(P4 – 1) + 1 = 5617, P8 = P9 = 2*(P12 – 1) + 1 

= 11233, P10 = P11 = 2*(P8 – 1) + 1 = 22465, P12 = P13 = 2*(P10 – 1) + 1 = 44929, P14 = 

P15 = 2*(P12 – 1) + 1 = 89857, P16 = P17 = 2*(P14 – 1) + 1 = 179713 and so on. 

 

It can be seen that many of the values of the terms Pi are semiprimes: 361 = 19*19, 5041 = 

71*71, 721 = 7*103, 5761 = 7*823, 1441 = 11*131, 7201 = 19*379, 2881 = 43*67, 11521 = 

41*281, 1405 = 5*281, 2809 = 53*53, 5617 = 41*137, 11233 = 47*239, 22465 = 5*4493, 44929 

= 179*251, 89857 = 59*1523, 179713 = 29*6197.  

 

More than that, between the two distinct prime factors p and q from many of the semiprimes 

obtained above there exist the relation q – p + 1 = n, where n is a prime or a square of a prime: 
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 : 103 – 7 + 1 = 97; 

 : 131 – 11 + 1 = 121 = 11^2; 

 : 379 – 19 + 1 = 361 = 19^2;  

 : 67 – 43 + 1 = 25 = 5^2; 

 : 281 – 41 + 1 = 41; 

 : 281 – 5 + 1 = 277; 

: 67 – 43 + 1 = 25 = 5^2; 

: 137 – 41 + 1 = 97; 

: 239 – 47 + 1 = 193; 

 : 4493 – 5 + 1 = 4489 = 67^2 

 : 251 – 179 + 1 = 73. 

 

A very interesting thing it happens even if between p and q there is not the relation from the 

preceding paragraph; in many of these cases q – p + 1 = n, where n is a semiprime whose two 

prime factors admit themselves the relation showed:  

 

 : 823 – 7 + 1 = 817 = 19*43 and 43 – 19 + 1 = 25 = 5^2; 

 : 1523 – 59 + 1 = 1465 = 5*293 and 293 – 5 + 1 = 17^2; 

 : 6197 – 29 + 1 = 6169 = 31*199 and 199 – 31 + 1 = 13^2. 

 

Observation 2 

  

We also observed that the iterative formula an+1 = 2*(an – 1) + 1, where a1 is a square of a prime 

minus nine, seems likewise to often conduct to primes, power of primes or semiprimes with the 

characteristics of those from Observation 1. 

 

For a1 = 7^2 – 9 = 40 we obtain the following sequence:  

: 79, 157, 313, 625, 1249, 2497, 4993, 9985, 19969, 39937, 79873, 159745, 319489, 

638977, 1277953 (...), where:  

: 79, 157, 313, 1249, 4993, 39937, 79873, 319489, 638977 are primes; 

: 625 = 5^4 is a power of prime; 

: 2497 = 11*227; 227 – 11 + 1 = 217 = 7*31; 31 – 7 + 1 = 25 = 5^2;  

 : 9985 = 5*1997; 1997 – 5 + 1 = 1993 prime; 

 : 19969 = 19*1051; 1051 – 19 + 1 = 1033 prime. 

 : 1277953 = 101*12653; 12653 – 101 + 1 = 12553 prime. 

 

Conjecture 1 

 

For any odd prime n there exist an infinity of pairs of odd primes [p, q] such that q – p + 1 = n. 

 

Conjecture 2 

 

For any semiprime p1*q1, where p1 and q1 are odd distinct primes, there exist an infinity of pairs 

of odd primes [p2, q2] such that q2 – p2 + 1 = p1*q1. 

 

Conjecture 3 

 

For any odd prime n there exist an infinity of pairs of odd primes [pi, qi], for any i from 1 to 

infinite, such that: 
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: q1 – p1 + 1 = n; 

: q2 – p2 + 1 = p1*q1; 

: q3 – p3 + 1 = p2*q2; 

(...) 

: qi – pi + 1 = pi-1*qi-1. 

 

Note: 

 

This is an interesting way to construct (possible) infinite sequences of semiprimes p i*qi, starting 

from a given prime and considering, for instance, the smallest pi for which the relations from 

Conjecture 3 are verified. For instance, in the conditions mentioned, we take n = 13. We have: 

: p1 = 5 because is the smallest prime such that n – 1 + p1 = q1 is prime, so q1 = 13 – 1 + 5 

= 17; 

: p2 = 5 because is the smallest prime such that p1*q1 – 1 + p2 = q2 is prime, so q2 = 5*17 

– 1 + 5 = 89; 

: p3 = 5 because is the smallest prime such that p2*q2 – 1 + p3 = q3 is prime, so q3 = 5*89 

– 1 + 5 = 449; 

: p4 = 7 because is the smallest prime such that p3*q3 – 1 + p4 = q4 is prime, so q4 = 5*449 

– 1 + 7 = 2251 (...). 

We obtained the following sequence of semiprimes pi*qi: 85, 445, 2245, 15757 (...). 

 


